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Abstract: Crack detection has always been a dominant requirement for steel industries to ensure quality production 
and seamless infrastructure maintenance. However, application complexities and defect morphological differences 
make existing approaches confined. Steel-strip surface often undergoes scratch, crack and fatigue conditions during 
production. Manual crack detection schemes are no longer effective in current day complex environment. Amongst 
major steel strip crack detection approaches vision based techniques have been found potential. Filamentous crack 
which is caused due to fatigue or strain is fine-grained and thin and hence highly difficult to be detected by classical 
morphology and static threshold based schemes. In the present work steel strip surface crack(filamentous) detection 
system is developed which employs Varying-Morphological Segmentation (VMS) also called Neuron-Model 
Segmentation (NMS) in conjunction with local directive filtering and active contour propagation. The proposed method 
can be stated as an augmented variational framework that employs multi-directional filters for local crack-region 
identification followed by automated multi-directional region growing and iterative contour evolution which performs 
level set energy minimization to achieve accurate crack detection even under topological non-linearity and varying 
illumination conditions .Simulation results with standard benchmark data has confirmed that the proposed method 
exhibits satisfactory performance for steel strip surface cracks. 

Keywords: Active Contour Propagation; Automatic Steel Strip Crack Detection; Level Set Concept; Neuron-Model 
Segmentation; Region Growing. 

 

Introduction 

     In the last few years high pace globalization, 
industrialization and the zeal to penetrate global market for 
accomplishing better market share have revitalized 
manufacturing industries to produce quality products. 
Amongst the major manufacturing segments, steel industry 
has always been the driving force behind other industrial 
enterprises and hence maintaining optimal quality of 
production with better resource utilization has always been 
the challenging task for the manufacturers. Lean 
production systems recommend optimal quality of 
production to avoid any wastage during supply chain. 
Amongst major steel products, the production of flat steel-
strips dominates over other products. In such case, 
maintaining optimal quality of steel strip production while 
assuring both metallurgical perfection as well as physical 

(say, morphological) aesthetics is vital. During application 
steel strips might undergo varied wear and tear resulting in 
cracks that eventually lower reliability and life of the system. 
On the other hand, physical phenomenon within pre-
installed infrastructures often undergoes issues like crack, 
scratch, disjoint etc. that if not monitored properly could 
result in hazardous consequences. Therefore, identifying 
the presence of crack can not only avoid any probable fault 
but can also help manufacturers to avoid pushing faulty 
steel-strips (crack) into market (i.e., supply chain). 
Practically, crack is one of the most common faults in steel-
strips and hence requires optimal inspection to avoid any 
catastrophe. Classical approaches use manual inspection 
which often imposes processing time and sometime 
inefficiency, thus demanding a better automatic crack 
detection scheme [1]. In industrial activities certain 
certified inspectors and/or structural material engineers 
perform condition assessment of the steel strip after 
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production or in pre-established infrastructures. This 
process needs to be repeated after a certain interval to 
avoid any unexpected consequence. Contrarily, manual 
inspection over a large amount of steel strips is highly 
tedious and time consuming [1]. To avoid such limitations 
automatic crack detection systems can be of utmost 
significance. Undeniably, the nature of crack or allied 
topology often decide efficacy of an approach to perform 
surface crack detection. Approaches   functional for 
straight crack detection or high-width crack morphology 
can’t be suitable for detecting cracks with fine grained 
structure or thin filamentous crack region. This necessitates 
the development of a more robust and automated steel 
strip crack detection system. This research mainly focuses 
on developing a novel automatic crack detection system. 
Though a few approaches have been proposed in the past 
such as Magnetic Field Flow (MFF) [2,3], Eddy Current 
based approaches [4], ultrasonic inspection etc., the ability 
of vision based technology has been found better than 
other solutions. Computer vision  
based approaches can be vital to enable swift and more 
precise crack detection even under different illumination 
and topological conditions [1,5,6]. Being a low cost, flexible, 
and easy to access technology, vision based scheme is the 
most sought after method for automatic steel-strip’s crack 
detection [5]. In the last few years efforts have been made 
to exploit different methods like edge detection [7], 
percolation, textural analysis [8-10] [20,26,45], 
segmentation and local feature [11-13] based crack 
detection, region growing and classification [22,24, 55] etc. 
to perform crack detection [14,15]. Approaches depend on 
the efficacy of image processing; a few efforts were 
dedicated to augment wavelet transform for crack 
detection [8,16,17,27]; however, being static local 
threshold based scheme it lacked potential to perform 
filamentous or thin crack detection. Similarly, edge 
detection technique, was found limited especially under 
noisy steel-surface and topologically complex environment 
[7]. Approaches using morphological features [8,26,56] are 

confined due to presence of noise and non-linear 
topological conditions. Local percolation-based crack 
detection [18] was found better for surface crack detection 
over large crack region [19]; however, its efficacy could not 
be justified for very thin filamentous crack detection. On 
the other hand, the steel strips being produced these days 
are of different shapes and sizes that could suffer stress, 
strain and/or fatigue during its life cycle. Noticeably, such 
cracks often used to be thin and filamentous. A few other 
schemes like statistical filter [21] [25], morphological filter 
[22], Hessian matrix-based filter [28] and wavelets based 
approaches [29-31] have been proposed in the past to 
perform crack detection. The above stated approaches 
were predominantly surface-texture-morphology based 
models and can’t be suitable for non-linear surfaces or 
sharp changing, topologically varying crack structures or 
coarse textural features on steel strip surface. A few 
approaches like Principal Component Analysis (PCA) and 
histogram based classification algorithm [32] were 
developed for crack detection; however, they were focused 
on large gap structural crack detection (i.e., bridge-crack, 
pavement crack or road crack detection). The applicability 
of these approaches may not be suitable for fine-grained 
and filamentous crack detection in steel strips. There are 
numerous conditions such as cluttered environment; 
shadow region etc. where the classical   approaches can 
yield false detection, especially for thin filamentous cracks. 
There are innumerable cases where cracks are caused by 
physical damage or factors such as residual stress in steel 
strips. Noticeably, these types of cracks often have 
complicated geometry and thin crack region that makes 
most of the classical approaches ineffective. In addition, 
non-linear growth in crack geometry and different branches 
or curves makes most of the existing approaches limited 
and therefore demand a certain more efficient and robust 
solution for thin and filamentous crack detection. Recently, 
an approach called region growing was proposed [33,34-37] 
that in conjunction with the shortest path algorithm (with 
optimal graph-weight estimation) performed branched 
crack detection; though these methods were primarily 
focused for large width crack detection over road, 
pavement or bridge like infrastructures. Presently, there is 
no potential automated system developed so far to perform 
fine grained and filamentous crack detection on steel strip 
surface. In this paper a highly robust and efficient steel-strip 
crack detection system is proposed for filamentous and 
very thin cracks over steel strip surface. Unlike classical 
approaches, a novel Varying-Morphological Segmentation 
(VMS) concept that in conjunction with active contour 
propagation (CP) and level set concept enables highly 
accurate steel-strip crack detection even under different 
topological (branched neural of filamentous cracks) and 
varying illumination conditions. The proposed crack 
detection model comprises two consecutive phases in 
which firstly initial crack identification function was 
performed using multi-directive filters and Hessian matrix 
method. In the sub-sequent phase an automatic multi-
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directional region growing method is applied using active 
contour propagation with level set method. As an 
integrated solution, the proposed method can be stated as 
a variational framework supported by level-set where the 
level-set evolution tries to reduce specific energy functions 
to perform accurate filamentous crack detection and 
segmentation. Simulations with standard benchmark 
dataset as well as first hand collected data samples have 
exhibited that the proposed model performs satisfactorily 
even under different illumination conditions and different 
topological cross-point structures.  The other sections of 
the presented paper are divided as follows: Section 2 
discusses the key existing schemes for steel crack detection, 
which is followed by problem formulation in Section 3. 
Section 4 discusses the proposed system. Results obtained 
are discussed in Section 5. Section 6 discusses the critical 
assessment and conclusion and allied future scopes are 
discussed in Section 7. References used in this research are 
presented at the end of manuscript. 

Related Work 

     This section briefs a snippet of the existing crack 
detection schemes and their respective strengths as well as 
limitations.  Amongst the major steel strip surface crack 
detection schemes, eddy current based detection [4], 
thermography [38], Magnetic Flux Leakage (MFL) [2,3] and 
image processing based crack detection methods have 
been most explored. Kim et al [39] applied magnetic and 
ultrasonic approaches to perform steel slab crack detection. 
Wang et al [40,41] assessed traditional thermography 
inspection method to perform crack detection; however, 
found it limited to perform steel surface cracks 
identification. As a novel contribution authors developed 
Thermal Pattern Contrast (TPC) mechanism for weak 
thermal signal detection using eddy current pulsed 
thermography (ECPT). With a similar motive, Slobodnik et 
al [4] also used the pulsed eddy current concept to perform 
crack detection in the electrically conductive steel plate. 
However, their effectiveness in current alloyed Iron 
materials with different structural features was suspicious. 
Understanding limitations of the classical MFL schemes, 
Okolo et al [2] proposed an optimized pulse MFL model that 
was further augmented by Tsukada et al [3] with 
unsaturated alternating current (AC) MFL for steel crack 
detection. However, these approaches could not exhibit 
optimal solution, especially for the steel components with 
non-linear surface or inner surface crack topology [42]. To 
alleviate existing issues in MFL, Bouchalkha [42] used 
ultrasound waves to retrieve 3D images of pipeline inner 
surfaces. As an alternative paradigm, photoluminescence 
(PL) and infrared transmission (IR) images were used by 
Demant et al [43] to perform crack detection. The concept 
of pattern recognition was applied in conjunction with local 
(feature) descriptors and support-vector machine (SVM) 
classified defects in steel slabs [24]. However, this approach 
could not address the issue of non-linear and filamentous 

branched crack detection. Considering vision based 
approach, Hsu et al [44] focused on developing a fast vision-
based surface inspection model that exploited crack 
features to perform defect identification. This method 
could not achieve optimal performance due to in-
homogeneities in the microstructure. To address the issue, 
Huynh et al [48] developed automatic thin crack detection 
in pipelines using Dou-Edge Evaluation (DEE) scheme; but 
could not address the issue of filamentous crack 
identification and segmentation under different 
illumination and clutter conditions. Wang et al [46] 
explored the potential of the different image-based crack 
detection methods such as integrated algorithm, 
morphological approach, percolation-based method, and 
practical technique for steel sheet crack detection. 
Predominantly, this method was used for concrete crack 
detection which is often relatively thicker than the steel 
strip’s cracks. Applicability of vision based steel crack 
detection systems primarily depend on feature extraction, 
region of interest (ROI) segmentation and further 
classification for which retaining optimal feature 
identification is a must. Though the approach used 
watershed transform [47-53]; it lacked efficiency due to 
post-morphological segmentation and connected 
component analysis, which seems tedious for filamentous 
crack structure. In [48] Marik et al developed a fast linear 
single-sweep algorithm that generated all possible extreme 
weighted connected components in one dimensional real 
value signal. To further augment it, Elyounsi et al [49] 
enhanced ROI segmentation using an integrated 
mathematical morphology watershed and thresholding 
methods. This method in conjunction with the top-hat 
transformation performed crack detection for 3D Inverse 
Synthetic Aperture Radar (ISAR) Images. Wang et al [50] 
integrated watershed with top-hat transformation [49] for 
water body extraction in SAR image. Regardless, these 
approaches could not achieve object (specifically cracks) 
detection with non-linear topology and were found 
suffering from over segmentation issue. To alleviate this, 
authors applied post-segmentation approach called 
connected-component analysis (CCA) and chain code. 
Machairas [52] and Yuan et al [53] suggested watershed 
transform for super-pixel generation, through a spatially 
regularized gradient that could retrieve a tunable trade-off 
between super-pixel regularity and adherence to object 
boundaries. Though, Yuan [53] tried to augment watershed 
segmentation algorithm by means of a hybrid gradient and 
self-adaptive marker extraction, it could not address the 
non-linearity issue over the steel surface and varying crack 
topological conditions. Authors [54] introduced wavelet 
based Non-Linear Mean Square (NLMS) adaptive filter and 
thresholding to perform precise feature extraction, though 
it could not address non-linearity in surface quality and 
fine-grained filamentous cracks. In the recent years a few 
more efforts were made by applying cross-coupled neural 
network [55] to perform crack detection in images. Singhka 
et al [13] applied Artificial Neural Network (ANN) to 
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perform defect classification over extracted features of 
steel strip surface. The authors didn’t address the problem 
of thin and non-linear crack over steel strip surface. Wang 
et al [41] applied random forest algorithm to perform steel 
beam panoramic crack detection, though it can’t be optimal 
for fine grained cracks on steel strip surface. Landstrom [56] 
applied morphology concepts and logistic regression based 
statistical classification to perform crack detection on steel 
slab surfaces. To achieve better accuracy for fine crack 
detection, Liu et al [57] suggested morphology concept 
with multi-scale enhancement and visual features; though 
it was designed especially for concrete crack detection. 
Considering the detection of cracks in images clicked from 
a larger distance Noh et al [58] performed ROI 
segmentation using filtering and morphological operations. 
While, this approach made effort to exploit local features 
for efficient classification the classical static thresholding 
based morphology confined its suitability for non-linear, 
thin and filamentous crack segmentation. No significant 
effort is seen in the literature towards enabling crack 
detection of fine grained and filamentous cracks over steel 
surface. 

Problem Formulation  

Unlike road-crack or pavement crack detection 
where the geometry or dimensional characteristics of the 
crack can be more perceptible, this research focuses on 
developing a robust approach to detect fine grained, thin 
and filamentous crack region segmentation over steel strip 
surface. This research method exploits the variational 
framework driven by level set, where level set evolution 
intends to minimize specific energy function to assist 
optimal and/or accurate filamentous crack detection. 
Considering topological complexity and cross-point 
structure, in the present work a novel Varying-
Morphological Segmentation (VMS) model has been 
designed which can be visualized as the Neuron-Model 
Segmentation (NMS) to detect crack even under cluttered 
and shadowed environment. Inclusion of the proposed NMS 
scheme enables resemblance of the branched filamentous 
cracks to the neural structure which could be realized by 
region growing method based on which active contour 
evolution could perform crack region segmentation. To 
perform filamentous crack region detection this paper 
proposes an integrated VMS framework which is executed 
in two consecutive phases. Firstly, Hessian matrix based 
local multi-directive filters have been initiated that help to 
identify local crack indicator function. On identifying local 
crack indicator function an integrated scheme comprising 
automatic multi-directional region growing and level set 
method has been developed that exhibits iterative active 
contour propagation or evolution to perform crack 
detection over steel strip surface. To achieve total ROI 
segmentation, contour propagation (CP) is performed 
iteratively along the crack orientation (originating from seed 
or set-points). In the above stated paradigm identifying seed 

region or the crack origin is a complicated process which is 
either done manually by an expert or by automatic measure. 
A few existing approaches have made efforts to use 
multidirectional templates to estimate the direction for 
retrieving seed points along the neural medial axis. However, 
for automatic process local region growing concept can be a 
better alternative that could help detecting fine grained or 
thin (crack) branch. Other classical approaches like 
watershed transform which requires post-segmentation 
analysis such as connected-component analysis to perform 
overall segmentation, are time consuming. As a solution, the 
concept of branch-growing and connection method can be 
considered between the optimal set of seeds by estimating 
the shortest path; however, it suffers degraded 
segmentation accuracy in case of improper set of point 
selection. The other approach such as global method which 
employs pipeline-enhancement, segmentation, center-line 
detection and post processing requires image smoothing of 
the medial axis with spline fitting too might get affected by 
noise and clutter presence and hence can eventually affect 
the overall performance. Unlike classical contour evolution 
and region growing concepts, where user requires 
initializing or defining local seed-points for contour 
evolution, the present work proposes Otsu method based 
thresholding and an attractive force field function that 
enabled automatic contour evolution over image to perform 
crack segmentation. Summarily, the proposed model can be 
stated as an augmented variation framework driven by level 
sets that intend to minimize energy-functions during 
contour evolution to perform filamentous crack detection 
and segmentation over steel strip surface. 

System Model 

     This section primarily discusses the proposed 
system and its implementation. The proposed steel-strip 
crack detection model is developed based on non-linear 
structure segmentation concept called the Neuron-Model 
Segmentation (NMS) or VMS. It exploits the concept of 
VMS that in conjunction with level set method and active 
contour propagation (i.e., region growing) enables precise 
filamentous crack segmentation. To achieve the eventual 
target our proposed model incorporates a number of 
sequential measures to derive automated filamentous 
crack segmentation scheme. 
     These are: 
A. Defining Non-Linear (Tubularity) Flow Field (NFF) for 
initial region Identification, 
B. Hessian Matrix based ROI Evidence Identification in NFF,  
C. Modelling of an Enhanced NFF Model with Local 
Multidirectional Filtering,     
D.Enhanced NFF based Filamentous Crack Segmentation 
over Steel-Strip Surface  
E. Contour Propagation assisted Local Feature Extraction 
(LFE). 
F. Local Attraction Force Field (LAF) design for automated 
filamentous crack segmentation. 

     The proposed method firstly derives a non-linear 
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tubularity flow field (NFF) concept that enables easy 
implementation of thin-crack detection over steel strip 
surface under cluttered condition. 
     Once NFF model is derived, Hessian matrix based 
template matching using multiple directional filtering is 
done. Upon performing initial crack identification, it is 
followed by active contour propagation that in conjunction 
with level set method enables precise crack segmentation 
over steel strip surface. 
     The detailed discussion of the proposed 
segmentation model is given in the sub-sequent sections.  

Start

Input Steel Strip (Crack) Image

Initial Crack (ROI) Estimation

Level Sets Initialization

Objective Function Definition

Active Contour Propagation

Crack (ROI) Detection by Minimizing 
Objective Function

Crack (ROI) Region Segmentation and 
Labeling

Local Directional Filtering and Hessian 
Matrix assisted Initial Crack Detection

Multidirectional Filtering assisted NFF 
Orientation Generation

Stop

 
Figure 1. Implementation Schematic of the proposed steel strip crack 

detection system. 

A. Defining Non-Linear tubularity Flow Field (NFF) for 

Initial Region Identification  

     In this phase the prime focus is on deriving NFF 
model so as to assist fine grained and very thin crack region 
identification, even under shadowed or varying 
illumination conditions. To derive it, the structure 
segmentation concept recommended in literature wad 
followed. [15]. The proposed NFF model exhibits 
segmentation by means of a Geometric Active contour 
(GAP) Propagation that exploits level set approach where it 

intends to reduce certain objective function. To achieve 
this, we have designed multidirectional contour 
propagation scheme as 𝐶(𝑥, 𝑦) that propagates in effect 
of vector field, called NFF. In this approach contour 
propagation is derived in terms of the equation (1). 
 

∂𝐶

∂t
= α1 < V1 , 𝒩 >2 𝒩 + α2 < V2 , 𝒩 >2 𝒩    (1) 

 
In (1), 𝒩 signifies a unit perpendicular (i.e., normal) 

vector at each location of the contour𝐶(𝑥, 𝑦). 𝑉1 and 𝑉2 
present axial and normal component(direction orthogonal 
to it) of NFF depicting crack-orientation. Thus, the defined 
contour region 𝐶(𝑥, 𝑦)  continues motion in such a 
manner that it propagates in the direction of crack-region 
(say, crack axis due to 𝑉1 as well as crack-thickness due 
to  𝑉2 ). In the present model, to control the speed of 
propagation two coefficients, ∝1 and ∝2> 0. have been 
applied. In (1), <. , . >  states the operational rule 
signifying Euclidean inner product of operators. On 
conceptualizing the NFF model, it becomes important to 
identify crack region. Since, majority of the image based 
crack segmentation models employ template matching 
concept, in the present work Hessian matrix based initial 
crack region identification that employs two directional 
filters for achieving overall crack segmentation intrinsically. 

B. Hessian Matrix based ROI Evidence Identification in 

NFF  

Authors [15] found that the values of the 
propagation-speed control coefficients (i.e., ∝1 and ∝2) 
have direct impact on ROI evidence identification over 
curve evolution, and hence selecting a suitable coefficients 
can be obtained by (2). 
 

∝1= ∝2= 𝑅(𝑥, 𝑦)    (2) 
  

Noticeably, in above expression, 𝑥  presents the 
image under study, while 𝑦 signifies the position in the 
image. Equation (2) stated the NFF indicator function that 
hypothesizes a high scalar value (≅ 1) at certain position, 
where a structure is supposed to be present, and a low 
value (≅ 0) when there is no such structure available. In 
such cases, it is assured that the propagating active contour 
stops only when the magnitude of NFF indicator function 
reduces. Here, R (𝑥, 𝑦)  was designed on the basis of 
Hessian matrix analysis, where the Hessian matrix for an 
image 𝑥 at certain location 𝑦 is obtained by (3). 
 

𝐻𝜎 (𝑥, 𝑦) = [ℎ]𝑖,𝑗  (1 ≤ 𝑖, 𝑗 ≤ 2), 𝑓(𝑥, 𝑦)𝜖Ω   (3) 
  

In (3), 𝑥  states the d-dimensional vector 
(𝑥1, 𝑥1, . . , 𝑥𝑑)𝑇, scale 𝜎 represents the square matrix. The 
Hessian matrix of d-dimensional image 𝑓(𝑥, 𝑦)  (i.e., d-
dimensional image 𝑥 at location 𝑦) can be obtained as (4). 
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ℎ𝑖,𝑗 =
𝜕2 𝐺 (𝜎)

𝜕𝑥𝑖 𝜕𝑥𝑗
∗ 𝑓(𝑥, 𝑦) 

 
  (4) 
 

In (4), the variable G(σ)  signifies the zero mean 
normalized Gaussian kernel having the variance of 
σ2.Typically, filamentous neuron used to be brighter than 
the background and hence becomes feasible to obtain scale 
space Hessian matrix that enables retrieving filamentous 
crack region of an image at a particular location of 
 𝑓(𝑥, 𝑦) ∈ Ω . Considering that the crack regions are 
depicted in terms of varied intensity distribution from the 
steel-strip surface region, it becomes easy to retrieve the 
scale space Hessian matrix that further helps in obtaining 
evidence of tubular crack at a certain position over the 
digital image (of steel strip surface image). Owing to the 
undeniable fact that the crack regions are typically 
designed or defined in terms of piecewise rigid templates 
when estimating Hessian matrix, classical crack detection 
approaches cannot deliver optimal performance, specially 
for the complex crack geometries such as filamentous 
cracks. The classical approach may result in local structural 
discontinuation and hence may yield false detection output. 
To alleviate this issue, we introduced an enhancement by 
employing a specific local attraction force that lines the 
(natural) fragmented structures. Further to augment time 
efficiency in this paper a novel evidence filter concept has 
been applied to detect tubular filamentous cracks over 
steel strip surface. The detailed discussion of the proposed 
NFF multidirectional filtering based crack detection scheme 
is given in the sub-sequent section. 

C. Modelling of an Enhanced NFF Model with Local 

Multidirectional Filtering  

Defining Crack Indicator Function with Multidirectional 
Local Directional Filtering:  

Exploring in depth, it can be found that the concept of 
crack detection in digital image has evolved from a 
template matching viewpoint [59]. In this paper the 
oriented crack template has been retrieved by steering a 
2nd order Gaussian derivative filter that generates a filter 
bank pertaining to the oriented local crack templates over 
steel strip surface. In this paper Hessian matrix based 
template has been applied for directional filtering. On 
obtaining the local crack template, generation of ROI 
evidence estimation has been performed. In major classical 
approaches, it has been found that there can be 
discontinuities in the generation of the local structure, and 
to alleviate it, Supplementary Evidence Filters (SEFs)were 
introduced. Noticeably, SEFs behave like the local evidence 
filter by executing two distinct filters, the backwards filter 
𝑅b  and the forward filter𝑅f . These filters in conjunction 
with the Hessian matrix based local evidence detector 𝑅d 
enable precise filamentous crack region identification in 
local neighbourhood of the detection kernel. 
Mathematically, the filamentous crack region identification 
is performed using (5). 
 

𝑅𝑑
∗ = max

𝜃
𝑅𝑑  ((𝑥, 𝑦), 𝜃; 𝜎)   (5) 

 
𝑅𝑑  ((𝑥, 𝑦), 𝜃; 𝜎) = 𝑟𝑑((𝑥, 𝑦), 𝜃; 𝜎). 𝑓 (𝑥, 𝑦)    (6) 

 
𝑟𝑑((𝑥, 𝑦), 𝜃; 𝜎) = 𝑔𝑥𝑥𝑐𝑜𝑠2𝜃 + 𝑔𝑦𝑦𝑆𝑖𝑛2𝜃 

+  𝑔𝑥𝑦 sin 2𝜃 
  (7) 

 
In (7), the variables 𝑔𝑥𝑥 , 𝑔𝑥𝑦 , 𝑎𝑛𝑑 𝑔𝑦𝑦 signify the 

values of the Hessian matrix obtained by performing 
convolution of the pixel intensity with the Gaussian kernel 
value. 

(𝑔(𝑝; 𝜎) =
1

√2𝜋𝜎
 𝑒

−
𝑥2 + 𝑦2

2𝜎2 ) 
 (8) 

Mathematically, on estimating the Hessian matrix, 
multiple SEFs filters (as discussed above) were introduced 
based on local evidence identification using following 
equations. 

𝑟𝑓((𝑥,𝑦); 𝜎,𝜑1) =  𝑟𝑑(𝑥𝑑𝑐𝑜𝑠 (𝜃 + 𝜑1), 𝑦 

+  𝑑𝑠𝑖𝑛 (𝜃 + 𝜑1)) 

 

  (9) 

𝑟𝑏((𝑥,𝑦); 𝜎,𝜑2) =  𝑟𝑑(𝑥𝑑𝑐𝑜𝑠 (𝜃 + 𝜑2), 𝑦 

−  𝑑𝑠𝑖𝑛 (𝜃 + 𝜑2)) 

 

  (10) 

Now applying equation (6), (9) and (10), the response 
for each local evidence SEF filter is obtained as  
 

𝑅𝑓 ((𝑥, 𝑦), 𝜃; 𝜎) =  𝑟𝑓((𝑥,𝑦); 𝜎,𝜑1). 𝑓(𝑥, 𝑦)    (11) 
 

𝑅𝑏((𝑥, 𝑦), 𝜃; 𝜎) =  𝑟𝑏((𝑥,𝑦); 𝜎,𝜑2). 𝑓(𝑥, 𝑦)   (12) 

   
On estimating the responses from each SEF filter 

separately (i.e., 𝑅𝑏 and 𝑅𝑓), a cumulative crack indicator 
function is derived by superimposing the responses of the 
detector and the evidence kernels at  different scale 
values. 
 

𝑅(𝑥, 𝑦) = max
𝜃,𝜎

𝑅𝑑 + max
𝜑1,𝜎

𝑅𝑓 + max
𝜑2,𝜎

𝑅𝑏 

 

(13) 
 
 

Equation (13) signifies the enhanced local 
(multidirectional) directional filter that possesses better 
efficacy as compared to the classical Tubular Flow Field 
based crack detection paradigms. To augment overall 
performance, a set of oriented evidence filters were 
applied for each direction of the detector kernel that 
enables swift and precise crack detection in multiple 
directions. This mechanism enables filamentous crack 
branches as well as root point identification over steel-strip 
surfaces. 

D. Enhanced NFF based Filamentous Crack Segmentation 

over Steel-Strip Surface  

Upon identifying the local crack indicator function, 
crack-region segmentation was performed using level set 
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approach [60]. Noticeably, in this research level set 
algorithm has been applied as it enables accurate 
geometric curve motion estimation even under varying 
contour region or allied physical (natural) crack topology. 
To arrive at this objective, an embedding function 
∅(𝑥, 𝑦, 𝑡) was derived in such manner that the contour 
C(x, y) could be presented in terms of the zero level sets 
of ∅ at certain instant 𝑡. Solving equation (1), we get (14):  
 

𝜕∅(𝑥, 𝑦, 𝑡)

𝜕𝑡
=  𝑅(𝑥, 𝑦) (〈𝑉1, −

𝛻∅

|𝛻∅|
〉 2

+ 〈𝑉2, −
𝛻∅

|𝛻∅|
〉 2) |𝛻∅| 

 

 
 
 

(14) 

Now, observing the expression derived in (14), to 
perform crack detection an energy-function was derived 
such that it augments the (filamentous) curve propagation 
in the naturally crack lined region, excluding the crack-like 
background components. This makes the proposed system 
more advanced and robust to meet online and real-time 
filamentous crack detection in manufacturing setup as well 
as in pre-established steel-strip infrastructures. In the 
proposed model following the suggestions in [61], the ROI 
detection has been performed by reducing derived energy 
function, i.e objective function 𝜀(∅) which is 
mathematically derived as (15). 
  

𝜀(∅) =  𝜀𝑟𝑒𝑔(∅) + 𝜀𝑒𝑣𝑜𝑙𝑣𝑒(∅)                (15) 
 
 
𝜀𝑟𝑒𝑔(∅) =  𝑣1 ∫ |𝛻∅ (𝑥, 𝑦)|

𝛺
𝛿𝜖(∅)𝑑𝑥𝑑𝑦         (16) 

 
 

𝜀𝑒𝑣𝑜𝑙𝑣𝑒(∅)

=  − ∫ ∑ 𝛼𝑖

𝑑

𝑖=1

(𝑥, 𝑦)〈𝐷𝑖 (𝑥, 𝑦), 𝑛(𝑥, 𝑦)〉2
𝛺

𝐻𝜖 (∅)𝑑𝑥𝑑𝑦 

                                          (17) 

 

As per equation (16), the defined energy function 
(𝜀𝑟𝑒𝑔), whose regularizing component limits the length of 
the original zero level set curve ∅  signifies the 
smoothness of the curve. Noticeably, the parameter 𝜀 
signifies the curve evolution. In (16), selection of the 
positive factor 𝑣1 helps achieving smoothness of the zero 
level set . Here, the smaller value of 𝑣1  provides 
relatively minute sized or smaller and disjoint detected 
crack regions identification in eventual solution. The 
presence of the vector as defined in (18), signifies the 
inwards perpendicular unit vector against zero level set 
curve ∅ . On the other hand, the operating rule 〈. , . 〉 
which is mathematically stated as the Euclidean inner 
product of the functional operator (17). 
 

𝑛(𝑥, 𝑦) =
∇∅(𝑥, 𝑦)

|∇∅(𝑥, 𝑦)|
 

(18) 
 

 
In equation (17), the weighting factor αi(x, y) helps 

in retrieving the orthogonal and axial component of the 
proposed NFF model for filamentous crack detection over 
steel-strip surface (during curve evolution). 

As defined and derived in the above section, 𝜀𝑟𝑒𝑔(∅) 
signifies the force caused due to the regularization energy, 
while 𝜀𝑒𝑣𝑜𝑙𝑣𝑒(∅)  states the force due to the evolution 
energy function. As these forces (i.e., 𝜀𝑟𝑒𝑔(∅)  and 
𝜀𝑒𝑣𝑜𝑙𝑣𝑒(∅) ) have already been estimated using Euler-
Lagrange method, realizing the need of a robust and 
automated crack region segmentation model in addition to 
the 𝜀𝑟𝑒𝑔 and 𝜀𝑒𝑣𝑜𝑙𝑣𝑒 forces  a supplementary force was 
used called local attraction force 𝜀𝑎𝑡𝑡𝑟.  Thus, to enable 
the proposed model efficient for automated segmentation, 
a multiple parameters based objective function was 
derived to be used in level set method. The detailed 
discussion of 𝜀𝑎𝑡𝑡𝑟 force estimation is given as follows: 

E. Local Attraction Force Field (LAF) design 

As defined in the above expression, 𝜀𝑎𝑡𝑡𝑟  primarily 
functions for accommodating the signal intensity variation 
or losses across the connected filamentous-branches. 
Typically, there existed signal attenuation causing 
unexpected discontinuity in the filamentous crack region 
and eventual turning into disjoint-crack. Furthermore, it 
can also result in   discontinuity especially at the junction 
points of the neural-branches or at the noisy regions. In 
such condition, the classical approaches as derived in (15), 
are insufficient to assure optimal crack segmentation. To 
alleviate such issues, the use of a Local Attraction Force (LAF) 
can be of utmost significance. Practically, developing LAF 
needs precise assessment of the connected components at 
each time epoch of the level set propagation. At certain 
point 𝑡 , to perform evolution of the level set function 
∅(𝑥, 𝑦, 𝑡) , the set of connected component 𝐶(𝑡) can be 
obtained using (19). 
 

𝐶(𝑡) = 𝐻(∅(𝑥, 𝑦, 𝑡))   (19) 

In (19),  

𝐻(𝑧) = {
1 𝑓𝑜𝑟 𝑧 ≥ 0
0 𝑧 < 0

   (20) 

 
Noticeably, in (19), the set of connected components 

𝐶(𝑡) = {𝑐1, 𝑐2, … , 𝑐𝑝} signifies the binary segmentation at 

certain time 𝑡  that encompasses 𝑝 ≥ 1  disjoint 
connected components. It should be noted that the 
binarization avoids any classical segmentation measure as 
the binary component itself are retrieved by means of 
extraction of the interior of the zero level sets of 𝜙.  Here, 

the individual disjoint component  𝑐𝑗  states a potential 

candidate with the ability to attract the remaining 
component 𝑐𝑘 (i.e., neighboring disjoint component), 
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where 𝑘 ≠ 𝑗 (𝑗, 𝑘 = 1,2, … , 𝑝). The predominant purpose 
of attraction force is to assist contour propagation surface 
so as to connect itself to the neighboring or local disjoint 
components. Considering the practical (complex) scenario, 
it is not inevitable that all the points on the connected 
component would be the potential candidates for 
constituting the attraction force due to the reason that in 
most of the prevalent discontinuities, minimally one of the 
two disconnected components or fragments are supposed 
to be connected by means of boundary points signifying the 

region of high curvature. The boundary of a component 𝑐𝑗 

was presented in terms of 𝛿𝑐𝑗, to assist a parent to attract 

a child, it becomes inevitable to model an attraction field 
generated through a set of candidate points existing on the 

boundary of the parent. Thus, for a parent component 𝑐𝑗, 

point 𝑦 ∈ 𝛿𝑐𝑗 pertains to the potential candidate set if 𝑦 

states a point the convex hull [62], 𝐻𝑗  of  𝑐𝑗 . In this 

manner, the potential candidate point-set 𝑀𝑗  for 𝑐𝑗  can 

be defined using (21). 
 

𝑀𝑗 = {𝑦 ∈ 𝛿𝑐𝑗: ∃𝑥𝑗 ∈ 𝐻𝑗   𝑠. 𝑑.  ‖𝑦 − 𝑥𝑗‖
2

≤ ∆} 

 

  (21) 

 

In (21),  states the positive factor encompassing 
local boundary coordinates of the neighboring points 
on 𝐻𝑗. The potential (candidate) set of points for a parent 
component is accountable for retrieving the force sufficient 
enough to attract the candidate children towards it so as to 
achieve significant margin for accurate segmentation. The 
attraction field vectors move towards the ROI, which is 
nothing else but the (parent) candidate point set. To 
achieve it (i.e., LAF), vector field convolution (VFC) scheme 
[63] seems a potential method.  VFC model that 
generates expected external force by convolving the vector 
field with the object edge map with the ability to attract a 
contour to the ROI.  
 

𝐾(𝑝) = −𝑚(𝑝)
𝑝

‖𝑝‖
 

     

𝑚(𝑝) = exp (−
‖𝑝‖2

𝛾2
) 

  (22) 
 
 

   
  (23) 

 
In (22), 𝑝 = 0  signifies the kernel center. The 

variable 𝛾  states a parameter controlling the capture 
range of VFC. Considering thin crack presence over steel 
strip surface,  𝛾  was used that exists in the range of 
0.2 × 10−6  to 1.5 × 10−6  meter. Noticeably, In the 
proposed model the optimal set of points 𝑀𝑗  specially 
functions as ROI for the parent 𝑐𝑗 towards which the other 
components are supposed to be attracted. On performing 
convolution of the kernel and the candidate set, a vector 
field was retrieved in which vector components are 
directed towards the parent and their quantitative value 

(say, magnitude) attenuates slowly as per increase in 
distance from the candidate set. Assuming that the points 
in (21) (i.e., in 𝑀𝑗) are 1, then for 𝐸𝑗(𝑥), the binary edge 
map, it becomes feasible to estimate LAF field (24). 
 

𝛤𝑗(𝑥) = 𝐸𝑗(𝑥) ∗ 𝐾(𝑥),   ∀𝐴 ∈ Ω   (24) 
  
After obtaining the attraction field, it becomes 

possible to constrain a locality by means of avoiding remote 
components. Furthermore, this method allows automated 
segmentation without human interference, which is not 
available in classical morphological based crack detection 
approaches. The proposed   LAF model functions for 
attracting local connected components present in the 
vicinity of the parent’s boundary convexity. Estimating 

𝛤𝑗(𝑥) for parent set (𝑐𝑖) and child set (𝑐𝑗), the parent set 

attracts the child with a force LAF, which is mathematically 
derived as (25). 
 

𝐹𝑎𝑡𝑡𝑟
(𝑖,𝑗)(𝑧) = 𝑘𝑖〈𝛤𝑗(𝑧), −𝑛(𝑧)〉𝜃𝑗(𝑧) (25) 

  

In (25) the indicator function 𝜃𝑗(𝑧) = 1  when 𝑧 ∈
𝛿𝑐𝑗 , otherwise 𝜃𝑗(𝑧) = 0.  The variable 𝑘𝑖  states the 

normalized quantifiable value (say, mass) of ci, which has 
been estimated as the ratio of the number of pixels/voxels 

in 𝑐𝑖 to the total pixels/voxels in {c1, c2, … , cp}. Using 𝑘𝑖 

the proposed model enables heavier connected 
components to have more attracting power. Assuming that 
the filamentous curves possess larger volume as compared 
to the noisy steel strip surface, the solution of the level set 
function was alleviated by exhibiting “Area-opening 
function” that removes small and insignificant components 
having total area smaller than the threshold value. Thus, 
total attraction force 𝐹𝑎𝑡𝑡𝑟 for each parent-child pair was 
estimated. Mathematically,  

𝐹𝑎𝑡𝑡𝑟(𝑧) = 𝑣2  ∑ ∑ 𝐹𝑎𝑡𝑡𝑟
(𝑖,𝑗)(𝑧),

𝑝

𝑗≠𝑖

𝑝

𝑖=1

 ∀𝐴 ∈ Ω 
 (26) 

 
In (26), 𝑣2 which is a positive scalar vector ranging [0-

0.02] estimates the overall influence of attraction force on 
the curve evolution. On estimating the attractive force, it 
becomes easy to initiate level set method that intends to 
reduce an objective function for active contour propagation 
and automatic crack segmentation over steel strip surface. 
Adding LAF as an objective function, (15) is augmented as 
(27). 

F. Level Set Evolution and Objective Function Minimization  

The objective function can be minimized by means of 
certain variation calculus approach. In this relation, in 
addition to the objective function components as 
mentioned in (15),   LAF𝜀𝑎𝑡𝑡𝑟(∅) , was introduced thus 
making overall objective function as (27). 
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𝜀(∅) =  𝜀𝑟𝑒𝑔(∅) + 𝜀𝑒𝑣𝑜𝑙𝑣𝑒(∅) +  𝜀𝑎𝑡𝑡𝑟(∅) (27) 
 
 

Noticeably, the prime significance of LAF is that it 
helps in enabling propagation of the contour surface for 
attaching itself to the disjoint crack segments automatically 
and precisely, without constraining human interference 
and allied inaccuracy. Now, considering the Gateau’s 
variation of the LHS of (27), (i.e., 𝜀(∅) ) in conjunction 
with ∅, to achieve (28) 
 

𝛿𝜀

𝛿∅
=

𝛿𝜀𝑟𝑒𝑔

𝛿∅
+

𝛿𝜀𝑒𝑣𝑜𝑙𝑣𝑒

𝛿∅
+

𝛿𝜀𝑎𝑡𝑡𝑟

𝛿∅
 

  (28) 

 
In the proposed method, in (28), the variable  is 

updated iteratively using Gradient Descent (GD) algorithm. 
In other words, assigning 𝛿𝜀/(𝛿∅) = −(𝛿∅)/𝛿𝑡where 𝑡 
signifies the pseudo time parameter for iterative update. 

 

𝛿∅

𝛿𝑡
= 𝜀𝑟𝑒𝑔(𝑥) + 𝜀𝑒𝑣𝑜𝑙𝑣𝑒(𝑥) + 𝜀𝑎𝑡𝑡𝑟(𝑥) 

  (29) 

 
Mathematically, once estimating (26), the derived 

outcome of (29) enables iterative computation of the level 
set function (30).  
 

∅k+1 = ∅(k) + ∆tℒ(k)   (30) 

 
To enable stable computation   smaller value 

(approximately 0.1) of  ∆t  was considered. The 
parameter ℒ (𝑘) states the discretized form of the output 
of (29) and the level set function at instant 𝑘  is given 
by  ∅(𝑘) . To perform filamentous crack detection, it is 
important to initiate an active contour while assuring that 
the initiated curve exists within the filamentous crack 
region. Though, manually it can be done by clicking within 
the crack region, classical approach was avoided and 
followed a global thresholding method applying Otsu’s 
method [64] that in conjunction with “Area-opening 
function” performs noisy binary segment removal. This 
iterative process is stopped upon identifying that there is 
no significant change in the length of the zero level curve of 
∅ . Thus, once convergence is achieved, the filamentous 
structure (detected crack region) is extracted by performing 
selection of the largest binary component in the solution. It 
is then followed by fitting a cubic spline to each detected 
crack (branch) so as to enable smooth tracing of 
filamentous crack centerline. The proposed crack detection 
method has been tested with both academic benchmark 
data retrieved from North-Eastern University (NEU) as well 
as primary data collected from Industries. The discussion of 
the achieved results and its inferences is given in the sub-
sequent section. 

Results and Discussion 

     In this paper the predominant emphasis is made on 
developing a novel steel strip crack detection system. 
Unlike classical approaches such as Eddy current based 
approach, magnetic field based approaches or even 
classical segmentation paradigms, this paper focuses on 
designing a novel and robust neural segmentation 
paradigm that could be of vital significance for “filamentous 
crack detection”, which is commonly caused due to fatigue 
or strokes within manufacturing set-up or during 
application.  Over the last few years, vision based 
approaches have been developed for crack detection; 
however, majority of the existing methods apply classical 
morphological features based segmentation with certain 
predefined threshold value. The efficacy of such 
approaches often remains limited, especially for the “thin” 
and “filamentous” crack. The topological characteristics of 
the filamentous crack on steel surface can be non-uniform 
and varying across all branches (neural branches). In this 
approach the classical crack segmentation methods can’t 
be effective. Though a few approaches such as wavelet 
transform, watershed transform etc have been applied to 
perform crack detection; however, these approaches could 
not address the issue of thin-filamentous crack detection 
over steel strips. The prime reason behind such limitation 
was its strict dependency on connected component based 
crack detection and morphological uniformity. Unlike the 
classical approaches this paper presents a novel and robust 
Varying-Morphological Segmentation (VMS) model or 
Neuron-Model Segmentation (NMS) scheme that exploits 
Contour Propagation assisted Local Feature Extraction (LFE) 
to enable accurate crack detection over steel strip surface. 
     Being a vision based crack detection paradigm the 
proposed method is developed based on the principle of 
template matching where an oriented filamentous crack 
template is obtained by performing multi-directional 
filtering assisted 2nd order Gaussian derivative filter 
(steering) so as to generate a filter bank of oriented local 
crack templates. In this paper a Hessian matrix based 
template was generated as reference template, which was 
then processed for local feature extraction and local 
template matching across the image to perform 
filamentous crack region identification. On generating the 
local crack template, the overall image was filtered to 
segment the complete crack region. The proposed method 
comprises multiple steps to perform filamentous crack 
segmentation. The first phase of implementation executes 
crack indicator function that identifies the presence of a 
steel strip crack at each location of the digital image. The 
second phase executes the multidirectional contour 
propagation to obtain the LFE for segmenting the overall 
filamentous crack region. The emphasis is made on 
reconstructing filamentous (neuron structure) crack region 
from the steel strip’s surface image. The proposed VMS 
model was first augmented to perform filamentous crack 
region identification from the noisy input image. It was then  
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armored to deal with the local structural discontinuities 
resulting from local-noisy environment and clutter 
conditions. To deal with such issues, our proposed VMS 
model was derived by means of a variational framework 
driven by level sets. Here level set concept was designed in 
such way that it intends to minimize an energy-

function 𝜀(∅), 𝑤ℎ𝑒𝑟𝑒 𝜀(∅) =  𝜀𝑟𝑒𝑔(∅) + 𝜀𝑒𝑣𝑜𝑙𝑣𝑒(∅) +

 𝜀𝑎𝑡𝑡𝑟(∅) . We designed an enhanced Non-linear 
(Tubularity) Flow Field concept (NFF) by exploiting local 
filamentous crack or neuritis features. Consequently, it 
helped in performing segmentation by executing curve 
evolution along the axis and thickness of the filamentous 
crack or neuritis. One of the key novelties of our proposed 
crack detection method is the consideration of a local 
attraction force that enabled accommodation of the 
intensity variations in the filamentous crack region or 
neural structure. This method enabled developing a unified 
and automatic model to connect the naturally allied 
components (i.e., components of the crack region). Unlike 
classical region-growing approaches based segmentation, 
our method avoided any user-defined seed-point 
introduction and thus found potential as an automatic crack 
detection system. Furthermore, it also avoids any 
sophisticated post-segmentation analysis task such as 
connected component analysis (CCA) like Watershed 
transform and therefore is computational more efficient 
than other state-of-art techniques. Our proposed method 
enabled connecting the disconnected component, despite 
its low signal intensity that eventually enabled precise and 
reliable crack region identification and segmentation at 

fine-grained (minute) level. Noticeably, the inclusion of 
local attraction force in level set paradigm (25) enabled it to 
achieve automated steel strip (filamentous) crack region 
segmentation. 

The following discussions represent the visual 
performance assessment by our proposed   system for 
steel strip surface crack detection. Here, the performance 
of the proposed crack detection system was demonstrated 
with multiple crack topology and allied complexity. 
Noticeably, to make implementation efficient visual images 
of same size have been considered. To assess performance, 
the standard datasets named North-Eastern University 
(NEU) surface defect dataset [65] was taken into 
consideration. The datasets of NEU are of similar size (i.e., 
200x200 pixels). Noticeably, NEU dataset comprises surface 
defect dataset with six types of surface defects of the hot-
rolled steel strip. There are six distinct types of defects 
rolled-in scale (RS), patches (Pa), crazing (Cr), pitted surface 
(PS), inclusion (In) and scratches (Sc) and crack. This dataset 
comprises of 1800 gray scale images with 300 images for 
each type of defect. Some of the samples of the NEU steel 
strip surface defect dataset for each defect category is given 
in Fig 2. Considering the NEU dataset it can be easily 
visualized that the inter-class defect datasets possess 
significantly- large differences in appearance, while inter-
class surface defects data (i.e., surface images) have similar 
aspects but with varied illumination, shadow and allied 
material differences. Undeniably, the classical crack 
segmentation approaches can identify crack region if it is 
straight and all components are closely connected; however,  

Figure 2. Samples of NEU Surface crack dataset. (*Source: http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html). 

 

Crazing (Cr) Pitted Surface 
(PS) 

  Inclusion (In) Scratches (Sc) 
and Crack 

Rolled-in Scale 
(RS) 

Patches (Pa) 

      

      

      

      

http://www.ausmt.org/
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html


Asha Bharathi S, Ravi Kumar M S 

www.ausmt.org  119                    auSMT (2020) 

 
their efficiency gets confined in case of cracks with multiple 
branches with varying (signal) intensity and non-linearity. 
Considering this, the performance for both steel strips was 
evaluated with single crack as well as with multiple cracks 
and varying intensity. In this study, to get real time crack 
steel-strip data, samples were collected from JSW Steel Ltd, 
Vijayanagar works in India. It is a matter of fact that the 
width of steel-strip crack used to be very thin and therefore 
those images were considered in which the widths of cracks 

vary in the range of 1-5 pixels. To assess robustness of the 
proposed steel strip crack segmentation model, the images 
with sharp branch variations has been taken into 
consideration where the presence of very thin cracks forces 
the (crack) detection model to perform optimally. A snippet 
of the input data and eventual crack-detected images are 
given in Fig 3. Noticeably, to enable better perceptibility 
images have been zoomed after processing. Observing 
these results, it can be easily visualized that the proposed   
system is capable of performing crack-detection with 
different topology and varying illumination or local cluster 
conditions. 

Critical Assessment 

Undeniably, the efficacy of the crack detection 
algorithm predominantly depends on the size of crack and 
its morphological factors. For example, the size of crack on 
road or footpath or concrete structure can be different 
from the size of crack on steel surface. Factually, crack can 
be due to high pressure or shock, where its progression 
could be very thin, non-linear or non-uniform. In such cases 
detection of different types of crack is really a tedious task. 
Particularly, filamentous cracks, which are often very thin 
and non-linear in nature, are difficult to detect by classical 
static threshold based segmentation method. This is where 
the efficacy of crack-detection algorithm becomes must. 
steel-surface cracks can be broadly categorized into two 
types, first caused due to intrinsic and/or external force, 
shock, pressure and second, the cracks formed during 
manufacturing (due to certain mechanical part or particle 
scratches, or machining defects). Typically, cracks caused 
due to machining defect can be higher in depth or width. 
On contrary, the dimension of the cracks in first types is 
very less, or thinner and non-linear in nature. Considering 
this fact, we have tested our algorithm over both cracks 
with very thin crack-dimension as well as cracks with linear 
or relatively high dimension. (up to 6 mm (the data 
retrieved from Jindal South West (JSW) Steels Ltd., India 
were having surface cracks of dimension up to 6 mm, which 
were visible from camera projection distance). On the 
other hand, there were many input data with crack 
dimension less than 2 mm (at the peak of the crack’s 
branch), which have been detected accurately. It signifies 
that the proposed crack detection model can detect steel-
crack of any dimension and of any types. Noticeably, NEU 
dataset does not have any specific dimension specified; 
however, visual inspection indicates it to be very thin; 
though it comprises surface defects of different nature or 
types. The overall visual-analysis states better efficacy of 
the proposed model, as it has exhibited satisfactory results 
with cracks of different dimensions and non-linearity. 
Although, detecting filamentous cracks is highly 
complicated task, our proposed model has accomplished it 
efficiently. Thus, the efficacy of the proposed system 
affirms its suitability for steel-strip surface crack detection 
for any crack range above 2 mm; though its ability for lower 
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Figure 3. Simulation results. 
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crack-width can be explored in future researches. 
Noticeably, in this study the overall system development 
focused on crack detection over “plain steel-strip surface” 
with uniform surface characteristics. We didn’t use any 
steel strip with non-linear surface characteristics; though 
with such conditions certain suitable pre-processing 
method can be applied that consequently can enable 
proposed method to be used for major crack-detection 
purposes. Summarily, the robustness of the proposed crack 
detection model enables it for major surface-crack 
detection purposes. Noticeably, in this research we used 
crack data specifically obtained from JSW Steel Limited 
which were processed for crack detection; however, to 
examine and illustrate efficacy of the proposed model for 
other benchmark data, we considered NEU dataset. More 
specifically, only selected data-elements (particularly from 
surface scratches with deep lengthy cuts or crack-like 
structure) were considered in this study. Noticing the data 
considered in Fig. 2, column 4 states scratches and crack-
resembling defects with visible width. As already discussed 
in Section 3, the proposed model exploits energy-growing 
and VMS concepts with level set which irrespective of data 
as input will exploit local features to detect filamentous 
crack region for its precise localization. With such efficacy, 
our proposed crack detection model can perform crack 
detection with any dimension or morphological 
characteristics. 

Conclusion 

In this paper, a highly robust vision based steel strip 
surface crack detection system has been developed. Unlike 
classical straight line crack identification schemes, the 
proposed model focuses on efficient crack detection 
especially for filamentous type of steel-strip surface crack, 
which is normally caused during production and in-
functional operation due to strokes, strain or fatigue. 
Further, the focus was also   on developing an automatic 
crack detection scheme. The use of Varying-Morphological 
Segmentation (VMS) also called Neuron-Model 
Segmentation (NMS) has played decisive role. The 
proposed VMS model in conjunction with active Contour 
Propagation and multi-directional filters based Local 
Feature Extraction (LFE) enabled realization of a variational 
framework driven by level sets that intend to minimize an 
energy-function signifying summation of regularization 
energy, evolution energy and a robust local attraction force. 
This approach enabled the proposed crack detection 
scheme to be automatic. Unlike classical region growing 
based approaches where user needs specifying (initial) 
seed-point, the proposed scheme applied a robust local 
attraction force that with help of local Otsu threshold 
method enabled automatic filamentous crack detection 
over steel strip surface. One of the noticeable novelties of 
the proposed crack detection method is that it avoids any 
sophisticated post-segmentation analysis like connected 
component analysis (CCA). A simulation result with 

standard benchmark data as well as first-hand collected 
data has revealed that the proposed system exhibits 
satisfactory performance for steel strip surface crack 
detection irrespective of its (crack region) topology or 
illumination condition. The results could be assessed only 
in terms of segmentation outputs. In future, the focus 
should be made on enabling segmentation followed by 
surface defects classification to make real-time decisions. 
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