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Abstract: The wind has been a source of energy for the human being since ancient times, mainly because it is widely 

available in different areas of the world. Several companies are investing huge capital to build wind farms with the aim 

of obtaining the maximum possible economic return. Therefore, a precise definition of the dynamics of operation of 

the turbines is necessary in order to appropriately define a system that takes full advantage of the wind energy. In this 

study, the measurements of the noise emitted by different wind turbines were used to obtain information on the 

dynamics of operation. A selected range of average spectral levels was extracted in a 1/3 octave band. A model based 

on the neural network for detection has been developed and applied to identify the operating conditions of wind 

turbines. The prediction and identification model have returned a high precision that suggests the adoption of this 

tool for several other applications. 

Keywords: Artificial neural network; feature selection; low-frequency sound; random forest; wind turbine noise. 

 

Introduction 

     Since the beginning of civilization, humanity has 

used wind energy to produce mechanical energy. The 

first examples are a propulsion system like the sail and 

then move on to the first wind turbines like windmills. 

Sailing as a propulsion system for boats and the windmill 

as an industrial engine were developed on purely 

empirical models and perfected in numerous variants. 

They were left out with the discovery of thermal 

machines that made it possible to exploit the large 

reserves of chemical energy stored in fossil fuels, 

converting it into motive power and electricity. The 

problem arose when it was discovered that these energy 

sources are in limited quantities and once consumed in 

their entirety, they cannot be replaced [1]. 

     Non-renewable energy sources produce gas 

emissions that pollute the atmosphere and are toxic to 

life, are found in limited quantities, and reduce the raw 

materials used to manufacture products. This imposes 

the need to start using renewable energies, which are 

those whose potential is inexhaustible. The importance 

of these renewable energies is that day after day they 

become more necessary due to the significant shortage 

of fossil fuels [2]. 

     Wind energy does not pollute, is inexhaustible and 

slows the depletion of fossil fuels helping to avoid 

climate change. The generation of electricity without a 

combustion process or a phase of thermal 

transformation implies, from an environmental point of 

view, a very favorable procedure to be clean, free from 

contamination problems, etc. The negative impacts 

caused by fuels during their extraction, transformation, 

transport and combustion are radically suppressed, to 

the benefit of the atmosphere, soil, water, fauna, 

vegetation, etc [3]. 

     The use of wind energy for electricity generation 

has no impact on the physico-chemical characteristics of 

the soil or on its erodibility, since there is no pollutant 

that affects this environment [4]. 

     Contrary to what can happen with conventional 

energies, wind energy does not produce any type of 

groundwater alteration or consumption or contamination 

from waste or spills. It does not cause dangerous 

secondary products or polluting waste [5]. 
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     Knowledge of the characteristics of the wind is 

fundamental for all aspects concerning the use of wind 

energy, from the identification of wind sites to the 

evaluation of the technical and economic feasibility of a 

wind power plant, up to to the design of wind turbines 

and to the understanding of the effect of the variability 

of electricity production on the distribution system. The 

wind is generated by a difference in atmospheric 

pressure to be attributed to a temperature difference 

and has a translation trend from areas where the 

atmospheric pressure is greater to areas where it is lower. 

The wind is the result of the expansion and convective 

motion of the air caused by the irregular heating of the 

Sun over large areas of the earth's surface. Solar 

radiation induces a series of natural convective motions 

in the atmosphere due to the uneven heating of the 

earth's surface. This creates a cell macrocirculation: the 

air masses heat up, decrease in density and rise, 

attracting cooler air that flows on the earth's surface 

towards the equator. This movement of hot and cold air 

masses produces the typical high- and low-pressure 

areas, permanently present in the atmosphere [6]. 

     In this work we will study how to use the 

measurements made on the noise emitted by a wind 

turbine to develop an automatic system for identifying its 

operating conditions. Wind turbines produce a noise 

characterized by two components: the mechanical noise 

coming from the generator and the aerodynamic noise 

due to the rotation of the rotor blades [7]. The 

mechanical noise produces a sound level lower than that 

due to the rotation of the blades and already at a 

distance of a few tens of meters from the turbine, it is no 

longer perceptible. On the contrary, the aerodynamic 

noise is persistent, even if at 200 meters it can be 

confused with the wind noise in the surrounding 

environment. To begin with, measurements were made 

of the noise emitted by a wind turbine. The results were 

elaborated to use them as input of a model based on 

artificial neural networks for the recognition of the 

operating conditions of wind turbines. 

Methodology 

     The acoustic measurements were made in a rural 

area of southern Italy. It is a hilly area with the presence 

of tree crops. In this area a wind farm with several wind 

turbines has been built. The analyzed wind turbine has a 

horizontal axis with a nominal power of 200 kW. The 

tower is of the monopolar tubular type and 80-meter 

hub height, equipped with three blades with a diameter 

of 95 meters, made of glass fibers. The maximum power 

is obtained in wind conditions that has a speed ranging 

from 10.5 m/s to 25 m/s. Beyond this speed the blades 

are stopped by the safety system to guarantee the 

integrity of the system. 

     Noise measurements were performed in the 

condition of maximum disturbance, inside a private 

house with open windows. For the measurement, an 

LXT1 Larson Davis sound level meter was used, which 

integrates a "Class 1" sound level meter model and a 

Larson Davis CAL 200 calibrator. The sound level meter 

complies with the requirements of the IEC61400-11 

standard [8]. The sound level meter was installed at a 

height of 1.60 meters from the floor and 1.2 m from the 

window. The window has the following dimensions: 2 m 

wide and 1.2 m high. The room is 5 m wide, 4 m long and 

3 m high, and is normally furnished. The sound level 

meter was configured for the acquisition of the 

equivalent level of linear sound pressure, weighted "A", 

and for the frequency spectra in 1/3 octave band, with a 

fast time constant. 

     Noise measurements were performed during the 

day with two operating conditions: wind turbine turned 

on and off. To identify the operating conditions of the 

wind turbine, the measured sound levels were compared. 

The temporal history and frequency spectrum in thirds of 

the octaves were analyzed. The results of the 

measurement processing were used as input to 

implement a model based on neural networks for the 

automatic recognition of the conditions of the wind 

turbine turned on and off. 

     Machine learning algorithms are widely used in 

various fields of use [9-19], in many cases these 

algorithms have been used to solve various problems 

related to the operation of wind turbines [20-23]. 

Artificial neural networks are information processing 

systems. Artificial neural networks are structured in such 

a way as to return the link between input and output 

data. The correlation between the quantities detected is 

often unknown a priori. The use of sensors for detecting 

physical quantities in conjunction with a system based on 

artificial neural networks makes it possible to determine 

the correlation sought and therefore possible to control 

the automation system. 

     The system based on neural networks, like the 

human mind, can process large amounts of input data, 

apparently unrelated to each other, and to produce a 

usable decision in output. This ability to learn is the 

fundamental characteristic that makes it possible to 

discover the correlation sought in the data. 

     The identification model developed is based on a 

feed-forward artificial multi-layer neural network, with 1 

hidden layer and 2 output classes representing the two 

operating conditions (on, off). A supervised learning 

paradigm was adopted. In the training phase 70% of the 

input data and the respective binary outputs were 
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randomly selected. In this phase, the training data set 

was sent to the network for weighing and error 

minimization. The resilient backpropagation algorithm 

with backtracking was used. In this way the weights of 

the network have been updated iteratively for the 

purpose of minimizing the error function in finding the 

local minimum. In backtracking the weights are updated 

restoring the previous iteration and adding a small value 

to the weight. After the training phase, a test phase was 

performed, using 30% of the remaining data. 

Results 

     During the acoustic measurements an average 

wind speed of 6.9 m was measured with a maximum 

wind speed peak of 11.7 m/s. During the monitoring 

period the turbine was switched on and off according to 

the following schedule: The acoustic measurements 

started at 10:58 and ended at 15:32 with a duration of 4 

hours 34 minutes and 15 seconds. During the 

measurements the following operating conditions were 

monitored in order: Tower ON; Tower OFF; and Tower ON. 

Figure 1 shows the trend of the sound pressure level for 

the operating conditions monitored during the 

measurement session. The figure shows the dynamics of 

the turbine's operation to make the differences in the 

measured levels more noticeable. 

 

 
Figure 1. Sound pressure level time history in the measurement 

sessions. 

 

     In Figure 1, the operating conditions are clearly 

identified, also thanks to the labels we have added. In 

the off-turbine monitoring period, sound levels are 

significantly reduced. This confirms that the source that 

characterizes the environmental noise is precisely the 

wind turbine under investigation. To obtain further 

information, in Figure 2, the average spectral levels in the 

1/3 octave band between 50 Hz and 5 kHz are shown for 

the entire measurement session. 

 
Figure 2. Average spectral levels in 1/3 octave band during the entire 

monitoring period. 

 

     The data acquired during the measurements were 

subsequently processed to identify features capable of 

distinguishing the different operating conditions of the 

wind turbine. As shown in Figure 1, the following three 

operating periods have been isolated, in order: Torre ON, 

Torre OFF and Torre ON. Table 1 shows the information 

relating to the three operating conditions detected in the 

measurement session. From the analysis of the acquired 

data it is possible to verify that the three different 

operating conditions are confirmed by the noise levels 

recorded by the sound level meter. Operating conditions 

with the tower on have higher sound pressure levels 

(49.9-47.0 dBA). In operating conditions with tower off 

the sound pressure levels are lower (31.1 dBA). 

 
Table 1. Acoustic measurements for the three operating conditions 

monitored. 

 

 

     Figure 3 shows the pressure levels measured in the 

three different identified operating conditions, one 

above the other to make a comparison easier. In the 

three monitoring periods there are no anomalous and 

occasional phenomena. This tells us that the acquired 

data can be used as input for the classification model. To 

elaborate the classification model of the operating 

conditions of the wind turbine, the measured data were 

resampled by setting an integration time of 1 second. For 

each observation, the A-weighted equivalent levels for 

each 1/3 octave band were calculated. In this way, 15569 

observations were collected and 21 variables were 

selected. To characterize the three periods, it was 

decided to use the average spectral levels in 1/3 octave 

bands between 12.5 Hz and 20 kHz as descriptors. Figure 

4 shows the average spectral levels in 1/3 octave bands 

between 50 Hz and 5 kHz for each of the three identified 

observation periods. 

 

Operating conditions 
 

 

Duration 

(hour) 

LeqA 

(dBA) 

Tower ON  0:48:39 49.9 

Tower OFF  0:35:36 31.1 

Tower ON  2:55:11 47.0 
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Figure 3. Sound pressure level measured in the three different 

operating conditions. 

 

 
Figure 4. Average spectral levels in 1/3 octave band between 12.5 Hz 

and 20 kHz for each of the three different operating conditions. 

 

     Figure 4 shows that the operating conditions can 

be identified in the central part of the graph. The 

extremes do not contribute to the identification of 

operating conditions. Thus, not all frequencies are 

necessary for setting up the model. We omit the low and 

high frequencies in which the three curves overlap, we 

limit the range from 50 Hz to 5 kHz. In this way the 

curves are distinct and the different operating conditions 

are identifiable, as shown in Figure 5. 
 

 
Figure 5. Average spectral levels in 1/3 octave band between 50 Hz and 
5 kHz. 

 

     In Figure 5 it is possible to notice that when the 

turbine is on, the spectral values are higher. Below this 

curve, we find the values relating to the operating 

condition with the turbine turned off. Visual analysis 

allowed us to perform a first selection of features. For 

the correct identification of the operating conditions, in 

addition to the extreme frequencies, it is possible that 

other frequencies are not necessary. A visual analysis 

through a wrapper for density lattice plots could identify 

the characteristics able to discriminate between the 

different operating conditions (Fig.6). 

 

 
Figure 6. Density lattice plots for average spectral levels in 1/3 octave 

band from 50 Hz to 4 kHz. 

 

     Analyzing Figure 6 it is possible to notice some 

characteristic bell-shaped curves that identify the 

distribution for each frequency of the two identified 

operating conditions. In the central frequencies ranging 

from 50 Hz to 5 kHz, some frequencies discriminate 

better than others. To identify the most relevant 

frequencies for the model's performance, we need to 

perform a feature selection procedure. 

     The objective of the feature selection procedure is 

to identify features that allow objects to be identified 

and that are insensitive to translation, rotation or scale 

problems. A procedure is then performed that reduces 

the complexity of the information to be processed and 

makes the system more efficient. An extracted parameter 

must be obtained in a simple way but must have a high 

discriminating power. 

     However, the Boruta algorithm [24] was used to 

select the features. It is a wrapper built around the 

random forest classification algorithm [25]. Random 

forest is a supervised algorithm based on learning 

multiple forecast models to form a single, more powerful 

forecasting model. Each model used by the Random 

Forest prediction is usually a decision tree. This means 

that a random forest combines many decision trees into 

a single model. Individually, the forecasts made by the 

individual decision trees may not be accurate, but 

combined, the forecasts will be closer to the result on 

average. The random forest algorithm can be used for 

http://www.ausmt.org/


Gino Iannace, Giuseppe Ciaburro, and Amelia Trematerra 

www.ausmt.org  149                   auSMT (2020) 

both regression and classification problems. 

     The Random Forest algorithm evaluates the 

importance of a variable by analyzing how much the 

prediction error increases as the variable changes, when 

the values of all the other variables are kept unchanged. 

The calculations are tree-by-tree. 

     The Boruta algorithm iteratively compares the 

import of attributes with the import of shadow attributes, 

created by mixing the original ones. The features that 

return worse performance than the shadow ones are 

progressively eliminated. In this way, significantly better 

shadow features are selected. Shadows are recreated in 

each iteration. The algorithm stops when only the 

confirmed attributes remain or when the maximum 

number of operations is reached. 

     Table 2 shows the mean, median, maximum and 

minimum importance, the number of normalized hits to 

the number of analyzes of the source of importance 

performed and the decision for each function contained 

in the data frame. Table 2 is shown at the end of the 

paper.  

     To get an overall view of the analysis performed 

and to appreciate the differences between the 

contributions that each feature provides to the final 

result, we have drawn a diagram. Figure 7 shows the 

attribute plot boxes as they are shown in Table 2. 

Furthermore, the features are plotted in order of 

importance starting from the far right. 

 

 
Figure 7. Boxplots of features ordered for importance. 

 

Both Figure 7 and Table 2 allow us to identify the 

variables that have obtained the highest values in 

importance. To lower the cost of the calculation and to 

avoid over-adaptation, we have further reduced the 

number of features to be used as input of the 

classification model based on neural networks. Only the 

first 10 of those that recorded the highest values in the 

meanImp were selected. Table 3 shows the first 10 

variables selected from the model in order of 

importance. 

 
Table 3. The best features selected. 

 

 

     The Boruta method has returned the features in 

order of importance. We have selected the first 10 in 

order of importance to be used as input variables for a 

supervised classification model. This model creates a 

neural network to identify the operating conditions of 

the wind turbine. 

     The following neural network architecture has 

been implemented: 

• Input level with 10 nodes (input variables) 

• Hidden layer with 10 nodes 

• Output level with a dichotomous value (ON, OFF) 

 

     The neural network has been trained with resilient 

backpropagation with the weight backtracking algorithm. 

The resilient backpropagation algorithm modifies the 

weights of a neural network in an iterative way in order 

to find a local minimum of the error function [26-27]. 

     Before proceeding with the training of the network, 

it is necessary to subdivide the data. The data subdivision 

procedure adopted can have a significant effect on the 

quality of the subsets that will be used for training and 

on the test. Inaccurate model performance may result 

from poor data breakdown [28]. The data were divided 

into two randomly selected groups: 

• A training set equal to 70% of the available 

observations (10899 samples): these are presented to 

the network during training and the network is adjusted 

based on its error. 

• A set of tests equal to the remaining 30% of the 

available observations (4670 samples): these have no 

effect on training and therefore provide an independent 

measure of network performance during and after 

training. 

     Figure 8 shows the architecture of the neural 

network model adopted. In it it is possible to identify the 

value assigned to the weights of the connections as well 

as the bias values. 

 

630Hz 500Hz 400Hz 800Hz 1.25kHz 

1kHz 5kHz 125Hz 1.6kHz 63Hz 
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Figure 8. Neural network architecture with input, weights, and biases. 

 
Table 4. Confusion matrix. 

 

     Table 4 shows the confusion matrix of the model. 

The confusion matrix describes the performance of a 

classification model on a set of data for which the real 

values are known. The results are presented in tabular 

form. The rows contain the occurrences of the expected 

class while the columns contain the occurrences of the 

true class. The diagonal cells contain the occurrences of 

correctly classified observations. The data contained in 

the cells outside the diagonal correspond to incorrectly 

classified observations [29]. 

     The confusion matrix presents excellent results. 

There are only 35 errors out of 4670 occurrences. So the 

accuracy of the model is high (Precision = 0.99), this tells 

us that the model based on neural networks is able to 

identify the operating conditions of a wind turbine. 

Conclusion 

     In this study the measurements of the noise 

emitted by the wind turbine were used to train a 

classification model based on neural networks. First, the 

average spectral levels in a 1/3 octave band were 

examined through a visual analysis in order to select the 

frequency range able to identify the turbine operating 

conditions. Later, a model for assessing the importance 

of variables was used to select features based on relative 

importance. The results of this model have been used to 

reduce the number of predictive variables, using the 

random forest algorithm. The subset of predictors so 

selected was used to develop an accurate forecasting 

model. Finally, a model based on a neural network for 

detecting the operating conditions of a wind turbine has 

been designed and trained. The results obtained suggest 

in-depth studies on the development and application of 

this technique in these contexts. In particular, the high 

precision of the model (Precision = 0.99) proposes the 

adoption of this tool for different applications. 
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Table 2 Attribute statistics of the feature importance analysis. 

Frequency meanImp medianImp minImp maxImp normHits decision 

630Hz 10.588.677 10.569.419 9.530.693 11.303.876 1 Confirmed 

500Hz 10.437.252 10.390.159 9.870.818 10.988.832 1 Confirmed 

400Hz 10.303.382 10.297.387 9.079.808 11.020.370 1 Confirmed 

800Hz 10.299.554 10.210.500 9.634.459 11.164.620 1 Confirmed 

1.25kHz 9.194.757 9.222.337 8.230.829 9.882.266 1 Confirmed 

1kHz 9.031.084 9.165.310 8.114.298 9.706.277 1 Confirmed 

5kHz 7.964.806 7.852.242 7.529.921 8.876.685 1 Confirmed 

125Hz 7.711.010 7.635.726 6.822.084 8.760.154 1 Confirmed 

1.6kHz 7.697.697 7.558.887 6.645.246 8.750.942 1 Confirmed 

63Hz 7.402.964 7.311.983 6.882.303 8.217.014 1 Confirmed 

100Hz 7.063.215 7.107.488 6.442.282 7.835.868 1 Confirmed 

50Hz 6.420.612 6.405.997 5.728.199 7.290.249 1 Confirmed 

2kHz 6.364.333 6.383.840 5.312.907 7.752.230 1 Confirmed 

80Hz 5.829.579 5.764.305 4.957.193 6.840.125 1 Confirmed 

315Hz 5.609.310 5.466.688 5.140.460 6.700.957 1 Confirmed 

2.5kHz 5.051.933 5.153.177 3.571.474 5.797.949 1 Confirmed 

160Hz 4.653.575 4.553.002 3.872.390 5.450.479 1 Confirmed 

250Hz 4.381.987 4.376.984 3.790.141 5.272.184 1 Confirmed 

4kHz 3.933.503 4.016.383 3.179.093 4.611.066 1 Confirmed 

3.15kHz 3.534.830 3.611.499 2.534.415 4.201.253 1 Confirmed 

200Hz 2.261.011 2.205.732 1.677.495 2.925.925 1 Confirmed 
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