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Abstract: This paper presents a novel implementation of an autonomous human following done using local context 

algorithm. The vision system consists of a drone equipped with a companion computer and camera. Through the vision 

system, drones can behave according to its desired application. In this study, the Pixhawk 2 Cube flight controller of the 

drone is connected to Odroid XU4, the companion computer. The OpenMV camera is connected to the Odroid XU4 and 

streams image bytes whereas the Odroid XU4 performs image processing to detect the human through local context. 

The Odroid XU4 controls the drone by sending commands to the flight controller based on detected objects. Drone 

following is implemented by detecting humans from the image stream provided by OpenMV and maintaining the 

detected human on the center of the image and within a specified distance through drone movements. The results 

show the single movements right, left, forward, and backward yielded low steady-state errors with settling time of 

about 3 to 4 seconds.  
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Introduction 

Drone technologies have been popularized with 

their many applications such as media, surveying, 

agriculture, weather forecasting, and many more. 

Because of this, research on the extension and 

improvement of applications of drones have been 

conducted as mentioned in [1], [2], and [3]. There have 

been many researches on how to incorporate new 

methods of navigation for drones other than GPS because 

of the limitations of GPS on indoor locations. 

The study done in [1] is an object following drone 

using an algorithm called tracking-learning-detection (TLD) 

which was used to detect the desired object from the 

image stream. However due to the limited computing 

capabilities of the drone, an external personal computer 

was used for object detection. The response of the system 

presented in [1] is slow because the tracking algorithm 

waits about a second to stabilize after a command. This is 

a disadvantage for tracking objects that move fast. The 

presented idea was in the software called FollowMe.  

The object detection implemented in [2] also uses 

TLD for object detection. Using OpenTLD allows detection 

of a multiple different target, however it also uses an 

external personal computer which is connected to the 

drone through WiFi. Similar to [1], the video stream from 

the drone to the computer and the commands from the 

computer to the drone are sent through the WiFi. This 

limits the speed and the range of the system. Because the 

detection relies on the wireless communication, the 

response of the drone is heavily affected by distance and 

interferences. The limitation in distance will also require 

the external computer to move closer to the drone in 

order to continuously detect the desired object and send 

commands. This is a disadvantage for users especially for 

long duration flights. The maximum duration of the flight 

test presented was only up to 45 seconds.  
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 The object following drone introduced in [3] is a 

robust drone vision system that makes use of deep 

learning as its detection framework. Hand gesture 

detection is implemented in [3]. Drone movements are 

controlled by the appearance of the hand. Since hand 

gestures are relatively small in a frame, the resolution of 

the camera was increased to 640x480 pixels which 

decreases computation speed. This study displayed a 

robust drone response, however this was only 

implemented on an HITL simulation. It does not include 

actual drone testing.  

In [4], the study uses Pixhawk 2 Cube Flight 

Controller and NVIDIA TK1, a companion computer. The 

connection of the flight controller and the companion 

computer through Dronekit-Python and the extended 

capability of image processing were also introduced; 

however, this was not implemented and tested in an 

actual drone. 

In addition, [5] also implemented a connection 

between the Pixhawk Flight Controller, Odroid XU4, and a 

GoPro camera. Similar to this study and [4], Dronekit-

Python was introduced as an extension to the capabilities 

of drone systems such as commanding waypoints, 

distance computation between locations, and image 

processing; however, this also was not implemented and 

tested in an actual drone.  

The disadvantages that are present in [1] and [2] are 

the distance constraints and response speed due to the 

limitations of WiFi. A solution that can address these 

problems is the use of a companion computer such as 

Raspberry Pi, Odroid XU4, NVIDIA TK1, or others. Because 

of the direct connection of the flight controller and the 

companion computer, the response speed of the tracking 

is faster and more ensured. This also removes the 

requirement of the external computer to be near the 

drone to maintain tracking. 

The work in [3] is robust and accurate due to the 

trained deep learning framework, however the system 

was not implemented in an actual drone. Similarly, [4] and 

[5] introduced extended capabilities of drones using 

companion computers. These studies, however, did not 

present any data or testing to verify the functionality. An 

implementation to actual drones and flight tests can verify 

the functionality of these extended capabilities.  

In [6], a drone was used to take aerial images from 

rivers. These images were used to train a classifier 

cascaded with the Viola Jones Algorithm, however 

compared to this paper which detects humans, the study 

in [6] detects and identifies hydromorphological features 

in the vicinity of a river such roofs, roads, shore, and trees. 

The work in [7] made use of the local context 

detector to find humans in order to analyze their facial 

expressions. The local context detector was used as the 

robust detector to find the upper body of a human in each 

frame of the video. This highlights the effectiveness and 

robustness of local context in finding humans. The study 

differs as local context is used in this paper to navigate 

drones. 

This paper introduces a novel implementation of an 

autonomous human-following drone using local context 

algorithm. The system uses an Unmanned Aerial Vehicles 

(UAVs) with Pixhawk 2 Cube and Odroid XU4. The 

companion computer is on board the drone and is 

connected to the flight controller through serial telemetry 

and a python library called Dronekit. Dronekit-Python is a 

set of python libraries that are developed for companion 

computers and the flight controller. This establishes a fast 

communication between the companion computer and 

the flight controller. Through this fast communication and 

robust human detection, a human-following drone is 

achieved. 

Local Context and PD Controller 

Human Detection via Local Context 

 The fast and robust human detection via local 

context is a detection framework that detects features 

surrounding the face instead of features within the face. 

Because of this, human detection via local context can 

easily find a human within the boundary. This algorithm 

that was introduced in [8] is a variation to the object 

detection introduced by Viola et al. [9], however this 

algorithm uses additional rotated features described by 

Lienhart et al. in [10] to accurately detect the presence of 

a person’s head, neck, and upper body. As seen on Figure 

1, the bounding box that detects the human covers the 

entire upper body: shoulders, neck, and head. 

 

 

Figure 1. Human Detection using Local Context 

 

 Because human detection using local context made 

use of different features of human such as shoulders and 

heads, it is more reliable to detect humans despite longer 

distance and rotation of poses. This changes the detection 

from facial detection to upper body detection. Human 
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detection via local context is desirable because it is small 

enough to detect near the camera and large enough to be 

detected approximately 4 meters from the camera as seen 

on Figure 1. 

Listed in Figure 2 are the features used for enhanced 
learning and detection of the local context system.  
 

 

Figure 2. Extended Set of Haar-like Features according to 

[10] 

 

 These sets of features are employed in the local 

context detector framework including the rotated 

features where the white and black pixels are assigned 

negative and positive values respectively. Figure 3 shows 

a sample feature where dark and light rectangles have 

pixel values. This feature is similar to the edge feature 1b 

as shown on Figure 2. 

 

 

Figure 3. Sample Edge Feature with Pixel Values 

 

According to Linehart et al., feature calculation is 

done by summing all the pixel values in the rectangles. It 

can be seen on Equation 1 that feature calculation is 

accomplished by adding all the pixels inside each 

rectangle of the feature. Each value obtained in this 

calculation determines whether a certain number of pixels 

is a feature. 

  

         (1) 

 

Where:  ωi – weights 

    ri – rectangles 

   

Since this calculation process takes long for larger 

images, a method called Integral Image is used where an 

image of the same size as the original image is created but 

each pixel on the Integral Image is the sum of all the pixels 

from the upper and left sides of that pixel in the original 

image. Figure 4 shows a sample original image with pixel 

values (upper) and the integral image (lower). 

 

 

Figure 4. Sample Original Image (Upper) and Integral 

Image (Lower) 

 

 The upper image shown on Figure 4 shows a sample 

original image, and the lower image shown is the Integral 

Image. Each value of every pixel on the Integral Image is 

the sum of all the pixel values above and to the left of it. 

For example, the pixel on the 2nd row and 3rd column of 

the Integral Image is equal to the sum of all the pixels 

above and to the left of the pixel on the original image. 

This means that this value is the sum of 1,3,1,3,2, and 1 

which is 11. That is how the Integral Image is calculated.  

 

Figure 5. Original Image with sample boundary (Upper) 

and Integral Image with boundaries (Lower) 

 

 The upper image shown on Figure 5 is a sample 

original image. For instance, the highlighted portion is to 

be summed up to obtain its total pixel value for feature 

calculation. It would take long especially with larger 

images and regions of interest. The lower image shown on 

Figure 5 shows the integral image. Using the lower right 

pixel value of boundaries A, B, C, and D on the Integral 

Image, the total pixel value of the highlighted rectangle on 

the original image can be obtained. In order to calculate 

the total pixel value of the highlighted region on the 

original image using the Integral Image, boundary A must 

be subtracted with boundaries B and C and added with 

boundary D since the first pixel (with value of 1 from 
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Figure 5) was deducted twice. 

 

 Pixel Value of Window = A – B – C + D 

        = 23 – 9 – 5 + 1 = 10 

 

 Because of this, the computation for the pixel values 

of each rectangle in all images can be computed faster. By 

manually adding all the pixels in the on the highlighted 

region on the upper image of Figure 5, the same results 

may be obtained as shown: 

 

 Pixel Value of Window = 2 + 1 + 1 + 3 + 1 + 2 = 10 

 

 As seen on the previous computations, all large 

additions that are required by large regions may be 

reduced to adding and subtracting only 4 boundaries. This 

is very convenient especially for a larger number of 

features and larger images. The pixel value obtained in 

each region is used to determine whether that region is a 

feature. For instance, one feature contains the forehead 

and the hair. A typical person would have lighter forehead 

and darker hair. 

With a very large number of features used in this 

detector, a method called Adaboost is implemented 

where relevant and irrelevant features are weighted and 

checked. The relevant features are the features that yield 

a minimum error rate and accurately classify humans and 

non-humans. Features are also considered to be weak 

classifiers. Adaboost groups classifiers, a set of features, 

to create strong classifiers. Each weak classifier checks if a 

feature is existing in a window and outputs a true or false 

binary value. The groups of classifiers are weighted and 

contribute to become a strong classifier. 

Cascading is also used where a number of classifiers 
are cascaded together for the algorithm. Each stage of the 
classifier contains a strong classifier which determines 
whether a window could possibly contain a human. Once 
the window passes a stage, it moves on to the next. If a 
window does not pass a stage, it is discarded and never 
processed again. This eliminates all non-human features 
that are detected. 
 

 

Figure 6. Cascaded Classifiers 

 

 Figure 6 shows a cascading of classifiers. This filters 

windows to detect humans. If a certain window with a 

certain size passes all the stages of the classifiers, this 

window could possibly contain a human. A window that 

does not pass even on stage is discarded. The detection 

rate and false positive rate of the cascade, according to [8], 

is given on Equation 2. The system detection rate and false 

positive rate are obtained by multiplying the detection 

rate and the false positive rate of each stage in the cascade. 

 

                   (2) 

 

PD Controller 

A PD Controller was chosen for the response 

controller of the drone based on the value of the 

commands obtained from image processing. This type of 

controller was used due to its ease of its implementation 

and tuning. Compared to [11] which uses Sliding Mode 

Controller to move the drone, this paper implements a 

simpler controller. Since Sliding Mode Controller is harder 

to tune and involves more computation, a PD Controller is 

preferred to obtain a faster computation speed. 

Similarly, a Fuzzy GS-PID Controller was 

implemented in [12] for the response of a payload 

dropping drone. This controller lessens the drone 

overshoots during a payload drop. This type of controller 

is not necessarily needed in this paper as the human 

following drone does not change in mass during flight. 

Because of the simpler and faster performance of PD 

Controllers, this was used over Sliding Mode Controller 

and Fuzzy GS-PID Controller.  

The input to the PD Controller in this system is 

obtained from the image processing. Once the desired 

human is detected, the x coordinate, y coordinate, width, 

and height of the bounding box are used to control the 

movement of the drone by maintaining the detected 

human on the center of the frame as seen on Figure 7. The 

coordinate system used in each frame is similar to the 

Cartesian Plane where the center is (0,0). The frame is 240 

x 240 pixels in dimension. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. Coordinate System of Bounding Box 
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In order to maintain the x coordinate of the 
bounding box on the horizontal center of the frame, the 
drone must be controlled using a roll (tilt) angular 
movement. A PD Controller similar to [1] and [13] is used 
to center the bounding box.  

 

Figure 8. PD Controller for Roll 

As seen on Figure 8, the error inputted to the PD 

Controller is the difference between the x coordinate of 

the center of the frame which is at (0,0) and the x 

coordinate of the center of the bounding box. This 

denotes that the desired x coordinate of the bounding box 

is at zero. By using a PD Controller to command a roll 

movement, the drone is able to achieve left and right 

movement to center the bounding box. 

 

Figure 9. PD Control for Pitch 

Figure 10. Parts of the Vision Quadrotor 

Similarly, the drone is also required to maintain a 

certain distance from the detected human. To achieve this, 

the height of the bounding box is translated to distance as 

described in [14]. As seen on Figure 9, the measured 

height is used to approximate the actual distance of the 

detected human from the camera. A PD Controller is also 

used for pitch commands to control the forward and 

backward movements of the drone. 

Methodology 

Flowchart of the System 

The drone system is composed of the camera, the 

companion computer, and the flight controller. The 

OpenMV camera is a popular machine-vision camera 

capable of doing image processing just by itself. This low-

powered camera is able to run real-time MicroPython, 

however because of its unreliability and short-ranged on 

its image processing, this feature of the camera was not 

used. The OpenMV camera was only used to capture a live 

video stream and send image bytes of the snapshots to 

the companion computer. The Odroid XU4 is a small and 

light weight companion computer which offers more 

processing speed and energy-efficiency than other 

companion computers like Raspberry Pi. Because of its 

high processing speed, the Odroid XU4 is a good choice for 

the companion computer as this device performs image 

processing and transmits commands to the Pixhawk 2 

Cube Flight Controller. 

Figure 11 shows a more detailed flowchart of the 

vision system of the drone. The image bytes are sent from 

the OpenMV camera to the Odroid XU4 companion 

computer. Image processing is obtained by using python 

Open Computer Vision (OpenCV) libraries and through 

local context for face detection as described in [8]. As 

previously stated, face detection through local context is 

fast and robust due to its ability to detect humans even 

with changes in facial poses. Upper Body detection 

through local context is also capable of detecting humans 

farther in distance compared to the rapid object detection 

introduced by Viola et al., thus human following through 

drones is exceptionally safer with local context because of 

its capability to detect and operate in farther distance. 

 

Distance Approximation 

 According to [14], the distance of a detected object 

can be approximated using the height of the bounding box. 

This is done by determining the focal length of the camera. 

The focal length is determined by conducting multiple 

experiments. As seen on Figure 12, the relationship of the 

focal length and the actual distance can be computed as 

described in Equation 3. 
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Figure 11. Block Diagram of Vision System 
 

 

 

Figure 12. Lens Diagram of Camera 
 

 

 (3) 

 

Experimental Setup 

Hardware 

The Pixhawk 2 Cube flight controller is a low-cost 

autopilot capable of controlling different types of drones 

such as multicopter, fixed-wing plane, and rovers. This 

autopilot is able to run Ardupilot, an open-source 

firmware for autopilots. This autopilot is equipped with 

triple gyroscope, accelerometer, and compass sensors for 

redundancy. Despite being equipped with multiple IMUs, 

this device is not capable of performing image processing 

[4]. This is where the companion computer plays its part. 

A connection was established, through one of the two 

telemetry ports of Pixhawk, between the companion 

computer and the flight controller in order to properly 

receive commands. This device is controlled by the pilot 

through the Radio Controller (RC). Flight Modes and 

different movements can be commanded by the pilot 

using the RC. 

The Odroid XU4 is a fast and efficient companion 

computer capable of running Linux operating systems 

such as Ubuntu and Android. This computer consists of 

octa core CPUs which enables it to perform image 

processing. This is device also has a small voltage 

requirement which allows it to be supplied by the Lithium 

Polymer Battery that also supplies power to the flight 

controller. 

The OpenMV camera is a small and low-cost 

camera, capable of running programs in Python. This also 

has built-in libraries for image processing. This is a very 

powerful camera, yet still low-powered. Since this camera 

is able to run image processing, it can replace the job of 

the Odroid XU4, however this camera currently has face 

detection. Human detection is less effective in this 

application because of its limitation in distance and pose 

changes of humans [8]. Because of this, the Odroid XU4 

performs the image processing instead. 

 

The python script that computes Roll and Pitch 

commands as shown on Figure 8 and Figure 9 are not sent 

to the Pixhawk 2 Cube flight controller unless the flight 

mode is on GUIDED, GUIDED_NOGPS, or AUTO. 

During the flight testings, the pilot uses other flight 

modes of the Pixhawk 2 Cube such as STABILIZE, ALTHOLD, 

or LOITER, however because the companion computer 

cannot command the flight controller while in the 

mentioned flight modes, the movement of the drone is 

still under the control of the pilot using the Radio 

Controller (RC). 

While in GUIDED, GUIDED_NOGPS, or AUTO flight 
modes, the Roll and Pitch commands computed from the 
PD Controller are sent from the companion computer to 
the flight controller using MAVLink messages that are 
encoded using the Dronekit-Python libraries. 
 

 

Figure 13. Basic Block Diagram of System 
 

Figure 13 shows the flow of the algorithm. Upon 

obtaining the image stream from the OpenMV camera, it 

is sent to the Odroid XU4 companion computer. The 

companion computer detects humans in the image 

stream using local context. Drone movements are then 
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sent from the companion computer to the Pixhawk 2 Cube 

flight controller in order to center the detected human to 

the frame. 

Software 

The software setup describes the initial 
configurations of the system. This includes setting up the 
connection between the odroid and a local computer.  

 

 

Figure 14. Detailed Block Diagram of System 

 

Figure 14 shows a more detailed flow of the block 

diagram on Figure 13. Since the system python script is 

not run immediately after booting the companion 

computer, a local computer must command the 

companion computer to run the python script. The python 

script is saved on the Odroid XU4 and is run by the user 

through a local computer. The local computer can access 

the odroid XU4 through Secure Shell (SSH) protocol. The 

local computer and the companion computer must be 

connected to the same network. In this work, they are 

connected to the hotspot of a mobile phone. By running 

the script, the GUI will appear as shown on Figure 15. 

After choosing a desired human on the GUI, the GUI will 

close and the drone following will begin. This means that 

the system is no longer dependent on wireless connection 

once the desired human is chosen.  

The python script that is run through the companion 

computer continuously sends movement commands to 

the drone, however the drone does not follow these 

commands unless it is on GUIDED, GUIDED_NOGPS, or 

AUTO flight modes where the pilot has no control over the 

drone using the Radio Controller (RC). To enable human-

following, the pilot must change the autopilot flight 

modes to the mentioned flight modes. 

The system is written in python script. This python 
program is saved in the Odroid XU4 and is run by the local 
user from another computer through Secure Shell (SSH) 
protocol. The program creates a GUI that displays the 
video stream from the camera as seen on Figure 15. 

 

 

Figure 15. Detected Human in GUI 

 

 As seen on Figure 15, all detected humans were 

detected with bounding boxes. In order to choose a 

desired detected human, the user must click the bounding 

box of the desired human. Once clicked, the desired 

human is followed as seen on Figure 16. 

 

 

Figure 16. Chosen Human in GUI 

Data and Results 

Focal Length Calculation 

Table 1 shows experimental values used to 

approximate the focal length. Since the focal length is 

constant, it can be used to approximate the actual 

distance of the drone from the detected human. In the 

trial values seen in Table 1, the focal length is averaged. 

Since the actual height of the upper body as seen in Figure 

7 is 600mm, the Actual Height column of Table 1 are all set 

to 0.6m. The Actual Distance column is set by having a 

sample detected human standing a distance from the 

camera. These are the values chosen as these are the 

actual distances that the drone will be tested in. The Pixel 

Height column is the value of the height of the bounding 
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box obtained from the image processing. With this, the 

focal length can be computed. 

 

Table 1. Focal Length Experimental Values 

Actual 

Distance 

(m) 

Pixel Height 

(pixels) 

Actual 

Height 

(m) 

Focal 

Length 

(pixels) 

1.0 138.6 0.6 231 

1.2 111.5 0.6 223 

1.5 89.6 0.6 224 

1.8 78.3 0.6 235 

2.0 65.1 0.6 217 

2.3 59.0 0.6 226 

2.5 54.96 0.6 229 

2.8 48 0.6 224 

3.0 45.2 0.6 226 

 

Basing from the values obtained on Table 1, the 

average focal length is approximately 226. This will be the 

focal length constantly used to determine the actual 

distance of the drone during the flight tests. 

 

PD Tuning 

The aim of this study is to provide another method 

of navigation for indoor flight tests of drones. To confirm 

the functionality, the basic movements of drones (Left 

Roll, Right Roll, Forward Pitch, and Backward Pitch) are 

tested along with the image processing. This study does 

not include or use yaw control or movements. In tuning 

the PD Controller, the Ziegler-Nichols method introduced 

by Nichols et al. in [15] were used.  

To tune a PID Controller, the integral and derivative 
contributions to the controller must first be set to zero. 
The Proportional controller, Ku, must then be set to a 
value increasing in value until a certain oscillation, termed 
as Tu, is obtained from the system. Ku and Tu will then be 
used to determine the correct values of the PID Controller 
[15].  

 

 

Figure 17. X Coordinate Oscillation 

 
Figure 17 shows the oscillations of the x coordinate 

of the center of the bounding box for tuning the roll 

movement. This is obtained when using a Ku value of 1.5. 

The average period of oscillation, Tu, is computed to be 

8.4 seconds. According to [15], the Kp and Td value for the 

PD Controller can be obtained using these testing data. 

The values for Kp and Td are obtained in the computation 

shown below: 

 

Kp = 0.8 * Ku = 1.2 Td = Tu / 8 = 1.05 
 
 

Figure 18. Distance Oscillation 

 
Figure 18 shows the oscillations of the 

approximated distance of the bounding box for tuning the 

pitch movement. This is obtained when using a Ku value 

of 0.5. The average period of oscillation, Tu, is computed 

to be 17.19 seconds. According to [15], the Kp and Td 

value for the PD Controller can be obtained using these 

testing data. The values for Kp and Td are obtained in the 

computation shown below: 

 
Kp = 0.8 * Ku = 0.4 Td = Tu / 8 = 2.15 

 

Single Movement Flight Tests 

Each movement of the drone was tested: left, right, 

forward, and backward. The roll movement, which centers 

the bounding box to the center of the frame, is tested to 

determine whether the response lessens the error. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 19. Right Movement Testing Setup 
 

 Figure 19 shows a testing setup wherein the 
detected human is in the front-right of the drone. To 
follow the detected human, it must move right. This is to 
test the right roll movement of the drone. The drone is 
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positioned 1 meter to the right of the detected human and 
2.25 meter in front of the drone, however in this setup, 
the drone is only tested for its roll movement (left and 
right). The pitch movement is not tested in this setup 
(forward and backward).  

Figure 20 and Figure 21 shows the responses of the 
drone to the right movement as seen on Figure 19. The 
desired X Coordinate Error is zero. The settling time and 
the steady-state error are obtained. 
 

 

Figure 20. Right Movement Response 1: Time vs. Image 

Pixel Coordinate 
 

 The response of the drone moving to the right to 
center the detected human is shown on Figure 20. The 
response is approaching zero, its desired value as time 
progresses. The settling time obtained from this response 
is 4.3 seconds. The minimum and maximum steady-state 
errors are -11 pixels and -16 pixels respectively.  
 

 

Figure 21. Right Movement Response 2: Time vs. Image 

Pixel Coordinate 

 

Another response of the drone moving to the right 

to center the detected human is shown on Figure 21. The 

response is approaching zero, its desired value as time 

progresses. The settling time obtained from this response 

is 4.9 seconds. The minimum and maximum steady-state 

errors are -10 pixels and -13 pixels respectively. 

Figure 22 shows a testing setup wherein the 
detected human is in the front-left of the drone. To follow 

the detected human, it must move left. This is to test the 
left roll movement of the drone. The drone is positioned 1 
meter to the left of the detected human and 2.25 meter 
in front of the drone, however in this setup, the drone is 
only tested for its roll movement (left and right). The pitch 
movement is not tested in this setup (forward and 
backward). 

 
 

Figure 22. Left Movement Testing Setup 
 

Figure 23 and Figure 24 shows the responses of the 
drone to the right movement as seen on Figure 22. The 
desired X Coordinate Error is zero. The settling time and 
the steady-state error are obtained. 

 

Figure 23. Left Movement Response 1: Time vs. Image 

Pixel Coordinate 
 

The response of the drone moving to the left to 

center the detected human is shown on Figure 23. The 

response is approaching zero, its desired value as time 

progresses. The settling time obtained from this response 

is 6 seconds. The minimum and maximum steady-state 

errors are -7 pixels and -12 respectively. 

 

Another response of the drone moving to the left to 

center the detected human is shown on Figure 24. The 

settling time obtained from this response is approximately 

6 seconds. The minimum and maximum steady-state error 

are -3 and -7 pixels respectively. 
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Figure 24. Left Movement Response 2: Time vs. Image 

Pixel Coordinate 
 

Figure 25 shows a testing setup wherein the 

detected human is 3 meters in front of the drone. To 

follow the detected human, it must move forward and 

maintain a distance of 2.25 meters with a tolerance of 

±0.25 meter. This is to test the pitch movement of the 

drone. This testing is used to verify the functionality of the 

pitch movement (forward and backward). Roll movement 

(left and right) is not tested in this setup. 

 

 

Figure 25. Forward Movement Testing Setup 
 

Figure 26 to Figure 27 shows the response of the 
drone to the forward movement as seen on Figure 27. The 
desired distance is 2.25 m. The settling time and the 
steady-state error are obtained. 

 

 

Figure 26. Forward Movement Response 1: Time vs. 

Approximated Distance 

The response of the drone moving forward to the 
desired distance from the detected human is seen on 
Figure 26. The response is approaching 2.25 meters, its 
desired value, with a tolerance of ±0.25 meter as time 
progresses. The settling time obtained from this response 
is approximately 5 seconds. The minimum and maximum 
steady-state errors are 0.01m and -0.216m respectively. 

 

 

Figure 27. Forward Movement Response 2: Time vs. 

Approximated Distance 

 

Another response of the drone moving forward to 

the desired distance from the detected human is seen on 

Figure 27. The settling time obtained from this response is 

approximately 4.2 seconds. The minimum and maximum 

steady-state errors are -0.216m and -0.442m respectively. 

 

Figure 28 shows a testing setup wherein the 

detected human is 1.5 meters in front of the drone. To 

follow the detected human, it must move backward and 

maintain a distance of 2.25 meters with a tolerance of 

±0.25 meter. This is to test the pitch movement of the 

drone. This testing is used to verify the functionality of the 

pitch movement (forward and backward). Roll movement 

is not tested in this setup. 

 

 

Figure 28. Backward Movement Testing Setup 
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Figure 29 to Figure 30 shows the response of the 
drone to the backward movement as seen on Figure 28. 
The desired distance is 2.25 m. The settling time and the 
steady-state error are obtained. 
 

 

Figure 29. Backward Movement Response 1: Time vs. 

Approximated 

Distance 
 

The response of the drone moving backward to the 
desired distance from the detected human is seen on 
Figure 29. The response is approaching 2.25 meters, its 
desired value, with a tolerance of ±0.25 meter as time 
progresses. The settling time obtained from this response 
is approximately 3 seconds. The minimum and maximum 
steady-state errors are 0.236m and 0.462m respectively. 

 

 

Figure 30. Backward Movement Response 2: Time vs. 

Approximated Distance 
 

Another response of the drone moving to the 

backward to the desired distance from the detected 

human is seen on Figure 30. The settling time obtained 

from this response is approximately 3.7 seconds. The 

minimum and maximum steady-state errors are 0.236m 

and 0.462m respectively. 

 

Overall Flight Tests 

The tuned human following drone was tested in 

indoor flights. To further demonstrate the ability of the 

drone to follow the basic movements of the detected 

human, a grid flooring was implemented to verify the 

proper positioning of the drone. This flight setup is shown 

on Figure 31. Each side of square on the grid is 0.5 meter 

in length. In this setup, the detected human walks around 

the grid, and the drone is tested to follow all the 

movements of the human. 

 

The desired X coordinate error of the bounding box 

is zero since the aim of this drone is to center the detected 

human to the frame. An error allowance of ±5 pixels from 

the center of the frame. The desired distance used is 2.25 

meters from the detected human. An error allowance of 

±0.25 meter is also used. 

 

 

Figure 31. Grid Flooring Test 
 

Table 2 shows a sample testing on the movements 

of the human that must be followed by the drone. Figure 

32 shows the error response of the drone due to each 

movement shown on Table 2.  

 

Table 2. Overall Movement Testing 1 

Movement Distance (m) 

Left 0.5 

Left 0.5 

Right 0.5 

Forward 0.5 

Forward 0.5 

 

 Figure 32 shows the response of the drone to the 5 
movements described in Table 2. The green lines on Figure 
32 depicts the timing of each movement indicated in Table 
2. This means that the response of the drone to the first 
movement, which is a 0.5 meter step to the left, is shown 
on 0 to 12 seconds of the graph on Figure 32. 
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Figure 32. Overall Movement Testing 1 
 

As seen on Figure 32, the drone is able to achieve 

following the movement of the target. For each 

movement, the X coordinate Error approaches zero. The 

distance computed is also approaching its desired value 

which is 2.25m with an error allowance of ±0.25m. This 

shows a proper response of the drone from the 

movement testings indicated in Table 2. The track 

duration of this flight is approximately 1 minute, and the 

tracking is lost only 6.391% of the duration. 

 

Another movement testing is performed as seen on 

Table 3. Similar to Table 2, the response of the drone is 

shown on Figure 33. The movements described in the first 

column is continued by the movements on the third 

column. Similarly, the distances described in the second 

column is contrinued in the fourth column. 

 

Table 3. Overall Movement Testing 2 

Movement 
Distance 

(m) 
Movement 

Distance 

(m) 

Right 0.5 Forward 0.5 

Right 0.5 Forward 0.5 

Left 0.5 Backward 0.5 

Left 0.5 Backward 0.5 

Forward 0.5 Forward 0.5 

 

Figure 33 shows the response of the drone to the 

human movements indicated in Table 3. This shows a 

proper response of the drone from the movement testings 

indicated in Table 3. The track duration of this flight is 

approximately 1 minute and 45 seconds, and the tracking 

is lost only 4.88% of the duration. 

 

Another movement testing is performed as seen on 

Table 4, and its response is shown on Figure 34. The 

movements described in the first column is continued by 

the movements on the third column. Similarly, the 

distances described in the second column is contrinued in 

the fourth column. 

 

 

Figure 33. Overall Movement Testing 2 
 

Table 4. Overall Movement Testing 3 

Movement 
Distance 

(m) 
Movement 

Distance 

(m) 

Right 0.5 Backward 0.5 

Forward 0.5 Left 0.5 

Backward 0.5 Right 0.5 

Right 0.5 Left 0.5 

Right 0.5 Right 0.5 

Left 0.5 Forward 1 

Right 0.5 Backward 1 

Backward 1 Left 0.5 

Forward 0.5 Left 0.5 

Right 0.5 Right 0.5 

Forward 1 Right 0.5 

Backward 0.5 Forward 1 

Backward 0.5 Backward 1 

 

 

Figure 34. Overall Movement Testing 3 
 

Figure 34 shows the response of the drone to the 

human movements indicated in Table 4. This shows a 

https://doi.org/10.5875/ausmt.v11i1.2147


ORIGINAL ARTICLE             https:/doi.org/10.5875/ausmt.v11i1.2147 

 

International Journal of Automation and Smart Technology  13         Volume 11 | Issue 1 | 2147 

proper response of the drone from the movement testings 

indicated in Table 4. The track duration of this flight is 

approximately 3 minutes and 45 seconds, and the tracking 

is lost only 7.7426% of the duration. 

 

Table 5. Summary of Single Movement Testing 

Movement 
Steady-State Error Settling Time 

(seconds) 

Minimum Maximum 

Right Test 1  -11 pixels -16 pixels 4.3 

Right Test 2 -10 pixels -13 pixels 4.9 

Left Test 1 -7 pixels -12 pixels 6 

Left Test 2 -3 pixels -7 pixels 6 

Forward 

Test 1 

0.01 m -0.216 m 5 

Forward 

Test 2 

-0.216 m -0.442 m 4.2 

Backward 

Test 1 

0.236 m 0.462 m 3 

Backward 

Test 2 

0.236 m 0.462 m 3.8 

 

 A summary of the single movement testing is shown 

on Table 5. This shows the maximum and minimum 

steady-state error of each movement with the percentage 

of tracking lost. 

 
Table 6. Summary of Overall Movement Testing 

Testing 
Flight Duration 

Tracking Lost 

Test 1  1 min 6.391% 

Test 2 1 min 45 sec 4.88% 

Test 3 3 min 45 sec 7.7426% 

 

A summary of the overall movement testing is 

shown on Table 6. This shows the flight duration and the 

percentage of tracking lost. 

Conclusion 

 The human-following drone was successful in 

detecting and following a chosen human. The human 

detection via local context is a useful algorithm able to 

detect humans despite longer distances and pose changes. 

As seen on Figure 20 to Figure 30, the human-following 

drone is able to accomplish following the single 

movements performed by the detected human as the 

responses approaches their desired values. The maximum 

steady-state error for the right, left, forward, and 

backward movements are -16 pixels, -12 pixels, -0.442 m, 

and 0.462m respectively with average settling times of 4.6, 

6, 4.6, and 3.4 seconds respectively. Since these responses 

are approaching zero with low steady-state errors, the 

human-following drone is capable of following its desired 

detected human. 

 

 The overall movement testing of the human-

following drone yielded a maximum of 7.7426% tracking 

lost for the duration with a longest tracking duration of 

approximately 3 minutes and 45 seconds. Because the 

human-following drone was able to respond correctly 

with all the human movements and maintain its track in 

all its overall flight tests, a new method of navigation is 

achieved. For future studies, a different human detection 

algorithm may be employed. The human features used for 

the algorithm determines the operating distance of the 

drone is able to detect the human. Another future study 

can also implement yaw movements. Because of the 

difficulty of the implementation of yaw controls, this study 

only focused on following by Roll and Pitch movements. 

This study may also be applied to outdoor situations and 

to different UAV frames such as hexacopters, helicopter, 

fixed-wing, and other applications.  
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