

International Journal of Automation and Smart Technology 1 Volume 11 | Issue 1 | 2147

ORIGINAL ARTICLE

A Novel Implementation of an
Autonomous Human Following Drone
using Local Context

Jayson Piquero1, *, Edwin Sybingco1, Alvin Chua2, Marc Say1, Clarisse
Crespo1, Reginald Rivera1, Ma. Antonette Roque1, Leonard Ambata1
1De La Salle University. Department of Electronics and Communications Engineering
2De La Salle University. Department of Mechanical Engineering

*Corresponding author: jayson_piquero@dlsu.edu.ph

Received: 1st April 2019
Accepted: 6th June 2019

OPEN ACCESS

Abstract: This paper presents a novel implementation of an autonomous human following done using local context

algorithm. The vision system consists of a drone equipped with a companion computer and camera. Through the vision

system, drones can behave according to its desired application. In this study, the Pixhawk 2 Cube flight controller of the

drone is connected to Odroid XU4, the companion computer. The OpenMV camera is connected to the Odroid XU4 and

streams image bytes whereas the Odroid XU4 performs image processing to detect the human through local context.

The Odroid XU4 controls the drone by sending commands to the flight controller based on detected objects. Drone

following is implemented by detecting humans from the image stream provided by OpenMV and maintaining the

detected human on the center of the image and within a specified distance through drone movements. The results

show the single movements right, left, forward, and backward yielded low steady-state errors with settling time of

about 3 to 4 seconds.

Keywords: quadrotor, vision, human tracking, local context

Introduction

Drone technologies have been popularized with

their many applications such as media, surveying,

agriculture, weather forecasting, and many more.

Because of this, research on the extension and

improvement of applications of drones have been

conducted as mentioned in [1], [2], and [3]. There have

been many researches on how to incorporate new

methods of navigation for drones other than GPS because

of the limitations of GPS on indoor locations.

The study done in [1] is an object following drone

using an algorithm called tracking-learning-detection (TLD)

which was used to detect the desired object from the

image stream. However due to the limited computing

capabilities of the drone, an external personal computer

was used for object detection. The response of the system

presented in [1] is slow because the tracking algorithm

waits about a second to stabilize after a command. This is

a disadvantage for tracking objects that move fast. The

presented idea was in the software called FollowMe.

The object detection implemented in [2] also uses

TLD for object detection. Using OpenTLD allows detection

of a multiple different target, however it also uses an

external personal computer which is connected to the

drone through WiFi. Similar to [1], the video stream from

the drone to the computer and the commands from the

computer to the drone are sent through the WiFi. This

limits the speed and the range of the system. Because the

detection relies on the wireless communication, the

response of the drone is heavily affected by distance and

interferences. The limitation in distance will also require

the external computer to move closer to the drone in

order to continuously detect the desired object and send

commands. This is a disadvantage for users especially for

long duration flights. The maximum duration of the flight

test presented was only up to 45 seconds.

mailto:jayson_piquero@dlsu.edu.ph

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 2 Volume 11 | Issue 1 | 2147

 The object following drone introduced in [3] is a

robust drone vision system that makes use of deep

learning as its detection framework. Hand gesture

detection is implemented in [3]. Drone movements are

controlled by the appearance of the hand. Since hand

gestures are relatively small in a frame, the resolution of

the camera was increased to 640x480 pixels which

decreases computation speed. This study displayed a

robust drone response, however this was only

implemented on an HITL simulation. It does not include

actual drone testing.

In [4], the study uses Pixhawk 2 Cube Flight

Controller and NVIDIA TK1, a companion computer. The

connection of the flight controller and the companion

computer through Dronekit-Python and the extended

capability of image processing were also introduced;

however, this was not implemented and tested in an

actual drone.

In addition, [5] also implemented a connection

between the Pixhawk Flight Controller, Odroid XU4, and a

GoPro camera. Similar to this study and [4], Dronekit-

Python was introduced as an extension to the capabilities

of drone systems such as commanding waypoints,

distance computation between locations, and image

processing; however, this also was not implemented and

tested in an actual drone.

The disadvantages that are present in [1] and [2] are

the distance constraints and response speed due to the

limitations of WiFi. A solution that can address these

problems is the use of a companion computer such as

Raspberry Pi, Odroid XU4, NVIDIA TK1, or others. Because

of the direct connection of the flight controller and the

companion computer, the response speed of the tracking

is faster and more ensured. This also removes the

requirement of the external computer to be near the

drone to maintain tracking.

The work in [3] is robust and accurate due to the

trained deep learning framework, however the system

was not implemented in an actual drone. Similarly, [4] and

[5] introduced extended capabilities of drones using

companion computers. These studies, however, did not

present any data or testing to verify the functionality. An

implementation to actual drones and flight tests can verify

the functionality of these extended capabilities.

In [6], a drone was used to take aerial images from

rivers. These images were used to train a classifier

cascaded with the Viola Jones Algorithm, however

compared to this paper which detects humans, the study

in [6] detects and identifies hydromorphological features

in the vicinity of a river such roofs, roads, shore, and trees.

The work in [7] made use of the local context

detector to find humans in order to analyze their facial

expressions. The local context detector was used as the

robust detector to find the upper body of a human in each

frame of the video. This highlights the effectiveness and

robustness of local context in finding humans. The study

differs as local context is used in this paper to navigate

drones.

This paper introduces a novel implementation of an

autonomous human-following drone using local context

algorithm. The system uses an Unmanned Aerial Vehicles

(UAVs) with Pixhawk 2 Cube and Odroid XU4. The

companion computer is on board the drone and is

connected to the flight controller through serial telemetry

and a python library called Dronekit. Dronekit-Python is a

set of python libraries that are developed for companion

computers and the flight controller. This establishes a fast

communication between the companion computer and

the flight controller. Through this fast communication and

robust human detection, a human-following drone is

achieved.

Local Context and PD Controller

Human Detection via Local Context

 The fast and robust human detection via local

context is a detection framework that detects features

surrounding the face instead of features within the face.

Because of this, human detection via local context can

easily find a human within the boundary. This algorithm

that was introduced in [8] is a variation to the object

detection introduced by Viola et al. [9], however this

algorithm uses additional rotated features described by

Lienhart et al. in [10] to accurately detect the presence of

a person’s head, neck, and upper body. As seen on Figure

1, the bounding box that detects the human covers the

entire upper body: shoulders, neck, and head.

Figure 1. Human Detection using Local Context

 Because human detection using local context made

use of different features of human such as shoulders and

heads, it is more reliable to detect humans despite longer

distance and rotation of poses. This changes the detection

from facial detection to upper body detection. Human

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 3 Volume 11 | Issue 1 | 2147

detection via local context is desirable because it is small

enough to detect near the camera and large enough to be

detected approximately 4 meters from the camera as seen

on Figure 1.

Listed in Figure 2 are the features used for enhanced
learning and detection of the local context system.

Figure 2. Extended Set of Haar-like Features according to

[10]

 These sets of features are employed in the local

context detector framework including the rotated

features where the white and black pixels are assigned

negative and positive values respectively. Figure 3 shows

a sample feature where dark and light rectangles have

pixel values. This feature is similar to the edge feature 1b

as shown on Figure 2.

Figure 3. Sample Edge Feature with Pixel Values

According to Linehart et al., feature calculation is

done by summing all the pixel values in the rectangles. It

can be seen on Equation 1 that feature calculation is

accomplished by adding all the pixels inside each

rectangle of the feature. Each value obtained in this

calculation determines whether a certain number of pixels

is a feature.

 (1)

Where: ωi – weights

 ri – rectangles

Since this calculation process takes long for larger

images, a method called Integral Image is used where an

image of the same size as the original image is created but

each pixel on the Integral Image is the sum of all the pixels

from the upper and left sides of that pixel in the original

image. Figure 4 shows a sample original image with pixel

values (upper) and the integral image (lower).

Figure 4. Sample Original Image (Upper) and Integral

Image (Lower)

 The upper image shown on Figure 4 shows a sample

original image, and the lower image shown is the Integral

Image. Each value of every pixel on the Integral Image is

the sum of all the pixel values above and to the left of it.

For example, the pixel on the 2nd row and 3rd column of

the Integral Image is equal to the sum of all the pixels

above and to the left of the pixel on the original image.

This means that this value is the sum of 1,3,1,3,2, and 1

which is 11. That is how the Integral Image is calculated.

Figure 5. Original Image with sample boundary (Upper)

and Integral Image with boundaries (Lower)

 The upper image shown on Figure 5 is a sample

original image. For instance, the highlighted portion is to

be summed up to obtain its total pixel value for feature

calculation. It would take long especially with larger

images and regions of interest. The lower image shown on

Figure 5 shows the integral image. Using the lower right

pixel value of boundaries A, B, C, and D on the Integral

Image, the total pixel value of the highlighted rectangle on

the original image can be obtained. In order to calculate

the total pixel value of the highlighted region on the

original image using the Integral Image, boundary A must

be subtracted with boundaries B and C and added with

boundary D since the first pixel (with value of 1 from

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 4 Volume 11 | Issue 1 | 2147

Figure 5) was deducted twice.

 Pixel Value of Window = A – B – C + D

 = 23 – 9 – 5 + 1 = 10

 Because of this, the computation for the pixel values

of each rectangle in all images can be computed faster. By

manually adding all the pixels in the on the highlighted

region on the upper image of Figure 5, the same results

may be obtained as shown:

 Pixel Value of Window = 2 + 1 + 1 + 3 + 1 + 2 = 10

 As seen on the previous computations, all large

additions that are required by large regions may be

reduced to adding and subtracting only 4 boundaries. This

is very convenient especially for a larger number of

features and larger images. The pixel value obtained in

each region is used to determine whether that region is a

feature. For instance, one feature contains the forehead

and the hair. A typical person would have lighter forehead

and darker hair.

With a very large number of features used in this

detector, a method called Adaboost is implemented

where relevant and irrelevant features are weighted and

checked. The relevant features are the features that yield

a minimum error rate and accurately classify humans and

non-humans. Features are also considered to be weak

classifiers. Adaboost groups classifiers, a set of features,

to create strong classifiers. Each weak classifier checks if a

feature is existing in a window and outputs a true or false

binary value. The groups of classifiers are weighted and

contribute to become a strong classifier.

Cascading is also used where a number of classifiers
are cascaded together for the algorithm. Each stage of the
classifier contains a strong classifier which determines
whether a window could possibly contain a human. Once
the window passes a stage, it moves on to the next. If a
window does not pass a stage, it is discarded and never
processed again. This eliminates all non-human features
that are detected.

Figure 6. Cascaded Classifiers

 Figure 6 shows a cascading of classifiers. This filters

windows to detect humans. If a certain window with a

certain size passes all the stages of the classifiers, this

window could possibly contain a human. A window that

does not pass even on stage is discarded. The detection

rate and false positive rate of the cascade, according to [8],

is given on Equation 2. The system detection rate and false

positive rate are obtained by multiplying the detection

rate and the false positive rate of each stage in the cascade.

 (2)

PD Controller

A PD Controller was chosen for the response

controller of the drone based on the value of the

commands obtained from image processing. This type of

controller was used due to its ease of its implementation

and tuning. Compared to [11] which uses Sliding Mode

Controller to move the drone, this paper implements a

simpler controller. Since Sliding Mode Controller is harder

to tune and involves more computation, a PD Controller is

preferred to obtain a faster computation speed.

Similarly, a Fuzzy GS-PID Controller was

implemented in [12] for the response of a payload

dropping drone. This controller lessens the drone

overshoots during a payload drop. This type of controller

is not necessarily needed in this paper as the human

following drone does not change in mass during flight.

Because of the simpler and faster performance of PD

Controllers, this was used over Sliding Mode Controller

and Fuzzy GS-PID Controller.

The input to the PD Controller in this system is

obtained from the image processing. Once the desired

human is detected, the x coordinate, y coordinate, width,

and height of the bounding box are used to control the

movement of the drone by maintaining the detected

human on the center of the frame as seen on Figure 7. The

coordinate system used in each frame is similar to the

Cartesian Plane where the center is (0,0). The frame is 240

x 240 pixels in dimension.

Figure 7. Coordinate System of Bounding Box

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 5 Volume 11 | Issue 1 | 2147

In order to maintain the x coordinate of the
bounding box on the horizontal center of the frame, the
drone must be controlled using a roll (tilt) angular
movement. A PD Controller similar to [1] and [13] is used
to center the bounding box.

Figure 8. PD Controller for Roll

As seen on Figure 8, the error inputted to the PD

Controller is the difference between the x coordinate of

the center of the frame which is at (0,0) and the x

coordinate of the center of the bounding box. This

denotes that the desired x coordinate of the bounding box

is at zero. By using a PD Controller to command a roll

movement, the drone is able to achieve left and right

movement to center the bounding box.

Figure 9. PD Control for Pitch

Figure 10. Parts of the Vision Quadrotor

Similarly, the drone is also required to maintain a

certain distance from the detected human. To achieve this,

the height of the bounding box is translated to distance as

described in [14]. As seen on Figure 9, the measured

height is used to approximate the actual distance of the

detected human from the camera. A PD Controller is also

used for pitch commands to control the forward and

backward movements of the drone.

Methodology

Flowchart of the System

The drone system is composed of the camera, the

companion computer, and the flight controller. The

OpenMV camera is a popular machine-vision camera

capable of doing image processing just by itself. This low-

powered camera is able to run real-time MicroPython,

however because of its unreliability and short-ranged on

its image processing, this feature of the camera was not

used. The OpenMV camera was only used to capture a live

video stream and send image bytes of the snapshots to

the companion computer. The Odroid XU4 is a small and

light weight companion computer which offers more

processing speed and energy-efficiency than other

companion computers like Raspberry Pi. Because of its

high processing speed, the Odroid XU4 is a good choice for

the companion computer as this device performs image

processing and transmits commands to the Pixhawk 2

Cube Flight Controller.

Figure 11 shows a more detailed flowchart of the

vision system of the drone. The image bytes are sent from

the OpenMV camera to the Odroid XU4 companion

computer. Image processing is obtained by using python

Open Computer Vision (OpenCV) libraries and through

local context for face detection as described in [8]. As

previously stated, face detection through local context is

fast and robust due to its ability to detect humans even

with changes in facial poses. Upper Body detection

through local context is also capable of detecting humans

farther in distance compared to the rapid object detection

introduced by Viola et al., thus human following through

drones is exceptionally safer with local context because of

its capability to detect and operate in farther distance.

Distance Approximation

 According to [14], the distance of a detected object

can be approximated using the height of the bounding box.

This is done by determining the focal length of the camera.

The focal length is determined by conducting multiple

experiments. As seen on Figure 12, the relationship of the

focal length and the actual distance can be computed as

described in Equation 3.

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 6 Volume 11 | Issue 1 | 2147

Figure 11. Block Diagram of Vision System

Figure 12. Lens Diagram of Camera

 (3)

Experimental Setup

Hardware

The Pixhawk 2 Cube flight controller is a low-cost

autopilot capable of controlling different types of drones

such as multicopter, fixed-wing plane, and rovers. This

autopilot is able to run Ardupilot, an open-source

firmware for autopilots. This autopilot is equipped with

triple gyroscope, accelerometer, and compass sensors for

redundancy. Despite being equipped with multiple IMUs,

this device is not capable of performing image processing

[4]. This is where the companion computer plays its part.

A connection was established, through one of the two

telemetry ports of Pixhawk, between the companion

computer and the flight controller in order to properly

receive commands. This device is controlled by the pilot

through the Radio Controller (RC). Flight Modes and

different movements can be commanded by the pilot

using the RC.

The Odroid XU4 is a fast and efficient companion

computer capable of running Linux operating systems

such as Ubuntu and Android. This computer consists of

octa core CPUs which enables it to perform image

processing. This is device also has a small voltage

requirement which allows it to be supplied by the Lithium

Polymer Battery that also supplies power to the flight

controller.

The OpenMV camera is a small and low-cost

camera, capable of running programs in Python. This also

has built-in libraries for image processing. This is a very

powerful camera, yet still low-powered. Since this camera

is able to run image processing, it can replace the job of

the Odroid XU4, however this camera currently has face

detection. Human detection is less effective in this

application because of its limitation in distance and pose

changes of humans [8]. Because of this, the Odroid XU4

performs the image processing instead.

The python script that computes Roll and Pitch

commands as shown on Figure 8 and Figure 9 are not sent

to the Pixhawk 2 Cube flight controller unless the flight

mode is on GUIDED, GUIDED_NOGPS, or AUTO.

During the flight testings, the pilot uses other flight

modes of the Pixhawk 2 Cube such as STABILIZE, ALTHOLD,

or LOITER, however because the companion computer

cannot command the flight controller while in the

mentioned flight modes, the movement of the drone is

still under the control of the pilot using the Radio

Controller (RC).

While in GUIDED, GUIDED_NOGPS, or AUTO flight
modes, the Roll and Pitch commands computed from the
PD Controller are sent from the companion computer to
the flight controller using MAVLink messages that are
encoded using the Dronekit-Python libraries.

Figure 13. Basic Block Diagram of System

Figure 13 shows the flow of the algorithm. Upon

obtaining the image stream from the OpenMV camera, it

is sent to the Odroid XU4 companion computer. The

companion computer detects humans in the image

stream using local context. Drone movements are then

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 7 Volume 11 | Issue 1 | 2147

sent from the companion computer to the Pixhawk 2 Cube

flight controller in order to center the detected human to

the frame.

Software

The software setup describes the initial
configurations of the system. This includes setting up the
connection between the odroid and a local computer.

Figure 14. Detailed Block Diagram of System

Figure 14 shows a more detailed flow of the block

diagram on Figure 13. Since the system python script is

not run immediately after booting the companion

computer, a local computer must command the

companion computer to run the python script. The python

script is saved on the Odroid XU4 and is run by the user

through a local computer. The local computer can access

the odroid XU4 through Secure Shell (SSH) protocol. The

local computer and the companion computer must be

connected to the same network. In this work, they are

connected to the hotspot of a mobile phone. By running

the script, the GUI will appear as shown on Figure 15.

After choosing a desired human on the GUI, the GUI will

close and the drone following will begin. This means that

the system is no longer dependent on wireless connection

once the desired human is chosen.

The python script that is run through the companion

computer continuously sends movement commands to

the drone, however the drone does not follow these

commands unless it is on GUIDED, GUIDED_NOGPS, or

AUTO flight modes where the pilot has no control over the

drone using the Radio Controller (RC). To enable human-

following, the pilot must change the autopilot flight

modes to the mentioned flight modes.

The system is written in python script. This python
program is saved in the Odroid XU4 and is run by the local
user from another computer through Secure Shell (SSH)
protocol. The program creates a GUI that displays the
video stream from the camera as seen on Figure 15.

Figure 15. Detected Human in GUI

 As seen on Figure 15, all detected humans were

detected with bounding boxes. In order to choose a

desired detected human, the user must click the bounding

box of the desired human. Once clicked, the desired

human is followed as seen on Figure 16.

Figure 16. Chosen Human in GUI

Data and Results

Focal Length Calculation

Table 1 shows experimental values used to

approximate the focal length. Since the focal length is

constant, it can be used to approximate the actual

distance of the drone from the detected human. In the

trial values seen in Table 1, the focal length is averaged.

Since the actual height of the upper body as seen in Figure

7 is 600mm, the Actual Height column of Table 1 are all set

to 0.6m. The Actual Distance column is set by having a

sample detected human standing a distance from the

camera. These are the values chosen as these are the

actual distances that the drone will be tested in. The Pixel

Height column is the value of the height of the bounding

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 8 Volume 11 | Issue 1 | 2147

box obtained from the image processing. With this, the

focal length can be computed.

Table 1. Focal Length Experimental Values

Actual

Distance

(m)

Pixel Height

(pixels)

Actual

Height

(m)

Focal

Length

(pixels)

1.0 138.6 0.6 231

1.2 111.5 0.6 223

1.5 89.6 0.6 224

1.8 78.3 0.6 235

2.0 65.1 0.6 217

2.3 59.0 0.6 226

2.5 54.96 0.6 229

2.8 48 0.6 224

3.0 45.2 0.6 226

Basing from the values obtained on Table 1, the

average focal length is approximately 226. This will be the

focal length constantly used to determine the actual

distance of the drone during the flight tests.

PD Tuning

The aim of this study is to provide another method

of navigation for indoor flight tests of drones. To confirm

the functionality, the basic movements of drones (Left

Roll, Right Roll, Forward Pitch, and Backward Pitch) are

tested along with the image processing. This study does

not include or use yaw control or movements. In tuning

the PD Controller, the Ziegler-Nichols method introduced

by Nichols et al. in [15] were used.

To tune a PID Controller, the integral and derivative
contributions to the controller must first be set to zero.
The Proportional controller, Ku, must then be set to a
value increasing in value until a certain oscillation, termed
as Tu, is obtained from the system. Ku and Tu will then be
used to determine the correct values of the PID Controller
[15].

Figure 17. X Coordinate Oscillation

Figure 17 shows the oscillations of the x coordinate

of the center of the bounding box for tuning the roll

movement. This is obtained when using a Ku value of 1.5.

The average period of oscillation, Tu, is computed to be

8.4 seconds. According to [15], the Kp and Td value for the

PD Controller can be obtained using these testing data.

The values for Kp and Td are obtained in the computation

shown below:

Kp = 0.8 * Ku = 1.2 Td = Tu / 8 = 1.05

Figure 18. Distance Oscillation

Figure 18 shows the oscillations of the

approximated distance of the bounding box for tuning the

pitch movement. This is obtained when using a Ku value

of 0.5. The average period of oscillation, Tu, is computed

to be 17.19 seconds. According to [15], the Kp and Td

value for the PD Controller can be obtained using these

testing data. The values for Kp and Td are obtained in the

computation shown below:

Kp = 0.8 * Ku = 0.4 Td = Tu / 8 = 2.15

Single Movement Flight Tests

Each movement of the drone was tested: left, right,

forward, and backward. The roll movement, which centers

the bounding box to the center of the frame, is tested to

determine whether the response lessens the error.

Figure 19. Right Movement Testing Setup

 Figure 19 shows a testing setup wherein the
detected human is in the front-right of the drone. To
follow the detected human, it must move right. This is to
test the right roll movement of the drone. The drone is

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 9 Volume 11 | Issue 1 | 2147

positioned 1 meter to the right of the detected human and
2.25 meter in front of the drone, however in this setup,
the drone is only tested for its roll movement (left and
right). The pitch movement is not tested in this setup
(forward and backward).

Figure 20 and Figure 21 shows the responses of the
drone to the right movement as seen on Figure 19. The
desired X Coordinate Error is zero. The settling time and
the steady-state error are obtained.

Figure 20. Right Movement Response 1: Time vs. Image

Pixel Coordinate

 The response of the drone moving to the right to
center the detected human is shown on Figure 20. The
response is approaching zero, its desired value as time
progresses. The settling time obtained from this response
is 4.3 seconds. The minimum and maximum steady-state
errors are -11 pixels and -16 pixels respectively.

Figure 21. Right Movement Response 2: Time vs. Image

Pixel Coordinate

Another response of the drone moving to the right

to center the detected human is shown on Figure 21. The

response is approaching zero, its desired value as time

progresses. The settling time obtained from this response

is 4.9 seconds. The minimum and maximum steady-state

errors are -10 pixels and -13 pixels respectively.

Figure 22 shows a testing setup wherein the
detected human is in the front-left of the drone. To follow

the detected human, it must move left. This is to test the
left roll movement of the drone. The drone is positioned 1
meter to the left of the detected human and 2.25 meter
in front of the drone, however in this setup, the drone is
only tested for its roll movement (left and right). The pitch
movement is not tested in this setup (forward and
backward).

Figure 22. Left Movement Testing Setup

Figure 23 and Figure 24 shows the responses of the
drone to the right movement as seen on Figure 22. The
desired X Coordinate Error is zero. The settling time and
the steady-state error are obtained.

Figure 23. Left Movement Response 1: Time vs. Image

Pixel Coordinate

The response of the drone moving to the left to

center the detected human is shown on Figure 23. The

response is approaching zero, its desired value as time

progresses. The settling time obtained from this response

is 6 seconds. The minimum and maximum steady-state

errors are -7 pixels and -12 respectively.

Another response of the drone moving to the left to

center the detected human is shown on Figure 24. The

settling time obtained from this response is approximately

6 seconds. The minimum and maximum steady-state error

are -3 and -7 pixels respectively.

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 10 Volume 11 | Issue 1 | 2147

Figure 24. Left Movement Response 2: Time vs. Image

Pixel Coordinate

Figure 25 shows a testing setup wherein the

detected human is 3 meters in front of the drone. To

follow the detected human, it must move forward and

maintain a distance of 2.25 meters with a tolerance of

±0.25 meter. This is to test the pitch movement of the

drone. This testing is used to verify the functionality of the

pitch movement (forward and backward). Roll movement

(left and right) is not tested in this setup.

Figure 25. Forward Movement Testing Setup

Figure 26 to Figure 27 shows the response of the
drone to the forward movement as seen on Figure 27. The
desired distance is 2.25 m. The settling time and the
steady-state error are obtained.

Figure 26. Forward Movement Response 1: Time vs.

Approximated Distance

The response of the drone moving forward to the
desired distance from the detected human is seen on
Figure 26. The response is approaching 2.25 meters, its
desired value, with a tolerance of ±0.25 meter as time
progresses. The settling time obtained from this response
is approximately 5 seconds. The minimum and maximum
steady-state errors are 0.01m and -0.216m respectively.

Figure 27. Forward Movement Response 2: Time vs.

Approximated Distance

Another response of the drone moving forward to

the desired distance from the detected human is seen on

Figure 27. The settling time obtained from this response is

approximately 4.2 seconds. The minimum and maximum

steady-state errors are -0.216m and -0.442m respectively.

Figure 28 shows a testing setup wherein the

detected human is 1.5 meters in front of the drone. To

follow the detected human, it must move backward and

maintain a distance of 2.25 meters with a tolerance of

±0.25 meter. This is to test the pitch movement of the

drone. This testing is used to verify the functionality of the

pitch movement (forward and backward). Roll movement

is not tested in this setup.

Figure 28. Backward Movement Testing Setup

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 11 Volume 11 | Issue 1 | 2147

Figure 29 to Figure 30 shows the response of the
drone to the backward movement as seen on Figure 28.
The desired distance is 2.25 m. The settling time and the
steady-state error are obtained.

Figure 29. Backward Movement Response 1: Time vs.

Approximated

Distance

The response of the drone moving backward to the
desired distance from the detected human is seen on
Figure 29. The response is approaching 2.25 meters, its
desired value, with a tolerance of ±0.25 meter as time
progresses. The settling time obtained from this response
is approximately 3 seconds. The minimum and maximum
steady-state errors are 0.236m and 0.462m respectively.

Figure 30. Backward Movement Response 2: Time vs.

Approximated Distance

Another response of the drone moving to the

backward to the desired distance from the detected

human is seen on Figure 30. The settling time obtained

from this response is approximately 3.7 seconds. The

minimum and maximum steady-state errors are 0.236m

and 0.462m respectively.

Overall Flight Tests

The tuned human following drone was tested in

indoor flights. To further demonstrate the ability of the

drone to follow the basic movements of the detected

human, a grid flooring was implemented to verify the

proper positioning of the drone. This flight setup is shown

on Figure 31. Each side of square on the grid is 0.5 meter

in length. In this setup, the detected human walks around

the grid, and the drone is tested to follow all the

movements of the human.

The desired X coordinate error of the bounding box

is zero since the aim of this drone is to center the detected

human to the frame. An error allowance of ±5 pixels from

the center of the frame. The desired distance used is 2.25

meters from the detected human. An error allowance of

±0.25 meter is also used.

Figure 31. Grid Flooring Test

Table 2 shows a sample testing on the movements

of the human that must be followed by the drone. Figure

32 shows the error response of the drone due to each

movement shown on Table 2.

Table 2. Overall Movement Testing 1

Movement Distance (m)

Left 0.5

Left 0.5

Right 0.5

Forward 0.5

Forward 0.5

 Figure 32 shows the response of the drone to the 5
movements described in Table 2. The green lines on Figure
32 depicts the timing of each movement indicated in Table
2. This means that the response of the drone to the first
movement, which is a 0.5 meter step to the left, is shown
on 0 to 12 seconds of the graph on Figure 32.

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 12 Volume 11 | Issue 1 | 2147

Figure 32. Overall Movement Testing 1

As seen on Figure 32, the drone is able to achieve

following the movement of the target. For each

movement, the X coordinate Error approaches zero. The

distance computed is also approaching its desired value

which is 2.25m with an error allowance of ±0.25m. This

shows a proper response of the drone from the

movement testings indicated in Table 2. The track

duration of this flight is approximately 1 minute, and the

tracking is lost only 6.391% of the duration.

Another movement testing is performed as seen on

Table 3. Similar to Table 2, the response of the drone is

shown on Figure 33. The movements described in the first

column is continued by the movements on the third

column. Similarly, the distances described in the second

column is contrinued in the fourth column.

Table 3. Overall Movement Testing 2

Movement
Distance

(m)
Movement

Distance

(m)

Right 0.5 Forward 0.5

Right 0.5 Forward 0.5

Left 0.5 Backward 0.5

Left 0.5 Backward 0.5

Forward 0.5 Forward 0.5

Figure 33 shows the response of the drone to the

human movements indicated in Table 3. This shows a

proper response of the drone from the movement testings

indicated in Table 3. The track duration of this flight is

approximately 1 minute and 45 seconds, and the tracking

is lost only 4.88% of the duration.

Another movement testing is performed as seen on

Table 4, and its response is shown on Figure 34. The

movements described in the first column is continued by

the movements on the third column. Similarly, the

distances described in the second column is contrinued in

the fourth column.

Figure 33. Overall Movement Testing 2

Table 4. Overall Movement Testing 3

Movement
Distance

(m)
Movement

Distance

(m)

Right 0.5 Backward 0.5

Forward 0.5 Left 0.5

Backward 0.5 Right 0.5

Right 0.5 Left 0.5

Right 0.5 Right 0.5

Left 0.5 Forward 1

Right 0.5 Backward 1

Backward 1 Left 0.5

Forward 0.5 Left 0.5

Right 0.5 Right 0.5

Forward 1 Right 0.5

Backward 0.5 Forward 1

Backward 0.5 Backward 1

Figure 34. Overall Movement Testing 3

Figure 34 shows the response of the drone to the

human movements indicated in Table 4. This shows a

https://doi.org/10.5875/ausmt.v11i1.2147

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 13 Volume 11 | Issue 1 | 2147

proper response of the drone from the movement testings

indicated in Table 4. The track duration of this flight is

approximately 3 minutes and 45 seconds, and the tracking

is lost only 7.7426% of the duration.

Table 5. Summary of Single Movement Testing

Movement
Steady-State Error Settling Time

(seconds)

Minimum Maximum

Right Test 1 -11 pixels -16 pixels 4.3

Right Test 2 -10 pixels -13 pixels 4.9

Left Test 1 -7 pixels -12 pixels 6

Left Test 2 -3 pixels -7 pixels 6

Forward

Test 1

0.01 m -0.216 m 5

Forward

Test 2

-0.216 m -0.442 m 4.2

Backward

Test 1

0.236 m 0.462 m 3

Backward

Test 2

0.236 m 0.462 m 3.8

 A summary of the single movement testing is shown

on Table 5. This shows the maximum and minimum

steady-state error of each movement with the percentage

of tracking lost.

Table 6. Summary of Overall Movement Testing

Testing
Flight Duration

Tracking Lost

Test 1 1 min 6.391%

Test 2 1 min 45 sec 4.88%

Test 3 3 min 45 sec 7.7426%

A summary of the overall movement testing is

shown on Table 6. This shows the flight duration and the

percentage of tracking lost.

Conclusion

 The human-following drone was successful in

detecting and following a chosen human. The human

detection via local context is a useful algorithm able to

detect humans despite longer distances and pose changes.

As seen on Figure 20 to Figure 30, the human-following

drone is able to accomplish following the single

movements performed by the detected human as the

responses approaches their desired values. The maximum

steady-state error for the right, left, forward, and

backward movements are -16 pixels, -12 pixels, -0.442 m,

and 0.462m respectively with average settling times of 4.6,

6, 4.6, and 3.4 seconds respectively. Since these responses

are approaching zero with low steady-state errors, the

human-following drone is capable of following its desired

detected human.

 The overall movement testing of the human-

following drone yielded a maximum of 7.7426% tracking

lost for the duration with a longest tracking duration of

approximately 3 minutes and 45 seconds. Because the

human-following drone was able to respond correctly

with all the human movements and maintain its track in

all its overall flight tests, a new method of navigation is

achieved. For future studies, a different human detection

algorithm may be employed. The human features used for

the algorithm determines the operating distance of the

drone is able to detect the human. Another future study

can also implement yaw movements. Because of the

difficulty of the implementation of yaw controls, this study

only focused on following by Roll and Pitch movements.

This study may also be applied to outdoor situations and

to different UAV frames such as hexacopters, helicopter,

fixed-wing, and other applications.

Acknowledgements

 The authors would like to acknowledge the

Department of Science and Technology – PCIEERD with

project number 04254 and the University Research

Coordination Office in De La Salle University for funding

and supporting this research.

References

[1] R. Bartak and A. Vyskovsk, "Any Object Tracking and

Following by a Flying Drone", 2015 Fourteenth

Mexican International Conference on Artificial

Intelligence (MICAI), 2015.

https://doi.org/10.1109/MICAI.2015.12

[2] J. Pestana, J. Sanchez-Lopez, S. Saripalli, and P.

Campoy, “Computer Vision Based General Object

Following for GPS-denied Multirotor Unmanned

Vehicles”, 2014 American Control Conference, 2014.

https://doi.org/10.1109/ACC.2014.6858831

[3] C. Wang, R Zhao, X. Yang, and Q. Wu, “Research of

UAV Target Detection and Flight Control Based on

Deep Learning”, 2018 International Conference on

Artificial Intelligence and Big Data (ICAIBD), 2018.

https://doi.org/10.1109/ICAIBD.2018.8396188

[4] R. Dan, U. Shah, and W. Hussain, “Development

https://doi.org/10.5875/ausmt.v11i1.2147
https://doi.org/10.1109/MICAI.2015.12
https://doi.org/10.1109/ACC.2014.6858831
https://doi.org/10.1109/ICAIBD.2018.8396188

ORIGINAL ARTICLE https:/doi.org/10.5875/ausmt.v11i1.2147

International Journal of Automation and Smart Technology 14 Volume 11 | Issue 1 | 2147

Process of a Smart UAV for Autonomous Target

Detection”, 2018.

https://doi.org/10.18687/LACCEI2018.1.1.480

[5] H. David Mathias, "An Autonomous Drone Platform

for Student Research Projects", Journal of Computing

Science in Colleges, vol. 31, issue 5, pp. 12-20, 2016.

[6] J. Cuevas, A. Chua, E. Sybingco, and E. Bakar,

“Identification of River Hydromorphological Features

Using Histograms of Oriented Gradients Cascaded to

the Viola-Jones Algorithm”, International Journal of

Mechanical Engineering and Robotics Research Vol. 8,

No. 2, March 2019

https://doi.org/10.18178/ijmerr

[7] A. Rabie, C. Lang, M. Hanheide, M. Castrillon-Santana,

and G. Sagerer, "Automatic Initialization for Facial

Analysis in Interactive Robotics", Proceedings of the

6th international conference on Computer vision

systems, 2018.

https://doi.org/10.1007/978-3-540-79547-6_50

[8] M. Santana, H. Kruppa, and B. Schiele, "Fast and

Robust Face Finding via Local Context", 2003.

https://doi.org/10.1007/978-0-387-88777-7_3

[9] P. Viola and M. Jones, "Rapid Object Detection using

a Boosted Cascade of Simple Features", Proceedings

of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR 2001,

2001.

https://doi.org/10.1109/CVPR.2001.990517

[10] R. Lienhart and J. Maydt, "An Extended Set of Haar-

like Features for Rapid Object Detection",

Proceedings. International Conference on Image

Processing, 2002.

https://doi.org/10.1109/ICIP.2002.1038171

[11] V. Delica, A. Orquia, J. Piquero, E. Reynaldo, J. Ilao, E.

Sybingco, M. Roque, A. Chua, J. Katupitya, and H.

Jayakody, “A New Sliding Mode Controller

Implementation on an Autonomous Quadcopter

System”, International Journal of Automation and

Smart Technology, vol. 9, no. 2, 2019.

https://doi.org/10.5875/ausmt.v9i2.1876

[12] I. Gue and A. Chua, "Development of a Fuzzy GS-PID

Controlled Quadrotor for Payload Drop Missions",

Journal of Telecommunication, Electronic and

Computer Engineering, vol. 10, Issue 1-5, pp. 55-58,

2018.

[13] F. Vasconcelos and N. Vasconcelos, “Person-following

UAVs”, 2016 IEEE Winter Conference on Applications

of Computer Vision (WACV), 2016

https://doi.org/10.1109/WACV.2016.7477660

[14] A. Rosebrock, “Find distance from camera to

object/marker using Python and OpenCV”,

https://www.pyimagesearch.com/2015/01/19/find-

distance-camera-objectmarker-using-python-

opencv/. Accessed 26 February 2019.

[15] J. Ziegler and N. Nichols, "Optimum Settings for

Automatic Controllers", 1942.

Publisher: Chinese Institute of Automation Engineers (CIAE)

ISSN: 2223-9766 (Online)

 Copyright: The Author(s). This is an open access

article distributed under the terms of the Creative

Commons Attribution License (CC BY 4.0), which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

cited.

https://doi.org/10.5875/ausmt.v11i1.2147
https://doi.org/10.18687/LACCEI2018.1.1.480
https://doi.org/10.18178/ijmerr
https://doi.org/10.1007/978-3-540-79547-6_50
https://doi.org/10.1007/978-0-387-88777-7_3
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/ICIP.2002.1038171
https://doi.org/10.5875/ausmt.v9i2.1876
https://doi.org/10.5875/ausmt.v9i2.1876
https://doi.org/10.1109/WACV.2016.7477660
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

