

International Journal of Automation and Smart Technology 1 Volume 12 | Issue 1 | 2286

ORIGINAL ARTICLE

LSTM Based Ensemble Network to

Enhance the Learning of Long-term

Dependencies in Chatbot

Shruti Patil1*, Venkatesh Mudaliar2, Pooja Kamat3

1,3 Assistant Professor, Symbiosis Institute of Technology, Pune
2 Mtech Research Scholar, Symbiosis Institute of Technology

Received: 9th February 2020
Accepted: 17st May 2020

OPEN ACCESS

Abstract: A chatbot is a software that can reproduce a discussion portraying a specific dimension of articulation among

people and machines utilizing Natural Human Language. With the advent of AI, chatbots have developed from being

minor guideline based models to progressively modern models. A striking highlight of the current chatbot frameworks

is their capacity to maintain and support explicit highlights and settings of the discussions empowering them to have a

human contact through the span of involvement. The paper expects to build up a detailed database with respect to the

models utilized to deal with the learning of long haul conditions in a chatbot. The paper proposes a crossbreed Long

Short Term Memory based Ensemble Network arrangement model to save the continuation of the specific situation.

The proposed model uses a characterized number of Long Short Term Memory Networks as a major aspect of the

amassed model working as one to create the aggregate forecast class for the info inquiry handled.

Keywords: Chatbot, AI, LSTM, Ensemble Method, GRU

Introduction

 A Conversational Agent is otherwise called 'Chatbot' is

a software program which leads a discussion by means of

sound-related or literary strategies in a characteristic

language, for example, English. Chatbots are being

coordinated universally into our lives in a type of Virtual

collaborators and messaging applications. In 1950, Alan

Turing proposed 'Turing Test' as a benchmark of a chatbot

program to imitate a human in a discussion [3]. ELIZA,

Jaberwacky, A.L.I.C.E. were not many of the underlying

chatbots created dependent on principle based

methodology [1]. The 'Measurable Revolution' contingent

upon Machine Learning blossomed in the late 1980s and

mid-1990s. There has been a significant powerful

movement in the zone of chatbot inferable from the

development of man-made reasoning. The presentation

of the influx of Artificial Intelligence-based chatbots has

introduced another time of conversational interfaces. The

other factor adding to advancement is the noticeable

change of the elements of human discussion leaning

toward short informing over different types of

correspondence. Most chatbots are gotten to through

remote helpers, informing applications or association's

sites. Right now, the market of cutting edge conversational

specialists is shared by IBM's Watson, Apple's Siri, Google

Assistant, Amazon Alexa, Microsoft's Cortana to give some

examples. Endeavours have been made to typify the

usefulness of chatbot consistently into administrations

alongside contracting the uniqueness contrasted with

human discussions. The incorporation of an inductive

memory practically equivalent to the human cerebrum

into the engineering of a chatbot encourages the chatbot

to keep up the edge of setting for longer durations.

Protecting the highlights identified with the relationship

for longer lengths is named as adapting Long term

dependencies. This model acquires a factor of

commonality and lucidness over the span of the

discussion between the end client and chatbot. Wide and

unambiguous data about the advancement of memory

incorporated models utilized in chatbot could give an

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 2 Volume 12 | Issue 1 | 2286

exhaustive comprehension and bits of knowledge into the

eventual fate of chatbot inquire about. The design and

advancement strategy of a run of the mill chatbot relies

upon fundamental ideas as determined in Figure 1 [2].

A brief look at the concepts to comprehend the

variations possible at the formative stage is presented

below.

1. Text Processing: Word embeddings are the vector

representations of words within the specific

vocabulary enabling better implementation and

utilization of statistical machine learning models.

2. Machine Learning Model: The concept of Artificial

Neural Network is extensively employed in dealing

with input processing, classification and generating

the most appropriate response for the input query.

Chatbots like Deepprobe, Superagent utilize the Long

short-term memory (LSTM) model with Seq2Seq,

while Rubystar uses Seq2Seq with Gated recurrent

unit (GRU) [2].

3. Knowledge Base: The dataset used for training the

model can be either Open or Close in its bounds. Open

domain chatbot was found to be compromised on

relevance and accuracy of the responses and Closed

domain chatbot performs well owing to limited yet

definite confines of the dataset [2].

4. Response Generation: The response returned for input

is either retrieved or generated. The former selects the

appropriate response from a collection while the latter

generates the response depending on the features of

input vectors, dictionary a trained classifier. The hybrid

RNN-Seq2Seq model has progressed to become a

popular choice in chatbot architecture [3].

Figure 1. Chatbot Operation

Literature Survey

This section aims to provide an overview on

different concepts employed in handling long-term

dependencies and discuss their corresponding nuances.

The timeline of some fundamental technologies is listed in

Table 1.

 Table 1. Course of development

Artificial Neural Networks

Artificial Neural Networks (ANNs) are information

processing models inspired by the biological neural

system and the capability of the brain to process

information. The work on Neuron Circuit and Perceptron

by Warren Pitts, Warren McCulloch and F. Rosenblatt

served groundwork for ANN to evolve and induct over the

traditional computer frameworks in the 1970s [1]. ANN is

composed of a large number of densely interconnected

mathematical function units called 'Neurons' clustered

into three types of layers as shown in Figure 2. The input

layer is responsible for the initial processing of input data

whereas the output layer deals with aggregating the final

outputs and presenting the result. The weighted

connections between neurons in hidden layer form the

basis of learning process providing variable strength to the

input data traversing forward towards output neurons. An

activation function like Sigmoid, ReLU or tanh is applied

on the summation of weighted inputs in a neuron [4].

Year Author Contribution

1943 W. McCulloch,

W. Pitts

Artificial Neural Network

(ANN)

1990 Elman Simple Recurrent Neural

Network (RNN)

1990 L. K. Hansen, P.

Salamon

Ensemble Learning

1994 Y. Bengio Issue with long term

dependencies

1997 S. Hochreiter Long Short Term Memory (

LSTM)

2000 F.A. Gers LSTM with forget gates

2014 K. Cho Gated Recurrent Unit (GRU)

2014 A.Graves Neural Turing Machine

(NTM)

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 3 Volume 12 | Issue 1 | 2286

Figure 2. Artificial Neural Network structure

The model is trained using 'Back Propagation' where

the error calculated leads to optimal updation of weights.

Gradient (∆w) can be calculated as change in error with

respect to change in weights (de⁄dw). Values for new

weights is determined by adding weight (w)and the

gradient(∆w). The entire process is depicted in Figure 3.

Figure 3. Backpropagation process

However, the brute force approach for updating

weights suffers from 'Curse of dimensionality' [5].

Gradient Descent(GD) and Stochastic Gradient(SGD)

descent offer a faster way to find optimum weights. Both

these methods determine the global minima by finding

the point where the slope of the cost function is zero

hence resulting the error to be minimum.GD and SGD are

compared in Table 2.

ANN suffers from both overfitting and underfitting

as described in Figure 4. Overfitting is an outcome of an

overly accurate or complicated model showing low bias

but high variance. Underfittingis a result of a too simple

model showing low variance but high bias [6]. ANNs

deal with fixed sized vectors only and they do not possess

a dedicate memory element to handle sequential data

hence making them an inappropriate choice for a chatbot

handling dependent vectors.

Figure 4. Overfitting and Underfitting of a model

RNN

Recurrent Neural Network (RNN) is the class of

Artificial Neural Network supplemented by the integration

of edges spanning adjacent timestamps. Psychologist

David Rumelhart's work on symbolic artificial intelligence

from 1986 formed base for the development of RNN. RNN

has two inputs, the present values and values from recent

past enabling it to capture the dynamics of a sequence of

inputs in scenarios like handwriting recognition, stock

price prediction, etc. Owing to the variable size of input

and output vectors RNN has shown significant

improvement over traditional feed forward networks in

Chatbots as RNNs are capable of exploiting a dynamically

changing contextual window over input sequences.

Overall architecture of RNN is specified in Figure 5.

Figure 5. RNN overall architecture

At given time t, output for state 𝑆𝑡 is calculated

applying function on portion of output from previous

state 𝑆𝑡−1 and current input 𝑋𝑡 . It can be termed

mathematically as 𝑆𝑡 = 𝐹(𝑆𝑡−1, 𝑋𝑡) where F is activation

function like tanh or ReLU.This process continues forming

an information loop for a given state with respect to time.

The unrolled structure of RNN is shown in Figure 6 along

with equations.

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 4 Volume 12 | Issue 1 | 2286

Table 2. Comparison between GD and SGD

Like Feed-forward networks, RNNs use back

propagation for training the difference being the

additional parameter 'time', hence it is termed as 'Back

propagation through time (BTT)' as shown in Figure 6[7].

Figure 6. RNN unrolled structure

The range of context to be used practically is limited

as each prediction looks at one step prior state value.

While back propagating the recurrent connections, the

influence of given input vector on the corresponding

hidden layer and hence overall network output either

decays or blows up exponentially giving rise to Vanishing

Gradient and Exploding Gradient problem respectively as

shown in Figure 7. Both these problems cause the model

to train poorly and performance degradation.

Figure 7. Vanishing Gradient and Exploding Gradient

A prediction of a state at the time 't' depends on the

input presented at earlier time T where T<<t. When the

gap between T and t grows large, it becomes extremely

difficult for the model to attain convergence causing the

failure of RNN to handle 'Long Term Dependencies' which

makes it unfitting model for chatbots dealing with time

series conversations [8].

LSTM

Long Short Term Memory networks are an extension

for Recurrent Neural Networks with explicitly extended

memory capability well suited to handle long term

dependencies [9]. LSTM networks were proposed by

German researchers Sepp Hochreiter and Juergen

Schmidhuber in 1997 as a solution to the vanishing

Gradient Descent Stochastic Gradient Descent

GD computes gradient using a batch from dataset SGD computes gradients using single rows of

training examples

It follows a deterministic approach It follows a random approach

It converges slower on large training samples It converges faster on large training samples

Steps:

For every iteration

1. Traverse entire dataset

2. Evaluate gradient

3. Return

Steps:

For every iteration

1. Iterate over each value in dataset

 2. Evaluate Gradient

 3. Return

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 5 Volume 12 | Issue 1 | 2286

gradient problem [10].In comparison, LSTM can learn to

bridge the features in excess about 1000 definite time

steps by imposing constant error flow through the units

termed as 'cells' effectively dealing with Long Term

dependencies [11].

LSTM contain information from a context in a gated

cell. The cells control the data to be written, stored, read

and erased using Forget, Input and Output gates which are

implemented with element-wise multiplications by

sigmoids as shown in Figure 8 [7]. The forget gate learns

the weights controlling the decay rate of values stored in

memory cells. For the instance when the input and output

gates are off and the forget gate is not causing decay, the

memory cell maintains its value over time causing the

gradient of error to stay constant during backpropagation.

This enables the model to remember information for

longer periods. The overall architecture of LSTM is shown

in Figure 8.

Figure 8. LSTM network

Mathematically each step can be explained as

follows:

1. In the first step Forget Gate layer decides the features

to be flushed out from cell state looking at ℎ𝑡−1 and new

input 𝑥𝑡.

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

2. In the second step, deciding the information to be

stored in the cell state is done in two steps. Input Gate

layer 𝑖𝑡 which is a sigmoid layer establishes the values to

be updated. Then a 𝑡𝑎𝑛ℎ layer generates the vector of

new candidate values 𝐶𝑡̃.

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑐)

3. The old cell state 𝐶𝑡−1 is updated to new cell 𝐶𝑡

summing the output from Forget gate layer function 𝑓𝑡

and 𝑖𝑡*𝐶𝑡̃.

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡

4. The output is determined in two steps - First, the

sigmoid layer decides the parts of cells to output 𝑜𝑡. The

product of new cell state 𝐶𝑡 through 𝑡𝑎𝑛ℎ and the

output of sigmoid gate outputsℎ𝑡 the selectively decided

parts.

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)

Hyperparameters tuning and optimization is an

arduous and experimental task [4]. The training of the

LSTM model is expensive in terms of memory and

computational power. In the domain of chatbots for

time series conversations, LSTM is shown to perform well

and maintain the context for longer durations.

GRU

A Gated recurrent unit (GRU) is a specific model of

Recurrent Neural Network introduced by Kyunghyun Cho

in 2014 as a variation of an intermediate unit like LSTM

enabling the recurrent unit to capture dependencies of

different time steps.

Unlike LSTMs, GRU has 2 gates as Reset and Update

to control the flow of information and refine the outputs.

When compared to LSTM, the update gate can be

considered a combination of Forget and Input gate from

LSTM. Update gate determines the portion of information

from previous time steps needs to be passed to the next

states. This gives GRU an edge over LSTM as the model can

decide to maintain all features from previous timestamps.

Reset gate is used to decide the irrelevant part of the

information which needs to be discarded [12]. GRU works

in the following steps:

1. Update gate [𝑧𝑡] at time 't' is calculated.

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡])

2. Reset gate [𝑟𝑡] calculates the information to be

forgotten using

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡])

3. New memory content is introduced which uses the

reset gate to store the relevant information

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])

4. [ℎ𝑡] is calculated which holds information for the

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 6 Volume 12 | Issue 1 | 2286

current unit using update gate output and memory

content from previous steps [ht-1].

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡

GRU exposes complete memory content without

control gate when compared to controlled exposure of

LSTM using Output gate. GRU explicitly controls the

influx of information while calculating new memory

content using the Update gate. Owing to less complex

nature and few tensor operations, GRU is computationally

more effective and faster to train.

NTM

Neural Turing Machine (NTM) explores the concept

of evidently extending the context accumulator of RNN

with an addressable external memory. They are an

example of Memory Augmented Neural Networks which

decouple the computation from memory [13]. NTM have

been shown to outperform LSTMs on sequence learning

tasks demanding large memory for handling

memorization of longer contexts.

Controller and Memory matrix are primary

components in NTM ash shown in Figure 9. The controller

is a recurrent or feed forward neural network which takes

input and returns the output. External memory unit

constitutes of N*W memory matrix where N is the

number of memory locations and W is the dimension of

each memory cell. The interaction between the

Controller and Memory matrix is carried out by reading

and write heads. The memory matrix is initialized using

schemes like Constant initialization or Truncated Normal

distribution [43]. The NTM model can be trained by

variants of Stochastic gradients using back propagation

through time in case of an RNN based controller.

Figure 9. NTM architecture

Algorithmic tasks like priority sort, Associative Recall,

Copy, Repeat Copy, etc can be performed to test if the

NTM could be trained via supervised learning for efficient

performance. NTM models generalize reasonably well to

longer inputs

Ensemble Learning

The concept of ensemble learning was popularized

in 1990 by Lars Kai Hansen and Peter Salamon [15] over

the idea that performance of a set of classifiers outweighs

that of a single classifier. The individual models work in

unison where the outputs are combined with a certain

decision fusion strategy to output a single answer [14].

Owing to the combination of various learning models, the

generalization ability turns to be stronger. The basic

architecture of Ensemble model is depicted in Figure 10.

The variation in the member models is a critical factor for

classification performance [16], hence strategies as

follows were proposed for boosting the diversity scale

among the member learners:

1. Employing different learning algorithms for

different learners or using the same algorithm

with variation in parameters

2. Training the members with varied datasets by

subsampling or changing the attributes.

3. Combination of the above two methods is used

simultaneously.

Figure 10. Ensemble Learning Model

An overall comparison between the concepts

discussed along with the problem statements each

individual methodology is well suited for is stated in Table

3.

Dataset

Data Source

The dataset used in the entire research is Cornell

Movie Dialog Corpus. Its distributed by Cornell Edu. The

dataset consists of difference metadata-rich files. The

conversations in the dataset are extracted from movie

scripts. The dataset in whole has 220579 exchanges

between 10292 characters collected from 617 movies.

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 7 Volume 12 | Issue 1 | 2286

Two files are used for establishing the conversation data.

'Movie_lines.txt' contains texts from the dialogues and it

has attributes like lineID, CharacterId, movieID, character

name and the actual text. 'movie_conversations.txt' forms

the structure of the conversation. It maps the

conversation between two characterIDs together along

with the movieID of the movie. The " +++$+++ " acts as

the field separator between the attributes mentioned for

each file utilized.

Table 3. Overall comparison of Concepts from Literature Survey

Model Advantages Suited problem statements

ANN

- Self-organizing to changes in information

- Fault tolerant to the corruption of cells and

missing input values

ANN is well suited for classification and

regression dealing with a large number of

variables. Character recognition, Image

processing are some of the applications for ANN

RNN

- Adapts wells to quick changes in the input nodes

- Variable size of input and output vectors

- Works well with contextual input sequences

-Excel at modeling temporal structure

Appropriate for sequence prediction,

classification prediction, Natural language

processing and generative model. Hence they can

be used in text generation, prediction of the

values of an attribute in a problem statement.

Ensemble

Learning

- Better generalization ability

- Weak models can be boosted to efficient learners

- By the reason of growing computations power,

the Ensemble model can be well utilized

It can be used to enhance the performance of

existing models like RNN, LSTM and GRU.

LSTM

- Extended memory capabilities than RNN

- Handles Long-term dependencies well.

- More robust to vanishing gradients that RNN

Good choice for problem statements like Time

series forecasting. LSTM can be applied in

Conversation agent, handwriting generation,

Language translation, Image captioning.

GRU

- Handles Long-term dependencies effectively

- Robust to Vanishing gradient problem

- Computationally effective than LSTM

GRU can be used in applications related to time

series prediction like text generations,

classification, etc

NTM

- Generalize well to longer inputs as compared to

LSTM

- Presence of external memory complements the

RNNs existing memory

NTM is well suited for models with heavy and

longer sequences of data. NTM has

demonstrated the solutions to be generalizing

well for basic algorithms like copying and sorting.

The authors now present a comprehensive review of some the recent works carried out in this domain:

Table 4: Comprehensive Review of recent works involving AI for chatbot implementation

Sr No. Research Paper Year Algorithm Used Research Findings

1. M. Nuruzzaman and O. K. Hussain,

"A Survey on Chatbot

Implementation in Customer

Service Industry through Deep

Neural Networks," [22]

2018 ANN Artificial Neural Network (ANN) owing

to its capability to handle the

complicated combination of features

provides the most appropriate base to

work upon for a problem statement

such as Conversational Agents or

Chatbots.

2. Lee, M. C., Chiang, S. Y., Yeh, S. C.,

& Wen, T. F. “Study on emotion

recognition and companion

Chatbot using deep neural

network” [23]

2020 RNN RNN provides a better response to

problem statements about Seq2Seq

framework of RNN built over Domain-

Specific Knowledgebase.

3. Bali, M., Mohanty, S., Chatterjee,

S., Sarma, M., & Puravankara, R.

Diabot: “A Predictive Medical

2019 Ensemble

Learning

Ensemble Learning as a meta-algorithm

has the potential to provide better

generalization. The increased

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 8 Volume 12 | Issue 1 | 2286

Chatbot using Ensemble Learning”

[24]

performance can be mapped with

strong correlations with a humane

sense of conversation

4. Pathak, K., & Arya, A. “A

Metaphorical Study Of Variants Of

Recurrent Neural Network Models

For A Context Learning Chatbot”

[25]

2019 LSTM LSTM is the most appropriate choice

when the states of dialogues &

responses in a conversation need to be

tracked and predicted.

5. G. Dzakwan and A. Purwarianti,

"Comparative Study of Topology

and Feature Variants for Non-Task-

Oriented Chatbot using Sequence

to Sequence Learning," [26]

2018 GRU The Encoder-Decoder framework over

GRU comes in as an alternative to LSTM

for the Chatbot. GRU offers similar if

not better performance over LSTM

when compared over the parameters

like the size of the dataset, the

resources being consumed.

The " +++$+++ " acts as the field separator between the

attributes mentioned for each file utilized.

Data Pre-processing

Python with numpy is used to preprocess the

dataset to institute the conversation dictionaries.

Dictionaries are created to map each line and the

corresponding 'id', creating a list of all conversations,

separating questions and answers. Individual conjoint

words are cleaned and replaced with simple words. A

dictionary is also created to map each word with its

number of occurrences and for mapping the questions

words and answer words to unique integer values.

Proposed Method

Ensemble learning forms the basis of the proposed

methodology. Classifiers like Support vector machines,

Linear regression were used in the Ensemble model

initially. With the onset of Deep learning, a more

elaborate approach can be followed to improve the

overall performance of the Ensemble model. The idea is

to define a number of LSTM networks with variation in

hyperparameters as part of the ensemble model. The

member models work together in parallel and their

individual outputs are aggregated to generate the output

of the overall model. As a fine-tuning measure, the

concept of Pruning is also employed. An architectural

overview is presented in Figure 10 followed by detailed

Ensemble Network algorithm. Segmentation, Vector

Space Model (VSM), Classification algorithm & Response

generation forms the primary components of the chatbot.

The flow of operations is shown in Figure 11. After the

output class is predicted, the output of Chabot is returned

to the user.

Figure 11. Proposed chatbot architecture

Components in the LSTM based Ensemble network as

described in Figure 12.

1. Input Data: Input sentences are segmented into

terms. These terms are transformed into vectors

by VSM corresponding to Vector space. The

vectors generated are fed into the classifier

model.

2. STMs based Ensemble Network: The ensemble

network consists of a defined number of LSTM

networks working concurrently to generate the

overall output prediction. The variation in

hyperparameters like number of hidden layers,

number of neurons forms the basis of the

distinction between each LSTM model. This leads

to the training of models with different

generalization features and accuracy metrics.

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 9 Volume 12 | Issue 1 | 2286

3. Prediction: The LSTM models in the ensemble

generate the predicted output which is

converted to predicted class.

Figure 12. LSTM based Ensemble Network Classifier

The Proposed Methodology

The Encoder Decoder LSTM acts the base for

defining the even single LSTM as well as the combination

of LSTMs acting in unison as part of the ensemble. The

entire process of implementation can be broken down in

certain steps as discussed below. The proposed model

includes training phase and the testing phase which are

shown in Figure 12 and Figure 13 respectively. In the

training phase, a definite number of LSTM networks are

generated and trained using variations in training data.

The models with lower accuracy are filtered out. In the

testing phase, the models with higher accuracy work in

conjunction to predict the output class from the

calculated output weights. The detail of the two phases is

presented in the following sections. The notations used in

the algorithm specifications are specified in Table 4.

Table 5. Notations used in Algorithm

Notation Description

𝑁 The number of LSTM networks

ℎ𝑚𝑎𝑥 Maximum number of hidden layers in

a LSTM model

𝑝𝑚𝑎𝑥 Maximum number of neurons in a

hidden layer

𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Threshold value for the accuracy

ℎ𝑚 Number of hidden layers in LSTM

model

𝑝𝑚 Number of neurons in a hidden layer

𝑇 Total number of partitions of training

dataset

𝐴𝑚 Average Accuracy

𝑘 LSTM models remaining after pruning

𝐶𝑘 Output of 𝑘𝑡ℎ LSTM model

Data Pre-processing

The dataset is preprocessed as defined in the

section NUMBER. Different functions are created for the

generation of dictionaries and cleaning the text.

Building the Model

Encoder LSTM is responsible for reading the input

sequence and encoding the same into a vector essentially

to map the corresponding vector from the vector space

defined. Decoder LSTM deals with decoding the vector

generated and outputting the predicted sequence.

Encoder Decoder LSTM generates a continual

representation of data from a considerable number of

data attributes from previous time stamps. This

architecture of Encoder Decoder LSTM was found

effective on long and continuous data influx. We split the

dataset into training and validation dataset as an attempt

to carry out cross-validation. Three difference decoder

LSTMs are created in order to decode the training data,

decode the validation data and the actual decoder for the

encoder created.

Training Phase

The hyperparameters like the number of epochs,

batch size, LSTM size, number of layers in Encoder and

Decoder LSTM, Learning rate are initialized for single LSTM

as well as the Ensemble LSTM model. A session for training

is initialized and the models are training for both portions

of the dataset that ie the Training dataset and validation

dataset as well. As the training progresses the model

generates the weights. The model generalizes the data for

patterns and features and stores it in the model to be

utilized while testing. The training phase is depicted in

Figure 13.

Step 1: The parameters like the number of LSTM networks

𝑁 , the maximum number of hidden layers in the

modelℎ𝑚𝑎𝑥, a maximum number of neurons in a hidden

layer 𝑝𝑚𝑎𝑥 and accuracy threshold for each LSTM

model𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are initialized.

Step 2: Generate 𝑁 LSTM models with variations in

hyperparameters. The number of hidden layers ℎ𝑚 and

the number of neurons in a hidden layer 𝑝𝑚 are assigned

random values between 0 and corresponding maximum

bounds.

Step 3: The training dataset is split into 𝑇 partitions. 𝑇 −

1 partitions are used to train each LSTM model. Every

distinct LSTM model trains and learns using BPTT.

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 10 Volume 12 | Issue 1 | 2286

Step 4: The performance of each LSTM model along with

the average accuracy𝐴𝑚 is evaluated using the remaining

single partition from testing dataset.

Step 5: The LSTM models with accuracy lower than the

accuracy threshold 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are dropped leaving

𝑘models in the ensemble network.

Figure 13. Training Phase algorithm

Testing Phase

The weights generated in training are loaded and a

session is initiated running the Encoder Decoder LSTM

model as a part of both the single model and Ensemble

LSTM. The incoming queries are cleaned and

preprocessed using the functions defined in Data

Preprocessing. The predicted answer is returned to the

user. This phase deals with applying the patterns and

features learned on the testing dataset. The testing

dataset is fed into the Ensemble model to predict the

output classes. The testing phase is depicted in Figure 14.

Step 1: The testing dataset is retrieved and fed into the

LSTM models of the ensemble.

Step 2: The output 𝐶𝑘 for the individual model is

calculated. 𝐶𝑘is multiplied with corresponding weights of

each model. A weighted average of the sum of total

weighted outputs is calculated.

Step 3: The weighted average is used to predict the

response class.

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 11 Volume 12 | Issue 1 | 2286

Figure 14. Testing Phase algorithm

An example of the variations in the hypermeters for

multiple LSTM multiples as a part of the Ensemble

Network is presented in Figure 15.

Figure 15. Hyper parameter variations in LSTM

Performance Analysis

RNN, LSTM and GRU serve as the best choice for the

classifier in Ensemble Network. LSTM and GRU provide an

edge over RNN owing to the presence of a dedicated

memory control unit enabling the learning of long term

dependencies. The selection of an appropriate model

between them depends on the key differences and the

dataset. GRU exposes complete memory content without

control gate when compared to controlled exposure of

LSTM using Output gate. LSTM doesn't control the

amount of information flowing in from previous time

steps while computing new memory content. On the

other hand, GRU explicitly controls the influx of

information while calculating new memory content using

the Update gate. An experiment was performed to

compare LSTM and GRU for their performance in the time

series prediction.

Prediction Comparison

LSTM and GRU are closely related mechanisms for

handling long term dependencies. A comparison between

both for their performance provided important insight for

the selection of LSTM over GRU as seen in Figure 16. Two

models constituting single LSTM and a single GRU were

created for the comparison. To make the comparison

more just, both LSTM and GRU models had 4 hidden layers

with 50 neurons each with 0.2 dropout rate. Both the

models were trained with 50 epochs and a batch size of

32. The dataset used to select the appropriate model for

time series data analysis is Stock Price Dataset. The

Dataset is split into portions randomly to generate a more

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 12 Volume 12 | Issue 1 | 2286

stable and evenly spread out output values. In the first

split of the dataset, there are 700 entries in total. In the

second split, the dataset contains 1400 entries of data

points. The final dataset consists of 3000 data points. The

models developed were executed on the three variations

of the dataset to analyze the parameters like Mean

Squared Error, Accuracy, Loss and Time taken for training

and ultimately deciding the most applicable model for

handling time series data as well as long term

dependencies.

(a) Dataset 1

(b) Dataset 2

(c) Dataset 3

Figure 16. Outputs for dataset variations

For Dataset 1 with700 data points, the performance

of GRU seems more better than LSTM as the predicted

values by GRU and the Testing values map well than that

of LSTM. In iteration for Dataset 2 with 1400 data points,

the performance of LSTM and GRU both seem almost

equal as the values predicted by both the models

correspond with the testing values. In the iteration for

Dataset 3, GRU shows more error and deflect away from

the Testing Data points. On the other hand LSTM shows

better performance over 3000 data points from Dataset 3.

Mean Squared Error Analysis

The mean squared error is calculated for each

dataset variation for both LSTM and GRU model. Mean

squared error is one way to calculate the error during Back

propagation which is the basis for or training for both

LSTM and GRU. Higher error value indicates

performance degradation and improper training. The

mean squared error for both models on three datasets is

presented in Table 5.

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 13 Volume 12 | Issue 1 | 2286

Table 6. Mean Squared Error for LSTM and GRU on

Datasets.

 LSTM GRU

Dataset 1 0.7516197811968257 0.4601261472286205

Dataset 2 2.374904252912631 2.2920254537142664

Dataset 3 1.4342299451204816 2.6693156947773167

From the values of Mean Squared Error we can

conclude that GRU performs well and generates low error

for datasets with small size with lesser data points. LSTM

was found performing well for datasets with large data

points.

Average Loss Calculation

The loss values are calculated for each epoch for

both LSTM and GRU. For a given model, the lesser the loss

the better is the training of the model. Loss is summation

of errors made for each batch of training dataset over an

epoch. The average of loss values over the complete

training procedure for 50 epochs is specified in the Table

6 for the variations in dataset.

Table 7. Loss values for each dataset

 Dataset 1 Dataset 2 Dataset 3

LSTM 0.002012 0.013321 0.001093

GRU 0.00151 0.00129 0.02667

Owing to less computational steps, GRU generates

less error than LSTM. LSTM executes well over the last

dataset variation having the highest number of data

points.

Training Time Comparison

The training time for the complete training process

in minutes is specified for both LSTM and GRU in Table 7.

Table 8. Training Time in minutes for LSTM and GRU

 LSTM GRU

Dataset 1 9.51 8.28

Dataset 2 12.91 11.59

Dataset 3 16.8 14.97

For all the disparity in the dataset, LSTM model

takes more time to train over GRU. When LSTM and GRU

were used to train the chatbot models, the model with

LSTM showed overall better accuracy of 71.69% over

70.12% accuracy of GRU during Training. During Testing

the LSTM model showed better accuracy of 71.59% over

70.75% of GRU model.

Considering four parameters like Mean Squared Error,

Loss, Training Time and Accuracy we can deduce LSTM is

a better choice over GRU as whole.

Comparison between LSTM and Ensemble
LSTM

Following graphs present a comparative look at the

performance of LSTM and Ensemble Model for the same

time series data analysis. The Ensemble Model consists of

three LSTMs with variation in hyperparameters. The

graphs depict the mapping between the values from the

testing dataset and the predicted values from the

corresponding model. The graphs related to LSTM models

are specified in Figure 17 and the graphs related to

Ensemble LSTM models are depicted in Figure 1

Figure 17. Single LSTM with Dataset variations

Figure 18. Ensemble LSTM Model with Dataset Variations

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 14 Volume 12 | Issue 1 | 2286

Figure 19. Single GRU model with Dataset variations

Figure 20. Ensemble GRU with Dataset variations

From the graphs we can conclude the performance

of Ensemble Model is similar in the aspect of the

performance of LSTM model and in some cases better.

With fine tuning the Ensemble models, the performance

can be improved over standalone LSTM model.

Comparison between GRU and Ensemble GRU

The following graphs in Figure 19 and 20 provide

overall performance analysis for single GRU model and

Ensemble GRU model in respective sections. The

Ensemble GRU model consists of three individual GRU

models with variations in hyperparameters.

We derive from the graphs, the performance of

single GRU and the Ensemble GRU is comparatively similar.

The performance could be better enhanced with the

diversity in the hyperparameters of singular models

constituting the Ensemble model.

Comparison between Ensemble LSTM and
Ensemble GRU

This section provides the differentiation in the

performance between the Ensemble LSTM model and

Ensemble GRU model against the prediction values from

the testing dataset. The training was carried out on

variations of the same dataset hence employing the

strategy of cross-validation to make it most even

comparison.

Prediction Comparison – Ensemble LSTM,
Ensemble GRU

From Figure 21, it can be deduced from the graph i

and ii that the performance of both ensemble models are

almost equal in terms of close mapping with the

prediction values. However, in graph iii, it is observed that

Ensemble GRU performance better than Ensemble LSTM.

The values predicted by Ensemble GRU are closely

mapped with the actual values from the testing dataset.

https://doi.org/10.5875/ausmt.v12i1.2286

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 15 Volume 12 | Issue 1 | 2286

Figure 21. Results over dataset variations for Ensemble LSTM and Ensemble GRU

Mean Squared Error Analysis

The final Mean Squared Error for both Ensemble

models is calculated. Lower the values, better the

performance of the model. The values are defined in the

Table 8.

Table 9. Mean Squared Error Analysis for Ensemble LSTM

and Ensemble GRU

 Ensemble LSTM Ensemble GRU

Dataset 1 1.060990337370966 2.0204261732384396

Dataset 2 1.249621120822286 1.1770008219011074

Dataset 3 5.661777383126808 2.6198470374584173

From the values calculated we can deduce that no

specific model performs better than the other in every

variation of the dataset. In two cases, the performance of

both models was comparatively equal while in one case

the Ensemble GRU performs better than Ensemble LSTM.

Average Loss Calculation

For each epoch during the training, Loss values are

calculated. Lesser the loss values, better is the training of

the model. The average loss values calculated for each

dataset variation over the complete training is presented

in the Table 9.

Table 10. Average Loss Calculation for Ensemble LSTM

and Ensemble GRU

 Dataset 1 Dataset 2 Dataset 3

Ensemble LSTM 0.001069 0.034829 0.000179

Ensemble GRU 0.002512 0.00278 0.01917

From the values in the table, we deduce the average

loss during the training of Ensemble GRU is lesser than the

values of Ensemble LSTM. That indicates Ensemble GRU

trains well with the dataset compared to Ensemble LSTM.

Based on the analysis of three parameters, we can

conclude the performance of both Ensemble LSTM and

Ensemble GRU is not definitively better than each other.

In some cases Ensemble GRU performed better while in

some cases Ensemble LSTM. With tweaking the

parameters of individual models working together as

Ensemble, the best performance can be achieved.

Conclusion

This paper presents a review of the evolution of

technologies applied in Chatbots handling time series

conversations in the labels of Architectural Design and

Implementation. The paper also intends to contribute in

developing a sturdy groundwork on the concepts utilized

in learning long term dependencies hence providing a

roadmap towards further enhancements being inclined

towards minimalistic yet alike requisites. These primal

conditions can be considered as 1. Designing the word

embedding schema not constrained by the knowledge

base. 2. Flexible and accurate conversational model. 3.

Reaching the true peak of imitating the human

conversation requiring no human intervention. The

proposed LSTM based Ensemble Network architecture

attempts at enhancing the user experience by providing a

sense of continuance of context in a series of

conversations. The algorithm does so by generalizing the

features imperative to making the conversation humane.

References

[1] Io, H. N., & Lee, C. B. (2017). Chatbots and

conversational agents: A bibliometric analysis. 2017 IEEE

International Conference on Industrial Engineering and

Engineering Management (IEEM).

https://doi.org/10.1109/ieem.2017.8289883

[2] Lokman, A. S., & Ameedeen, M. A. (2018). Modern

Chatbot Systems: A Technical Review. Proceedings of the

Future Technologies Conference (FTC) 2018 Advances in

Intelligent Systems and Computing,1012-1023.

https://doi.org/10.1007/978-3-030-02683-7_75

[3] Goyal, P., Pandey, S., & Jain, K. (2018). Developing a

Chatbot. Deep Learning for Natural Language

https://doi.org/10.5875/ausmt.v12i1.2286
https://doi.org/10.1109/ieem.2017.8289883
https://doi.org/10.1007/978-3-030-02683-7_75

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 16 Volume 12 | Issue 1 | 2286

Processing,169-229.

https://doi.org/10.1007/978-1-4842-3685-7_4

[4] Salehinejad, H., Sankar, S., Barfett, J., Colak, E., &

Valaee, S. (2017). Recent Advances in Recurrent Neural

Networks. arXiv.org.

[5] Verleysen, M., & François, D. (2005). The Curse of

Dimensionality in Data Mining and Time Series

Prediction. Computational Intelligence and Bioinspired

Systems Lecture Notes in Computer Science,758-770.

https://doi.org/10.1007/11494669_93

[6] Lawrence, S., & Giles, C. (2000). Overfitting and neural

networks: Conjugate gradient and

backpropagation. Proceedings of the IEEE-INNS-ENNS

International Joint Conference on Neural Networks. IJCNN

2000. Neural Computing: New Challenges and

Perspectives for the New Millennium.

https://doi.org/10.1109/ijcnn.2000.857823

[7] Lipton, Zachary. (2015). A Critical Review of Recurrent

Neural Networks for Sequence Learning.

[8] Gradient Flow in Recurrent Nets: The Difficulty of

Learning Long Term Dependencies. (2009). A Field Guide

to Dynamical Recurrent Networks.

https://doi.org/10.1109/9780470544037.ch14

[9] Olah, Christopher. Understanding LSTM Networks.n.d.

2019.

[10] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-

Term Memory. Neural Computation,9(8), 1735-1780.

https://doi.org/10.1162/neco.1997.9.8.1735

[11] Gers, F. (1999). Learning to forget: Continual

prediction with LSTM. 9th International Conference on

Artificial Neural Networks: ICANN 99.

https://doi.org/10.1049/cp:19991218

[12] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. Chung,

J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical

Evaluation of Gated Recurrent Neural Networks on

Sequence Modeling arXiv:1412.3555

[13] Collier, M. and Beel, J. Collier, M., & Beel, J.

(2018). Implementing Neural Turing Machines.

arXiv:1807.08518

[14] Opitz, D., & Maclin, R. (1999). Popular Ensemble

Methods: An Empirical Study. Journal of Artificial

Intelligence Research,11, 169-198.

https://doi.org/10.1613/jair.614

[15] Hansen, L., & Salamon, P. (1990). Neural network

ensembles. IEEE Transactions on Pattern Analysis and

Machine Intelligence,12(10), 993-1001.

https://doi.org/10.1109/34.58871

[16] Chen, C., Wu, C., Lo, C., & Hwang, F. (2017). An

Augmented Reality Question Answering System Based on

Ensemble Neural Networks. IEEE Access,5, 17425-

17435. https://doi.org/10.1109/access.2017.2743746

[17] M. Nuruzzaman and O. K. Hussain, "A Survey on

Chatbot Implementation in Customer Service Industry

through Deep Neural Networks," 2018 IEEE 15th

International Conference on e-Business Engineering

(ICEBE), Xi'an, 2018, pp. 54-61.

https://doi.org/10.1109/ICEBE.2018.00019

[18] Lee, M. C., Chiang, S. Y., Yeh, S. C., & Wen, T. F. (2020).

Study on emotion recognition and companion Chatbot

using deep neural network. MULTIMEDIA TOOLS AND

APPLICATIONS

[19] Pathak, K., & Arya, A. (2019, November). A

Metaphorical Study Of Variants Of Recurrent Neural

Network Models For A Context Learning Chatbot. In 2019

4th International Conference on Information Systems and

Computer Networks (ISCON) (pp. 768-772). IEEE.

[20] G. Dzakwan and A. Purwarianti, "Comparative Study

of Topology and Feature Variants for Non-Task-Oriented

Chatbot using Sequence to Sequence Learning," 2018 5th

International Conference on Advanced Informatics:

Concept Theory and Applications (ICAICTA), Krabi, 2018,

pp. 135-140.

https://doi.org/10.1109/ICAICTA.2018.8541285

[21] Bali, M., Mohanty, S., Chatterjee, S., Sarma, M., &

Puravankara, R. Diabot: A Predictive Medical Chatbot

using Ensemble Learning.

[22] M. Nuruzzaman and O. K. Hussain, "A Survey on

Chatbot Implementation in Customer Service Industry

through Deep Neural Networks," 2018 IEEE 15th

International Conference on e-Business Engineering

(ICEBE), Xi'an, 2018, pp. 54-61.

https://doi.org/10.1109/ICEBE.2018.00019

[23] Lee, M. C., Chiang, S. Y., Yeh, S. C., & Wen, T. F. (2020).

Study on emotion recognition and companion Chatbot

using deep neural network. MULTIMEDIA TOOLS AND

APPLICATIONS.

https://doi.org/10.5875/ausmt.v12i1.2286
https://doi.org/10.1007/978-1-4842-3685-7_4
https://doi.org/10.1007/11494669_93
https://doi.org/10.1109/ijcnn.2000.857823
https://doi.org/10.1109/9780470544037.ch14
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1613/jair.614
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/access.2017.2743746
https://doi.org/10.1109/ICEBE.2018.00019
https://doi.org/10.1109/ICAICTA.2018.8541285
https://doi.org/10.1109/ICEBE.2018.00019

ORIGINAL ARTICLE https://doi.org/10.5875/ausmt.v12i1.2286

International Journal of Automation and Smart Technology 17 Volume 12 | Issue 1 | 2286

[24] Bali, M., Mohanty, S., Chatterjee, S., Sarma, M., &

Puravankara, R. Diabot: A Predictive Medical Chatbot

using Ensemble Learning.

[25] Pathak, K., & Arya, A. (2019, November). A

Metaphorical Study Of Variants Of Recurrent Neural

Network Models For A Context Learning Chatbot. In 2019

4th International Conference on Information Systems and

Computer Networks (ISCON) (pp. 768-772). IEEE.

[26] G. Dzakwan and A. Purwarianti, "Comparative Study

of Topology and Feature Variants for Non-Task-Oriented

Chatbot using Sequence to Sequence Learning," 2018 5th

International Conference on Advanced Informatics:

Concept Theory and Applications (ICAICTA), Krabi, 2018,

pp. 135-140.

https://doi.org/10.1109/ICAICTA.2018.8541285

Publisher: Chinese Institute of Automation Engineers (CIAE)

ISSN: 2223-9766 (Online)

 Copyright: The Author(s). This is an open access

article distributed under the terms of the Creative

Commons Attribution License (CC BY 4.0), which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

cited.

https://doi.org/10.5875/ausmt.v12i1.2286
https://doi.org/10.1109/ICAICTA.2018.8541285
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

