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Abstract: A chatbot is a software that can reproduce a discussion portraying a specific dimension of articulation among 

people and machines utilizing Natural Human Language. With the advent of AI, chatbots have developed from being 

minor guideline based models to progressively modern models. A striking highlight of the current chatbot frameworks 

is their capacity to maintain and support explicit highlights and settings of the discussions empowering them to have a 

human contact through the span of involvement. The paper expects to build up a detailed database with respect to the 

models utilized to deal with the learning of long haul conditions in a chatbot. The paper proposes a crossbreed Long 

Short Term Memory based Ensemble Network arrangement model to save the continuation of the specific situation. 

The proposed model uses a characterized number of Long Short Term Memory Networks as a major aspect of the 

amassed model working as one to create the aggregate forecast class for the info inquiry handled. 
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Introduction 

   A Conversational Agent is otherwise called 'Chatbot' is 

a software program which leads a discussion by means of 

sound-related or literary strategies in a characteristic 

language, for example, English. Chatbots are being 

coordinated universally into our lives in a type of Virtual 

collaborators and messaging applications. In 1950, Alan 

Turing proposed 'Turing Test' as a benchmark of a chatbot 

program to imitate a human in a discussion [3]. ELIZA, 

Jaberwacky, A.L.I.C.E. were not many of the underlying 

chatbots created dependent on principle based 

methodology [1]. The 'Measurable Revolution' contingent 

upon Machine Learning blossomed in the late 1980s and 

mid-1990s. There has been a significant powerful 

movement in the zone of chatbot inferable from the 

development of man-made reasoning. The presentation 

of the influx of Artificial Intelligence-based chatbots has 

introduced another time of conversational interfaces. The 

other factor adding to advancement is the noticeable 

change of the elements of human discussion leaning 

toward short informing over different types of 

correspondence. Most chatbots are gotten to through 

remote helpers, informing applications or association's 

sites. Right now, the market of cutting edge conversational 

specialists is shared by IBM's Watson, Apple's Siri, Google 

Assistant, Amazon Alexa, Microsoft's Cortana to give some 

examples. Endeavours have been made to typify the 

usefulness of chatbot consistently into administrations 

alongside contracting the uniqueness contrasted with 

human discussions. The incorporation of an inductive 

memory practically equivalent to the human cerebrum 

into the engineering of a chatbot encourages the chatbot 

to keep up the edge of setting for longer durations. 

Protecting the highlights identified with the relationship 

for longer lengths is named as adapting Long term 

dependencies. This model acquires a factor of 

commonality and lucidness over the span of the 

discussion between the end client and chatbot. Wide and 

unambiguous data about the advancement of memory 

incorporated models utilized in chatbot could give an 
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exhaustive comprehension and bits of knowledge into the 

eventual fate of chatbot inquire about. The design and 

advancement strategy of a run of the mill chatbot relies 

upon fundamental ideas as determined in Figure 1 [2]. 

 

A brief look at the concepts to comprehend the 

variations possible at the formative stage is presented 

below. 

 

1. Text Processing: Word embeddings are the vector 

representations of words within the specific 

vocabulary enabling better implementation and 

utilization of statistical machine learning models.  

 

2. Machine Learning Model: The concept of Artificial 

Neural Network is extensively employed in dealing 

with input processing, classification and generating 

the most appropriate response for the input query. 

Chatbots like Deepprobe, Superagent utilize the Long 

short-term memory (LSTM) model with Seq2Seq, 

while Rubystar uses Seq2Seq with Gated recurrent 

unit (GRU) [2]. 

 

3. Knowledge Base: The dataset used for training the 

model can be either Open or Close in its bounds. Open 

domain chatbot was found to be compromised on 

relevance and accuracy of the responses and Closed 

domain chatbot performs well owing to limited yet 

definite confines of the dataset [2]. 

 

4. Response Generation: The response returned for input 

is either retrieved or generated. The former selects the 

appropriate response from a collection while the latter 

generates the response depending on the features of 

input vectors, dictionary a trained classifier. The hybrid 

RNN-Seq2Seq model has progressed to become a 

popular choice in chatbot architecture [3].  

 

 

Figure 1. Chatbot Operation 

 

Literature Survey 

This section aims to provide an overview on 

different concepts employed in handling long-term 

dependencies and discuss their corresponding nuances. 

The timeline of some fundamental technologies is listed in 

Table 1. 

 

 Table 1. Course of development 

 

 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) are information 

processing models inspired by the biological neural 

system and the capability of the brain to process 

information. The work on Neuron Circuit and Perceptron 

by Warren Pitts, Warren McCulloch and F. Rosenblatt 

served groundwork for ANN to evolve and induct over the 

traditional computer frameworks in the 1970s [1]. ANN is 

composed of a large number of densely interconnected 

mathematical function units called 'Neurons' clustered 

into three types of layers as shown in Figure 2. The input 

layer is responsible for the initial processing of input data 

whereas the output layer deals with aggregating the final 

outputs and presenting the result. The weighted 

connections between neurons in hidden layer form the 

basis of learning process providing variable strength to the 

input data traversing forward towards output neurons. An 

activation function like Sigmoid, ReLU or tanh is applied 

on the summation of weighted inputs in a neuron [4]. 

 

Year Author Contribution 

1943 W. McCulloch, 

W. Pitts 

Artificial Neural Network 

(ANN) 

1990 Elman Simple Recurrent Neural 

Network (RNN) 

1990 L. K. Hansen, P. 

Salamon 

Ensemble Learning 

1994 Y. Bengio Issue with long term 

dependencies 

1997 S. Hochreiter Long Short Term Memory ( 

LSTM) 

2000 F.A. Gers LSTM with forget gates 

2014 K. Cho Gated Recurrent Unit (GRU) 

2014 A.Graves Neural Turing Machine 

(NTM) 

https://doi.org/10.5875/ausmt.v12i1.2286


ORIGINAL ARTICLE                 https://doi.org/10.5875/ausmt.v12i1.2286 

 

International Journal of Automation and Smart Technology  3         Volume 12 | Issue 1 | 2286 

Figure 2. Artificial Neural Network structure 

 

The model is trained using 'Back Propagation' where 

the error calculated leads to optimal updation of weights. 

Gradient (∆w) can be calculated as change in error with 

respect to change in weights (de⁄dw). Values for new 

weights is determined by adding weight (w)and the 

gradient(∆w). The entire process is depicted in Figure 3. 

 

Figure 3. Backpropagation process 

  

However, the brute force approach for updating 

weights suffers from 'Curse of dimensionality' [5]. 

Gradient Descent(GD) and Stochastic Gradient(SGD) 

descent offer a faster way to find optimum weights. Both 

these methods determine the global minima by finding 

the point where the slope of the cost function is zero 

hence resulting the error to be minimum.GD and SGD are 

compared in Table 2. 

 

ANN suffers from both overfitting and underfitting 

as described in Figure 4. Overfitting is an outcome of an 

overly accurate or complicated model showing low bias 

but high variance. Underfittingis a result of a too simple 

model showing low variance but high bias [6].  ANNs 

deal with fixed sized vectors only and they do not possess 

a dedicate memory element to handle sequential data 

hence making them an inappropriate choice for a chatbot 

handling dependent vectors. 

 

 

Figure 4. Overfitting and Underfitting of a model 

 

RNN 

Recurrent Neural Network (RNN) is the class of 

Artificial Neural Network supplemented by the integration 

of edges spanning adjacent timestamps. Psychologist 

David Rumelhart's work on symbolic artificial intelligence 

from 1986 formed base for the development of RNN. RNN 

has two inputs, the present values and values from recent 

past enabling it to capture the dynamics of a sequence of 

inputs in scenarios like handwriting recognition, stock 

price prediction, etc. Owing to the variable size of input 

and output vectors RNN has shown significant 

improvement over traditional feed forward networks in 

Chatbots as RNNs are capable of exploiting a dynamically 

changing contextual window over input sequences. 

Overall architecture of RNN is specified in Figure 5. 

Figure 5. RNN overall architecture 

 

At given time t, output for state 𝑆𝑡  is calculated 

applying function on portion of output from previous 

state 𝑆𝑡−1 and current input 𝑋𝑡 . It can be termed 

mathematically as 𝑆𝑡 = 𝐹(𝑆𝑡−1, 𝑋𝑡) where F is activation 

function like tanh or ReLU.This process continues forming 

an information loop for a given state with respect to time. 

The unrolled structure of RNN is shown in Figure 6 along  

with equations.  
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Table 2. Comparison between GD and SGD 

 

 

Like Feed-forward networks, RNNs use back 

propagation for training the difference being the 

additional parameter 'time', hence it is termed as 'Back 

propagation through time (BTT)' as shown in Figure 6[7]. 

 

Figure 6. RNN unrolled structure 

 

The range of context to be used practically is limited 

as each prediction looks at one step prior state value. 

While back propagating the recurrent connections, the 

influence of given input vector on the corresponding 

hidden layer and hence overall network output either 

decays or blows up exponentially giving rise to Vanishing 

Gradient and Exploding Gradient problem respectively as 

shown in Figure 7. Both these problems cause the model 

to train poorly and performance degradation. 

 

 

 

Figure 7. Vanishing Gradient and Exploding Gradient 

 

A prediction of a state at the time 't' depends on the 

input presented at earlier time T where T<<t. When the 

gap between T and t grows large, it becomes extremely 

difficult for the model to attain convergence causing the 

failure of RNN to handle 'Long Term Dependencies' which 

makes it unfitting model for chatbots dealing with time 

series conversations [8]. 

 

LSTM 

Long Short Term Memory networks are an extension 

for Recurrent Neural Networks with explicitly extended 

memory capability well suited to handle long term 

dependencies [9]. LSTM networks were proposed by 

German researchers Sepp Hochreiter and Juergen 

Schmidhuber in 1997 as a solution to the vanishing 

Gradient Descent Stochastic Gradient Descent 

  

GD computes gradient using a batch from dataset SGD computes gradients using single rows of  

training examples 

It follows a deterministic approach It follows a random approach 

It converges slower on large training samples It converges faster on large training samples 

Steps: 

For every iteration 

1. Traverse entire dataset 

2. Evaluate gradient 

3. Return 

Steps: 

For every iteration 

1. Iterate over each value in dataset 

  2. Evaluate Gradient 

  3. Return 

https://doi.org/10.5875/ausmt.v12i1.2286


ORIGINAL ARTICLE                 https://doi.org/10.5875/ausmt.v12i1.2286 

 

International Journal of Automation and Smart Technology  5         Volume 12 | Issue 1 | 2286 

gradient problem [10].In comparison, LSTM can learn to 

bridge the features in excess about 1000 definite time 

steps by imposing constant error flow through the units 

termed as 'cells' effectively dealing with Long Term 

dependencies [11]. 

 

LSTM contain information from a context in a gated 

cell. The cells control the data to be written, stored, read 

and erased using Forget, Input and Output gates which are 

implemented with element-wise multiplications by 

sigmoids as shown in Figure 8 [7]. The forget gate learns 

the weights controlling the decay rate of values stored in 

memory cells. For the instance when the input and output 

gates are off and the forget gate is not causing decay, the 

memory cell maintains its value over time causing the 

gradient of error to stay constant during backpropagation. 

This enables the model to remember information for 

longer periods. The overall architecture of LSTM is shown 

in Figure 8. 

 

Figure 8. LSTM network 

 

Mathematically each step can be explained as 

follows: 

 

1. In the first step Forget Gate layer decides the features 

to be flushed out from cell state looking at ℎ𝑡−1 and new 

input 𝑥𝑡. 

𝑓𝑡 =  𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) 

 

2. In the second step, deciding the information to be 

stored in the cell state is done in two steps. Input Gate 

layer 𝑖𝑡 which is a sigmoid layer establishes the values to 

be updated. Then a  𝑡𝑎𝑛ℎ layer generates the vector of 

new candidate values 𝐶𝑡̃. 

 

𝑖𝑡 =  𝜎(𝑤𝑖[ℎ𝑡−1,𝑥𝑡] +  𝑏𝑖) 

𝑐𝑡 =  𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1,𝑥𝑡] +  𝑏𝑐) 

 

3. The old cell state 𝐶𝑡−1  is updated to new cell 𝐶𝑡 

summing the output from Forget gate layer function 𝑓𝑡  

and 𝑖𝑡*𝐶𝑡̃.  

𝑐𝑡 =  𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡 

 

4. The output is determined in two steps - First, the 

sigmoid layer decides the parts of cells to output 𝑜𝑡. The 

product of new cell state 𝐶𝑡  through 𝑡𝑎𝑛ℎ  and the 

output of sigmoid gate outputsℎ𝑡 the selectively decided 

parts. 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) 

 

Hyperparameters tuning and optimization is an 

arduous and experimental task [4]. The training of the 

LSTM model is expensive in terms of memory and 

computational power.  In the domain of chatbots for 

time series conversations, LSTM is shown to perform well 

and maintain the context for longer durations.  

 

GRU 

A Gated recurrent unit (GRU) is a specific model of 

Recurrent Neural Network introduced by Kyunghyun Cho 

in 2014 as a variation of an intermediate unit like LSTM 

enabling the recurrent unit to capture dependencies of 

different time steps. 

 

Unlike LSTMs, GRU has 2 gates as Reset and Update 

to control the flow of information and refine the outputs. 

When compared to LSTM, the update gate can be 

considered a combination of Forget and Input gate from 

LSTM. Update gate determines the portion of information 

from previous time steps needs to be passed to the next 

states. This gives GRU an edge over LSTM as the model can 

decide to maintain all features from previous timestamps. 

Reset gate is used to decide the irrelevant part of the 

information which needs to be discarded [12]. GRU works 

in the following steps: 

 

1. Update gate [𝑧𝑡] at time 't' is calculated. 

 

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡]) 

 

2. Reset gate [ 𝑟𝑡 ] calculates the information to be 

forgotten using 

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡]) 

 

3. New memory content is introduced which uses the 

reset gate to store the relevant information 

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) 

 

4. [ ℎ𝑡 ] is calculated which holds information for the 

https://doi.org/10.5875/ausmt.v12i1.2286
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current unit using update gate output and memory 

content from previous steps [ht-1].  

 

ℎ𝑡 = (1 − 𝑧𝑡) ∗  ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 

 

GRU exposes complete memory content without 

control gate when compared to controlled exposure of 

LSTM using Output gate.  GRU explicitly controls the 

influx of information while calculating new memory 

content using the Update gate. Owing to less complex 

nature and few tensor operations, GRU is computationally 

more effective and faster to train.  

 

NTM 

Neural Turing Machine (NTM) explores the concept 

of evidently extending the context accumulator of RNN 

with an addressable external memory. They are an 

example of Memory Augmented Neural Networks which 

decouple the computation from memory [13]. NTM have 

been shown to outperform LSTMs on sequence learning 

tasks demanding large memory for handling 

memorization of longer contexts. 

 

Controller and Memory matrix are primary 

components in NTM ash shown in Figure 9. The controller 

is a recurrent or feed forward neural network which takes 

input and returns the output. External memory unit 

constitutes of N*W memory matrix where N is the 

number of memory locations and W is the dimension of 

each memory cell.  The interaction between the 

Controller and Memory matrix is carried out by reading 

and write heads. The memory matrix is initialized using 

schemes like Constant initialization or Truncated Normal 

distribution [43]. The NTM model can be trained by 

variants of Stochastic gradients using back propagation 

through time in case of an RNN based controller. 

Figure 9. NTM architecture 

 

Algorithmic tasks like priority sort, Associative Recall, 

Copy, Repeat Copy, etc can be performed to test if the 

NTM could be trained via supervised learning for efficient 

performance. NTM models generalize reasonably well to 

longer inputs 

 

Ensemble Learning 

The concept of ensemble learning was popularized 

in 1990 by Lars Kai Hansen and Peter Salamon [15] over 

the idea that performance of a set of classifiers outweighs 

that of a single classifier. The individual models work in 

unison where the outputs are combined with a certain 

decision fusion strategy to output a single answer [14]. 

Owing to the combination of various learning models, the 

generalization ability turns to be stronger. The basic 

architecture of Ensemble model is depicted in Figure 10.  

The variation in the member models is a critical factor for 

classification performance [16], hence strategies as 

follows were proposed for boosting the diversity scale 

among the member learners: 

 

1. Employing different learning algorithms for 

different learners or using the same algorithm 

with variation in parameters 

 

2. Training the members with varied datasets by 

subsampling or changing the attributes. 

 

3. Combination of the above two methods is used 

simultaneously. 

 

Figure 10. Ensemble Learning Model 

 

An overall comparison between the concepts 

discussed along with the problem statements each 

individual methodology is well suited for is stated in Table 

3. 

Dataset 

Data Source 

The dataset used in the entire research is Cornell 

Movie Dialog Corpus. Its distributed by Cornell Edu. The 

dataset consists of difference metadata-rich files. The 

conversations in the dataset are extracted from movie 

scripts. The dataset in whole has 220579 exchanges 

between 10292 characters collected from 617 movies. 

https://doi.org/10.5875/ausmt.v12i1.2286
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Two files are used for establishing the conversation data. 

'Movie_lines.txt' contains texts from the dialogues and it 

has attributes like lineID, CharacterId, movieID, character 

name and the actual text. 'movie_conversations.txt' forms 

the structure of the conversation. It maps the 

conversation between two characterIDs together along 

with the movieID of the movie. The " +++$+++ " acts as 

the field separator between the attributes mentioned for 

each file utilized. 

 

Table 3. Overall comparison of Concepts from Literature Survey 

Model Advantages Suited problem statements 

 

ANN 

- Self-organizing to changes in information 

- Fault tolerant to the corruption of cells and 

missing input values 

ANN is well suited for classification and 

regression dealing with a large number of 

variables. Character recognition, Image 

processing are some of the applications for ANN 

 

RNN 

- Adapts wells to quick changes in the input nodes 

- Variable size of input and output vectors 

- Works well with contextual input sequences 

-Excel at modeling temporal structure 

Appropriate for sequence prediction, 

classification prediction, Natural language 

processing and generative model. Hence they can 

be used in text generation, prediction of the 

values of an attribute in a problem statement. 

 

Ensemble 

Learning 

- Better generalization ability 

- Weak models can be boosted to efficient learners 

- By the reason of growing computations power, 

the Ensemble model can be well utilized 

It can be used to enhance the performance of 

existing models like RNN, LSTM and GRU. 

 

LSTM 

- Extended memory capabilities than RNN 

- Handles Long-term dependencies well. 

- More robust to vanishing gradients that RNN 

Good choice for problem statements like Time 

series forecasting. LSTM can be applied in 

Conversation agent, handwriting generation, 

Language translation, Image captioning. 

 

GRU 

- Handles Long-term dependencies effectively 

- Robust to Vanishing gradient problem 

- Computationally effective than LSTM 

GRU can be used in applications related to time 

series prediction like text generations, 

classification, etc 

 

NTM 

- Generalize well to longer inputs as compared to 

LSTM 

- Presence of external memory complements the 

RNNs existing memory 

NTM is well suited for models with heavy and 

longer sequences of data. NTM has 

demonstrated the solutions to be generalizing 

well for basic algorithms like copying and sorting. 

 

The authors now present a comprehensive review of some the recent works carried out in this domain: 

 

Table 4: Comprehensive Review of recent works involving AI for chatbot implementation 

Sr No. Research Paper Year Algorithm Used Research Findings 

1. M. Nuruzzaman and O. K. Hussain, 

"A Survey on Chatbot 

Implementation in Customer 

Service Industry through Deep 

Neural Networks," [22] 

2018 ANN Artificial Neural Network (ANN) owing 

to its capability to handle the 

complicated combination of features 

provides the most appropriate base to 

work upon for a problem statement 

such as Conversational Agents or 

Chatbots. 

2. Lee, M. C., Chiang, S. Y., Yeh, S. C., 

& Wen, T. F.  “Study on emotion 

recognition and companion 

Chatbot using deep neural 

network” [23] 

2020 RNN RNN provides a better response to 

problem statements about Seq2Seq 

framework of RNN built over Domain-

Specific Knowledgebase. 

3. Bali, M., Mohanty, S., Chatterjee, 

S., Sarma, M., & Puravankara, R. 

Diabot: “A Predictive Medical 

2019 Ensemble    

Learning 

Ensemble Learning as a meta-algorithm 

has the potential to provide better 

generalization. The increased 
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Chatbot using Ensemble Learning” 

[24] 

performance can be mapped with 

strong correlations with a humane 

sense of conversation 

4. Pathak, K., & Arya, A. “A 

Metaphorical Study Of Variants Of 

Recurrent Neural Network Models 

For A Context Learning Chatbot” 

[25] 

2019 LSTM LSTM is the most appropriate choice 

when the states of dialogues & 

responses in a conversation need to be 

tracked and predicted.  

5. G. Dzakwan and A. Purwarianti, 

"Comparative Study of Topology 

and Feature Variants for Non-Task-

Oriented Chatbot using Sequence 

to Sequence Learning," [26] 

2018 GRU The Encoder-Decoder framework over 

GRU comes in as an alternative to LSTM 

for the Chatbot. GRU offers similar if 

not better performance over LSTM 

when compared over the parameters 

like the size of the dataset, the 

resources being consumed. 

 

The " +++$+++ " acts as the field separator between the 

attributes mentioned for each file utilized. 

 

Data Pre-processing 

Python with numpy is used to preprocess the 

dataset to institute the conversation dictionaries. 

Dictionaries are created to map each line and the 

corresponding 'id', creating a list of all conversations, 

separating questions and answers. Individual conjoint 

words are cleaned and replaced with simple words. A 

dictionary is also created to map each word with its 

number of occurrences and for mapping the questions 

words and answer words to unique integer values. 

Proposed Method 

Ensemble learning forms the basis of the proposed 

methodology. Classifiers like Support vector machines, 

Linear regression were used in the Ensemble model 

initially. With the onset of Deep learning, a more 

elaborate approach can be followed to improve the 

overall performance of the Ensemble model. The idea is 

to define a number of LSTM networks with variation in 

hyperparameters as part of the ensemble model. The 

member models work together in parallel and their 

individual outputs are aggregated to generate the output 

of the overall model. As a fine-tuning measure, the 

concept of Pruning is also employed. An architectural 

overview is presented in Figure 10 followed by detailed 

Ensemble Network algorithm. Segmentation, Vector 

Space Model (VSM), Classification algorithm & Response 

generation forms the primary components of the chatbot. 

The flow of operations is shown in Figure 11. After the 

output class is predicted, the output of Chabot is returned 

to the user. 

Figure 11. Proposed chatbot architecture 

 

Components in the LSTM based Ensemble network as 

described in Figure 12. 

 

1. Input Data: Input sentences are segmented into 

terms. These terms are transformed into vectors 

by VSM corresponding to Vector space. The 

vectors generated are fed into the classifier 

model. 

 

2. STMs based Ensemble Network: The ensemble 

network consists of a defined number of LSTM 

networks working concurrently to generate the 

overall output prediction. The variation in 

hyperparameters like number of hidden layers, 

number of neurons forms the basis of the 

distinction between each LSTM model. This leads 

to the training of models with different 

generalization features and accuracy metrics. 
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3. Prediction: The LSTM models in the ensemble 

generate the predicted output which is 

converted to predicted class. 

Figure 12. LSTM based Ensemble Network Classifier 

 

The Proposed Methodology 

The Encoder Decoder LSTM acts the base for 

defining the even single LSTM as well as the combination 

of LSTMs acting in unison as part of the ensemble. The 

entire process of implementation can be broken down in 

certain steps as discussed below. The proposed model 

includes training phase and the testing phase which are 

shown in Figure 12 and Figure 13 respectively. In the 

training phase, a definite number of LSTM networks are 

generated and trained using variations in training data. 

The models with lower accuracy are filtered out. In the 

testing phase, the models with higher accuracy work in 

conjunction to predict the output class from the 

calculated output weights. The detail of the two phases is 

presented in the following sections. The notations used in 

the algorithm specifications are specified in Table 4. 

 

Table 5. Notations used in Algorithm  

Notation Description 

𝑁 The number of LSTM networks 

ℎ𝑚𝑎𝑥 Maximum number of hidden layers in 

a LSTM model 

𝑝𝑚𝑎𝑥 Maximum number of neurons in a 

hidden layer 

𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Threshold value for the accuracy 

ℎ𝑚 Number of hidden layers in LSTM 

model 

𝑝𝑚 Number of neurons in a hidden layer 

𝑇 Total number of partitions of training 

dataset 

𝐴𝑚 Average Accuracy 

𝑘 LSTM models remaining after pruning 

𝐶𝑘 Output of 𝑘𝑡ℎ LSTM model 

 

Data Pre-processing 

The dataset is preprocessed as defined in the 

section NUMBER. Different functions are created for the 

generation of dictionaries and cleaning the text. 

 

Building the Model 

Encoder LSTM is responsible for reading the input 

sequence and encoding the same into a vector essentially 

to map the corresponding vector from the vector space 

defined. Decoder LSTM deals with decoding the vector 

generated and outputting the predicted sequence. 

Encoder Decoder LSTM generates a continual 

representation of data from a considerable number of 

data attributes from previous time stamps. This 

architecture of Encoder Decoder LSTM was found 

effective on long and continuous data influx. We split the 

dataset into training and validation dataset as an attempt 

to carry out cross-validation. Three difference decoder 

LSTMs are created in order to decode the training data, 

decode the validation data and the actual decoder for the 

encoder created. 

 

Training Phase 

The hyperparameters like the number of epochs, 

batch size, LSTM size, number of layers in Encoder and 

Decoder LSTM, Learning rate are initialized for single LSTM 

as well as the Ensemble LSTM model. A session for training 

is initialized and the models are training for both portions 

of the dataset that ie the Training dataset and validation 

dataset as well. As the training progresses the model 

generates the weights. The model generalizes the data for 

patterns and features and stores it in the model to be 

utilized while testing. The training phase is depicted in 

Figure 13. 

 

Step 1: The parameters like the number of LSTM networks 

𝑁 , the maximum number of hidden layers in the 

modelℎ𝑚𝑎𝑥, a maximum number of neurons in a hidden 

layer 𝑝𝑚𝑎𝑥  and accuracy threshold for each LSTM 

model𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are initialized. 

 

Step 2: Generate 𝑁  LSTM models with variations in 

hyperparameters. The number of hidden layers ℎ𝑚 and 

the number of neurons in a hidden layer 𝑝𝑚 are assigned 

random values between 0 and corresponding maximum 

bounds. 

 

Step 3: The training dataset is split into 𝑇 partitions. 𝑇 −

1 partitions are used to train each LSTM model. Every 

distinct LSTM model trains and learns using BPTT. 
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Step 4: The performance of each LSTM model along with 

the average accuracy𝐴𝑚 is evaluated using the remaining 

single partition from testing dataset. 

 

 

Step 5: The LSTM models with accuracy lower than the 

accuracy threshold 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  are dropped leaving 

𝑘models in the ensemble network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Training Phase algorithm 

 

Testing Phase 

The weights generated in training are loaded and a 

session is initiated running the Encoder Decoder LSTM 

model as a part of both the single model and Ensemble 

LSTM. The incoming queries are cleaned and 

preprocessed using the functions defined in Data 

Preprocessing. The predicted answer is returned to the 

user. This phase deals with applying the patterns and 

features learned on the testing dataset. The testing 

dataset is fed into the Ensemble model to predict the 

output classes. The testing phase is depicted in Figure 14. 

 

Step 1: The testing dataset is retrieved and fed into the 

LSTM models of the ensemble. 

 

Step 2: The output 𝐶𝑘  for the individual model is 

calculated. 𝐶𝑘is multiplied with corresponding weights of 

each model. A weighted average of the sum of total 

weighted outputs is calculated. 

 

Step 3: The weighted average is used to predict the 

response class. 
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Figure 14. Testing Phase algorithm 

 

An example of the variations in the hypermeters for 

multiple LSTM multiples as a part of the Ensemble 

Network is presented in Figure 15.  

 

Figure 15. Hyper parameter variations in LSTM 

 

Performance Analysis 

RNN, LSTM and GRU serve as the best choice for the 

classifier in Ensemble Network. LSTM and GRU provide an 

edge over RNN owing to the presence of a dedicated 

memory control unit enabling the learning of long term 

dependencies. The selection of an appropriate model 

between them depends on the key differences and the 

dataset. GRU exposes complete memory content without 

control gate when compared to controlled exposure of 

LSTM using Output gate.  LSTM doesn't control the 

amount of information flowing in from previous time 

steps while computing new memory content. On the 

other hand, GRU explicitly controls the influx of 

information while calculating new memory content using 

the Update gate. An experiment was performed to 

compare LSTM and GRU for their performance in the time 

series prediction. 

 

Prediction Comparison 

LSTM and GRU are closely related mechanisms for 

handling long term dependencies. A comparison between 

both for their performance provided important insight for 

the selection of LSTM over GRU as seen in Figure 16. Two 

models constituting single LSTM and a single GRU were 

created for the comparison. To make the comparison 

more just, both LSTM and GRU models had 4 hidden layers 

with 50 neurons each with 0.2 dropout rate. Both the 

models were trained with 50 epochs and a batch size of 

32. The dataset used to select the appropriate model for 

time series data analysis is Stock Price Dataset. The 

Dataset is split into portions randomly to generate a more 
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stable and evenly spread out output values. In the first 

split of the dataset, there are 700 entries in total. In the 

second split, the dataset contains 1400 entries of data 

points. The final dataset consists of 3000 data points. The 

models developed were executed on the three variations 

of the dataset to analyze the parameters like Mean 

Squared Error, Accuracy, Loss and Time taken for training 

and ultimately deciding the most applicable model for 

handling time series data as well as long term 

dependencies. 

 

 

(a) Dataset 1 

 

(b) Dataset 2 

 

(c) Dataset 3 

 

Figure 16. Outputs for dataset variations 

 

 

For Dataset 1 with700 data points, the performance 

of GRU seems more better than LSTM as the predicted 

values by GRU and the Testing values map well than that 

of LSTM. In iteration for Dataset 2 with 1400 data points, 

the performance of LSTM and GRU both seem almost 

equal as the values predicted by both the models 

correspond with the testing values. In the iteration for 

Dataset 3, GRU shows more error and deflect away from 

the Testing Data points. On the other hand LSTM shows 

better performance over 3000 data points from Dataset 3. 

 

Mean Squared Error Analysis 

The mean squared error is calculated for each 

dataset variation for both LSTM and GRU model. Mean 

squared error is one way to calculate the error during Back 

propagation which is the basis for or training for both 

LSTM and GRU.  Higher error value indicates 

performance degradation and improper training. The 

mean squared error for both models on three datasets is 

presented in Table 5. 
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Table 6. Mean Squared Error for LSTM and GRU on 

Datasets. 

 LSTM GRU 

Dataset 1 0.7516197811968257 0.4601261472286205 

Dataset 2 2.374904252912631 2.2920254537142664 

Dataset 3 1.4342299451204816 2.6693156947773167 

 

From the values of Mean Squared Error we can 

conclude that GRU performs well and generates low error 

for datasets with small size with lesser data points. LSTM 

was found performing well for datasets with large data 

points. 

Average Loss Calculation 

The loss values are calculated for each epoch for 

both LSTM and GRU. For a given model, the lesser the loss 

the better is the training of the model. Loss is summation 

of errors made for each batch of training dataset over an 

epoch. The average of loss values over the complete 

training procedure for 50 epochs is specified in the Table 

6 for the variations in dataset. 

 

Table 7. Loss values for each dataset 

 Dataset 1 Dataset 2 Dataset 3 

LSTM 0.002012 0.013321 0.001093 

GRU 0.00151 0.00129 0.02667 

 

Owing to less computational steps, GRU generates 

less error than LSTM. LSTM executes well over the last 

dataset variation having the highest number of data 

points. 

 

 

Training Time Comparison 

The training time for the complete training process 

in minutes is specified for both LSTM and GRU in Table 7. 

 

Table 8. Training Time in minutes for LSTM and GRU 

 LSTM GRU 

Dataset 1 9.51 8.28 

Dataset 2 12.91 11.59 

Dataset 3 16.8 14.97 

 

For all the disparity in the dataset, LSTM model 

takes more time to train over GRU. When LSTM and GRU 

were used to train the chatbot models, the model with 

LSTM showed overall better accuracy of 71.69% over 

70.12% accuracy of GRU during Training. During Testing 

the LSTM model showed better accuracy of 71.59% over 

70.75% of GRU model.  

Considering four parameters like Mean Squared Error, 

Loss, Training Time and Accuracy we can deduce LSTM is 

a better choice over GRU as whole. 

 

Comparison between LSTM and Ensemble 
LSTM 

Following graphs present a comparative look at the 

performance of LSTM and Ensemble Model for the same 

time series data analysis. The Ensemble Model consists of 

three LSTMs with variation in hyperparameters. The 

graphs depict the mapping between the values from the 

testing dataset and the predicted values from the 

corresponding model. The graphs related to LSTM models 

are specified in Figure 17 and the graphs related to 

Ensemble LSTM models are depicted in Figure 1

 
Figure 17. Single LSTM with Dataset variations 

 

Figure 18. Ensemble LSTM Model with Dataset Variations 
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Figure 19. Single GRU model with Dataset variations 

 

 

Figure 20. Ensemble GRU with Dataset variations 

 

 

 

From the graphs we can conclude the performance 

of Ensemble Model is similar in the aspect of the 

performance of LSTM model and in some cases better. 

With fine tuning the Ensemble models, the performance 

can be improved over standalone LSTM model. 

 

Comparison between GRU and Ensemble GRU 

The following graphs in Figure 19 and 20 provide 

overall performance analysis for single GRU model and 

Ensemble GRU model in respective sections. The 

Ensemble GRU model consists of three individual GRU 

models with variations in hyperparameters. 

 

We derive from the graphs, the performance of 

single GRU and the Ensemble GRU is comparatively similar. 

The performance could be better enhanced with the 

diversity in the hyperparameters of singular models 

constituting the Ensemble model. 

 

Comparison between Ensemble LSTM and 
Ensemble GRU 

This section provides the differentiation in the 

performance between the Ensemble LSTM model and 

Ensemble GRU model against the prediction values from 

the testing dataset. The training was carried out on 

variations of the same dataset hence employing the 

strategy of cross-validation to make it most even 

comparison. 

 

Prediction Comparison – Ensemble LSTM, 
Ensemble GRU 

From Figure 21, it can be deduced from the graph i 

and ii that the performance of both ensemble models are 

almost equal in terms of close mapping with the 

prediction values. However, in graph iii, it is observed that 

Ensemble GRU performance better than Ensemble LSTM. 

The values predicted by Ensemble GRU are closely 

mapped with the actual values from the testing dataset.
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Figure 21. Results over dataset variations for Ensemble LSTM and Ensemble GRU 

 

Mean Squared Error Analysis 

The final Mean Squared Error for both Ensemble 

models is calculated. Lower the values, better the 

performance of the model. The values are defined in the 

Table 8. 

 

Table 9. Mean Squared Error Analysis for Ensemble LSTM 

and Ensemble GRU 

 Ensemble LSTM Ensemble GRU 

Dataset 1 1.060990337370966 2.0204261732384396 

Dataset 2 1.249621120822286 1.1770008219011074 

Dataset 3 5.661777383126808 2.6198470374584173 

 

From the values calculated we can deduce that no 

specific model performs better than the other in every 

variation of the dataset. In two cases, the performance of 

both models was comparatively equal while in one case 

the Ensemble GRU performs better than Ensemble LSTM. 

 

Average Loss Calculation 

For each epoch during the training, Loss values are 

calculated. Lesser the loss values, better is the training of 

the model. The average loss values calculated for each 

dataset variation over the complete training is presented 

in the Table 9. 

 

Table 10. Average Loss Calculation for Ensemble LSTM 

and Ensemble GRU 

 Dataset 1 Dataset 2 Dataset 3 

Ensemble LSTM 0.001069 0.034829 0.000179 

Ensemble GRU 0.002512 0.00278 0.01917 

 

From the values in the table, we deduce the average 

loss during the training of Ensemble GRU is lesser than the 

values of Ensemble LSTM. That indicates Ensemble GRU 

trains well with the dataset compared to Ensemble LSTM. 

Based on the analysis of three parameters, we can 

conclude the performance of both Ensemble LSTM and 

Ensemble GRU is not definitively better than each other. 

In some cases Ensemble GRU performed better while in 

some cases Ensemble LSTM. With tweaking the 

parameters of individual models working together as 

Ensemble, the best performance can be achieved. 

Conclusion 

This paper presents a review of the evolution of 

technologies applied in Chatbots handling time series 

conversations in the labels of Architectural Design and 

Implementation. The paper also intends to contribute in 

developing a sturdy groundwork on the concepts utilized 

in learning long term dependencies hence providing a 

roadmap towards further enhancements being inclined 

towards minimalistic yet alike requisites. These primal 

conditions can be considered as 1. Designing the word 

embedding schema not constrained by the knowledge 

base. 2. Flexible and accurate conversational model. 3. 

Reaching the true peak of imitating the human 

conversation requiring no human intervention. The 

proposed LSTM based Ensemble Network architecture 

attempts at enhancing the user experience by providing a 

sense of continuance of context in a series of 

conversations. The algorithm does so by generalizing the 

features imperative to making the conversation humane. 
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