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Abstract: Quadrotor helicopters (quadcopters) have become popular in recent years; because they are simple to 

operate and steady, they are used in aerial photography, competitive flying, and search-and-rescue missions. In 

addition, wireless sensors have enabled gesture recognition, and therefore, this study investigated the use of gesture 

recognition to control a quadcopter. A quadcopter was built using Arduino NANO and MPU-6050 modules, which 

provided insights into the flight principles of a quadrotor system; furthermore, a proportional integrative derivative 

controller was modified for steady flight. A Leap Motion device was used to understand the logic behind hand gestures 

and test the success rate of each gesture, and was then combined with a Parrot AR.Drone 2.0 to achieve gesture 

recognition controls and uncover problems with connections between hand gestures. These problems were addressed 

by changing the code in the gesture control program. The results of the completed gesture control experiment 

demonstrated high gesture recognition performance as well as the ability to meet the requirements for controlling a 

quadcopter. 
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Introduction 

     Compared with remote control aircraft, 

quadcopters stand out for having steady flight without the 

loss of sensitive controls. Remote control aircraft require 

much practice, whereas quadcopters are easy to operate. 

Furthermore, the technology used in the radio controllers 

for these types of aircraft is quite mature [1]; in addition 

to the stable transmission and reception of radio waves, 

they exhibit powerful performance at distances of and 

above 2 km. Conventional radio controllers control the 

various functions of an aircraft through different channels, 

such as the GPS, gyroscope, and level flight; however, 

multiple functions translate to a complex system of 

buttons, which results in larger, heavier, and more 

expensive controllers [2]. Due to the aforementioned 

considerations, a smart phone was used to replace the 

radio controller in the present study; it was connected to 

a wireless module onboard the quadcopter to enable 

remote control. This system was then used as the basis for 

developing gesture control of the quadcopter. The robust 

development of motion sensors [3] has enabled the 

concrete representation of gestures in computer 

simulations [4]. For example, Leap Motion devices are 

excellent motion sensors that can capture images of 

human hands and convert them into precise models. This 

study adopted a Leap Motion device to complete its 

gesture-controlled quadcopter. 

Quadcopters and PID Controllers 

Quadcopters are a type of unmanned aerial vehicle 

(UAV) with a simple structure; they are small in size and 

light in weight and are propelled by four rotors of the 

same size, which are symmetrically distributed [5]. 

Quadcopters typically use an X or + structure [6]; two 

opposing rotors rotate clockwise, and the other opposing 

set of rotors rotates anticlockwise, thus achieving torque 

balance [7]. This stabilizes flight and allows the 

quadcopter to hover while providing it with considerable 

agility. Following the development of electronic 
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components, such as the GPS and a gyroscope for 

determining the aircraft body’s orientation [8], as well as 

the convenience provided by smart products, UAVs have 

been widely used to perform tasks such as surveillance, 

observation, search and rescue, photography, and safety 

precautions [9]. Because of its simple, steady, and 

multifunction controllability, the quadrotor configuration 

is relatively common [10]. Because of the simple rigid 

structure of quadcopters, they can be dynamically fast but 

unstable, and therefore, they are viewed as having a 

system structure that lacks drivability and struggles to 

maintain balance of the fuselage. As such, a controller is 

required that can immediately and rapidly control the 

stability of a quadcopter as well as its altitude and position. 

For this purpose, the design of the controller algorithm is 

crucial and requires a great deal of modelling analysis to 

match the dynamic model of the quadcopter [11]. The 

most basic open-source system is PID control, which is 

commonly used in mandatory model configurations after 

acquiring a quadcopter. Setting the PID parameters allows 

the signal output model and requirements to be 

consistent for adjusting the altitude and position of the 

quadrotor system; however, limitations [12] exist in 

flexibility and angle changes that are time-consuming to 

configure and adjust. The other common method of 

control is the linear quadratic regulator (LQR), which may 

not outperform PID controllers in terms of feedback 

speed—in fact, LQR has a longer delay in signal 

conversion—but its errors in a steady state are relatively 

few [13]. Sliding-mode controllers (SMCs) are a type of 

nonlinear control technology that allows quadcopters to 

be used normally in terms of aerodynamic effects; when 

external interference causes a quadcopter to develop 

system instability, linear control technologies such as PID 

and LQR controllers will cause its performance to drop and 

the inability to maintain stability; by contrast, an SMC 

controller will perform a state simulation to correct the 

problems and overcome the instability [14]. Airplanes, 

while taking off and landing, can develop the wing-in-

ground effect, also called the ground effect. This 

phenomenon also occurs in quadcopters; while flying 

along the ground or close to ceilings, a ground effect will 

occur [15], and the generated air currents will affect the 

fuselage and result in instability during descent. To 

overcome this phenomenon, fuzzy logic control systems 

can make rapid and efficient improvements; compared 

with other control systems, a fuzzy logic control system 

can correct the landing orientation of a quadcopter more 

quickly to achieve a safe descent. Furthermore, fuzzy logic 

can be applied to other types of UAVs and helicopters [16]. 

Based on the aforementioned controllers and their 

development, innovative technology has led to advanced 

research on the optimization of UAVs. 

The present study mainly used PID controllers, 

which comprise proportional, integral, and derivative 

actions. System errors are minimized through the 

proportional control, and then integral controls are used 

to eliminate the smallest error; finally, the derivative 

control is used to accelerate the entire process [17]. These 

industrial controllers are widely used in engineering and 

can be applied to numerous engineering conditions. To 

obtain reasonable dynamic performances and ensure the 

safety and sustainable use of the equipment, the PID 

controller’s parameters must be adjusted [18]. In other 

words, because of the complexities of the 

electromechanical dynamics in the system, quadcopters 

require very steady control [19]. To achieve precise control, 

the quadcopter must be stopped in the event of tilting or 

rotation to adjust the controls. At this time, adjustment of 

the PID parameters is highly useful. A return to typical PID 

controls can be achieved through an Arduino platform; 

compared with other types of flight platforms, the overall 

cost of an Arduino platform is lower for achieving the 

same performance. Using radio controls, a PID controller 

can control requirements without failure when faced with 

complex operations [20]. This is the main reason a PID 

controller was selected for the present study. Moreover, it 

could conveniently be controlled through Bluetooth from 

a smartphone app. 

This paper has four sections: Section 1 presents the 

background and motivation behind this study on 

quadcopters as well as a summary of the relevant 

literature; Section 2 illustrates the development of a self-

built quadrotor helicopter (quadcopter) and proportional 

integrative derivative (PID) controllers. Section 3 

expounds on Leap Motion devices and experiments of 

gesture recognition. Section 4 concludes this paper. 

Construction of the Quadcopter and 
Testing of the PID Controls 

     This section first introduces the principles behind 

quadcopters and the electronic components that were 

used to form the flight control board, such as the Arduino 

Nano and MPU-6050. This is followed by a description of 

the soldering and assembly of the quadcopter. The final 

subsection presents the programming and PID control 
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experiment. 

Principles and Components 

A quadcopter has four rotors, which extend in four 

directions and are positioned symmetrically. The rotors 

generate torque in different directions, which cancel each 

other out to achieve a stable and horizontal flight attitude 

without spinning. Given this equilibrium, when the 

rotational speed of all four rotors is increased or 

decreased simultaneously, the increase or decrease in 

thrust will result in ascending or descending movements. 

Increasing or decreasing the thrust of two neighboring 

rotors can create forward, backward, leftward, and 

rightward flight maneuvers; by contrast, increasing or 

decreasing the thrust of two diagonal rotors can achieve 

clockwise or anticlockwise rotation. These changes in 

actions provide quadcopters with their agility, which 

enables diverse applications such as competitive flying, 

aerial photography, and terrain exploration. 

Based on this understanding of the principles, we 

began to construct the flight control board, which mainly 

comprised an Arduino Nano board and an MPU-6050 six-

axis motion-tracking device. The Arduino Nano was paired 

with an ATmega328 microcontroller, which has 

comprehensive functions and a small body; the 

specifications are presented in Table 1. Stored programs 

can easily be executed through the Arduino compiler. 

Furthermore, because the Arduino Nano can be combined 

with multiple Arduino circuit boards or other modules, it 

can easily complete programs and control tasks multiple 

functions, which makes it suitable for the development of 

flight control boards. 

 
Table 1. Specifications of the ARDUINO NANO Board. 

 

The MPU-6050 six-axis motion-tracking device is the 

body of the flight control board; its specifications are 

presented in Table 2. It functions as both an 

accelerometer and a gyroscope. An accelerometer 

measures acceleration and can detect the acceleration of 

an object. It can also detect gravitational acceleration due 

to the Earth’s gravity. When not in motion, an 

accelerometer can also be used as an inclinometer 

through measuring the angle of inclination using the 

projection of gravity on its three axes; because gravity is 

constant on Earth, the gravitational acceleration will not 

change over time, and therefore, an accelerometer has 

considerable accuracy in long-term data detection. 

Gyroscopes are used to measure the angular velocity of an 

object’s horizontal rotation and can accurately and 

sensitively calculate data in a short time. However, a 

gyroscope cannot detect the center of gravity. The MPU-

6050 combines both functions into one module, making it 

highly suitable as a sensor for aircraft rotation and tilt. 

 
Table 2. Specifications of the MPU-6050. 

 

Soldering and Assembly of the Flight Control Board 

The flight control board comprised an Arduino Nano 

and a MPU-6050, which were connected by a circuit board 

along with the pins required for assembling the module, 

as depicted in Figure 1. First, the MPU-6050 required eight 

Dupont-style pin header housings, and the Arduino Nano 

required 30 Dupont-style pin header housings; a 

breadboard was used to secure the pin locations (Figure 

2). Due to the necessity of a gyroscope, the pins had be 

soldered straight to ensure the balance of the aircraft 

when horizontal. The eight pins were inserted into the 

breadboard, and then the MPU-6050 was placed on top. 

We began soldering when we were sure there was no 

tilting and that the soldering iron temperature was 

sufficiently high. The key was to preheat the metal sheets 

at the connection points; this way, after the solder melted, 

it covered the pins and contacted the metal more easily. 

This is a summary of the basic soldering process, which 

was repeated in subsequent fabrication of other pins. The 

completed flight control board is depicted in Figure 3. 

 

Microcontroller ATmega328 

Operating voltage (logic level) 5 V 

Input voltage (recommended) 7-12 V 

Output voltage (limit) 6-20 V 

Digital I/O leads 14 (six of which 

provide the PWM 

output) 

Simulation input leads 8 

DC of each I/O lead 40 Ma 

Size 0.73” x 1.70” 

Length 45 mm 

Width 18 mm 

 

MPU-6050 

           

Power supply 3–5 V (internal low dropout 

voltage regulator) 

Method of 

communication 

Standard I2C protocol 

Sensor type Three-axis accelerometer, three-

axis gyroscope 
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Figure 1. Flight control board, single row pin headers, Dupont housings, 
resistor, and LED arrangement. 
 
 

 
Figure 2. Schematic of flight control board soldering. 

 

 
Figure 3. Completed flight control board. 

 

Once we had completed the flight control board, we 

began to assemble the quadcopter. First, we confirmed 

the location of the quadcopter’s four rotors because they 

had to be connected by circuitry to the drive board, which 

is the key module for controlling their speed and 

configuration. Therefore, the circuitry connections had to 

be verified to ensure the success of the experiments. The 

power supply of the quadcopter was a 3.7 V lithium 

battery, but because the flight control board requires 5 V, 

a boost module was employed to increase the voltage 

output to 5 V; a multimeter was used to confirm that the 

voltage, after being connected to the boost module, was 

sufficient. Lastly, we ensured that the upload and 

download connectors of the Bluetooth module were not 

crossed with those of the Arduino Nano. This was to 

ensure that the quadcopter could successfully send and 

receive signals. Accidental upload-to-upload and 

download-to-download connections would prevent data 

transfers between the two components, not to mention 

the successful connection of the quadcopter or successful 

flight control. Once the connections had been verified, all 

the components were affixed using double-sided tape to 

an acrylic board, which was cut in advance for the 

completed quadcopter. 

Program Settings and PID Control Experiment 

Once we had completed the quadcopter, we began 

the software settings. First, no program was saved on the 

Arduino Nano, and therefore, it had no functions. The 

necessary program was temporarily saved on the Arduino 

Nano using a compiler. Before importing the program, the 

function settings had to first be verified. Once the overall 

settings were completed, the compiled program was 

imported to the Arduino Nano, thus completing the 

software installation for the quadcopter. 

Next, the successful operations of each module of 

the quadcopter were verified using the MultiWii flight 

control program MultiWiiConf. This program was also 

used to adjust the sensitivity and balance of the PID 

controls. The adjustments were made by directly 

observing the flight changes of the quadcopter and 

making adjustments based on the necessary flight 

performances. 

Next, we began experimenting with adjusting the 

PID controls of the quadcopter. We began by adjusting the 

P value because it is the proportional control that directly 

affects the output rotation speed of the quadcopter and 

can be visibly observed and adjusted. First, the P values of 

the three axes—roll, pitch, and yaw—were reverted to 

zero, then the roll and pitch P values were increased in 

increments of 0.5 while we observed the quadcopter’s 

attitude. When the P parameters were 6.5, the 

quadcopter was able to take off steadily and maintain 

balance in the air. When the P parameters were smaller 

than 6.5 and decreased gradually, the rotors were unable 

to rotate due to the insufficient voltage output, and the 

quadcopter failed to take off. When the P parameters 

were greater than 6.5 and increased gradually, the 

excessive oscillation amplitude resulted in an unstable 

voltage output from the motor; although the quadcopter 

was able to take off, it also demonstrated obvious shaking, 

and the fuselage was unable to maintain balance for 

steady flight. 

After we adjusted the P values of the PID controller, 

the quadcopter was able to take off and land normally. 

However, its direction could not be controlled as the I 

values of the integer controls had not yet been set, and 

thus, the machine was unable to perform error 

corrections to control the direction. Therefore, we began 

adjusting the three axial I values while simultaneously 

adjusting the yaw P value. First, the three axial I values 

were reset to zero. When the roll and pitch I values were 

0.033, the yaw I value was 0.066, and the yaw P value was 

8.91, the quadcopter was able to control its direction 

steadily and rotate in the air simultaneously. While 

observing the quadcopter throughout the adjustments, 
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when the parameters were higher, the quadcopter could 

only fly and rotate at a low altitude, and although the 

directions could be controlled, the changes were not 

sufficiently visible; when the parameters were lower, the 

direction of the quadcopter could not be controlled, and 

while flying at a higher altitude, the quadcopter was highly 

unstable, suddenly changing altitude and spinning. 

Up to this point in the experiments with 

adjustments to the PID controllers, the quadcopter was 

able to take off normally and change directions. However, 

steady controlled flight had not yet been achieved 

regarding subtle operations, which required the 

adjustment of the Derivative (D) values of the PID controls 

for calibrating the sensitivity of the quadcopter to human 

controls. First, the three axial D values were reset to zero 

before being increased while the flight differences of the 

quadcopter were observed. The roll and pitch D values of 

12 with a yaw D value of 7.2 resulted in the steadiest 

control. When the D values were lower, the oversensitive 

controls and excessively rapid output response time 

caused the quadcopter to charge or the fuselage to flip 

over, resulting in a crash. Conversely, higher D values 

resulted in delayed responses, which caused the 

quadcopter to be overly balanced and unable to change 

direction. 

Control of the Quadcopter Using Gestures 

     Leap Motion technology provides high precision 

and a broad detection range in hand tracking, opening up 

the possibility of replacing mouse and keyboard controls 

by capturing hand images. Leap Motion also provides 

powerful support and can be developed in C#, C++, Java, 

and Python environments. 

Static and Dynamic Gestures 

The gestures used in this study were distinguished 

into static gestures and dynamic gestures. Static gestures 

refer to static hand postures. The static gestures used in 

this study were observed to have their own pitch, roll, and 

yaw data that happened to correspond with the 

quadcopter’s three axes, demonstrating that hand axial 

changes can be used to control the quadcopter’s axial 

changes. For example, if the user’s hand tilts forward, the 

quadcopter will also tilt and move forward. This feature 

could be used to change the tilt angle of the quadcopter, 

which was sorted into four directions: forward, backward, 

left, and right. This was mainly accomplished through 

pitch and roll changes. Because of these axial changes, the 

quadcopter tilts in these four directions, resulting in 

movement forward, backward, to the left, or to the right. 
 

 
Figure 4. Controlling the quadcopter’s direction through static gesture. 

 

The static gestures based on different tilts of the hand are 

presented in Figure 4: when the palm of the hand rotates 

approximately 30° clockwise, relative to the roll axis, the 

hand will exhibit a downward tilt, and the quadcopter will 

fly forward simultaneously. Conversely, if the palm rotates 

anticlockwise, the hand will tilt up, and the quadcopter 

will fly backwards. When the palm rotates approximately 

30° clockwise, relative to the pitch axis, the palm will tilt 

to the right, and the quadcopter will thus fly to the right. 

Conversely, if the palm rotates anticlockwise, the hand will 

tilt to the left, and the quadcopter will fly to the left. These 

are the uses of the static gestures. Through observations 

of simultaneous changes in the user’s hand and the 

quadcopter, the quadcopter’s direction of flight could be 

intuitively controlled. 

Dynamic gestures refer to hand movements, and 

dynamic gesture recognition uses these dynamic hand 

movements as the program’s basis of determination. 

Dynamic gestures were further distinguished into 

trajectory gestures and vector gestures. As suggested by 

the name ‘‘Circle” is listed as a gesture in the LeapSDK 

inbuilt data, a trajectory gesture occurs a circular hand 

movement trajectory is detected; the program will make 

a positive or negative determination based on whether 

the trajectory is clockwise or anticlockwise. Vector 

gestures are horizontal (left and right) or vertical (up and 

down) movements of the hand. The program detects 

changes to the hand position; for example, if the user’s 

hand moves approximately 10 cm from its original 

location to the right, the program will determine that the 

hand movement is to the right. Based on this principle, the 

program can distinguish four vector gestures. 

When applied to the quadcopter, static gestures 

control the relatively intuitive directional movements, 

whereas dynamic gestures control the movements of the 

quadcopter itself, such as take-off, landing, rotating, and 

vertical ascent and descent (when flying). As depicted in 

Figure 5, upward or downward gesture vectors represent 
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the upward or downward motion of the quadcopter while 

flying, whereas the hand moving left or right represents 

the quadcopter spinning clockwise or anticlockwise. For 

take-off and landing, to avoid the gestures being too 

simple and easily confused with other gestures, trajectory 

gestures were used as the basis of determination. A 

clockwise circular trajectory causes the quadcopter to 

take off, whereas an anticlockwise circular trajectory 

causes it to land. 

Gesture Control Program Concepts and Flow 

In the Leap Motion gesture recognition experiments, 

gestures were not distinguished solely by their trajectories 

or directions of movement. The main sorting principle was 

the program’s determination logic. Each gesture has its 

down logic gate, and once the logic gate is passed, the 

gesture is distinguished by a positive or negative value. If 

the Leap Motion device detects a gesture trajectory that 

controls the quadcopter’s take-off or landing, the program 

will receive the signal and pass it through the logic gate; 

then, after reading the obtained value, the program sends 

a signal to the quadcopter to execute. 

 

 
Figure 5. Controlling the quadcopter’s direction through dynamic 
gestures. 

 
Figure 6. Gesture control program flowchart. 
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If the value is smaller than 0, the quadcopter will take off; 

values greater than 0 result in landing. After the program 

is initiated (START), it will start to detect whether the 

dynamic hand gesture is present. This logic gate 

determines whether the quadcopter can initiate flight and 

is the major premise for controlling the flight direction. 

After the successful detection of the gesture and take off, 

the program enters the next logic gate and detects 

whether the hand is open or closed in a fist. When the 

hand is open, the program will begin detecting the four 

logic gestures that control direction. Detected vertical 

hand movements can control the upward and downward 

movements of the quadcopter. Detected horizontal hand 

movements make the quadcopter rotate clockwise or 

anticlockwise. Detected hand movements along the pitch 

axis make the quadcopter move forward or backwards, 

whereas movements along the roll axis prompt the 

quadcopter to move to the left or right. In the overall 

process, gestures after take-off must all return to the 

initial logic gate. To stop the quadcopter, when the hand is 

successfully detected as making a gesture key tap in the 

air, a landing command is sent to the quadcopter, ending 

the program and terminating operations. 

Gesture Control Experiments 

A preliminary control practice was performed 

before the experiment. A Parrot AR.Drone 2.0 quadcopter 

was used in this part, and in the Node.js execution context 

this device is fully compatible and successfully connected 

to a computer through a Wi-Fi transceiver. The actual 

practices are depicted in Figure 7 with images of 

conditions while moving forward, backward, to the left, 

and to the right. The tilt of the hand can be observed to 

be nearly identical to tilt of the quadcopter; this 

demonstrates that controlling the movements of the 

quadcopter through static gestures was successful and 

intuitive. After several practices, a control problem was 

found: the Leap Motion device had a limited range of 

detection despite its wide lens range, and therefore, when 

the user’s hand moved out of the lens range during the 

hand control process, the quadcopter continued to 

execute the last image recognition command, but the 

program did not end; when the hand returned to the 

detection range, because of the change in gesture, the 

quadcopter lost control and made an emergency landing. 

Our solution was to add a logic gate to the control 

procedure (Figure 6); that is, the hand must be detected 

as open to enter the direction control logic gate. If the 

program determines the hand is not open, it will send out 

a ‘‘STOP” command that tells the quadcopter to hover in 

the air until the hand is once again detected as open, 

which is when the direction can be controlled. If the hand 

 
Figure 7. Gesture control practice with the Parrot AR.Drone 2.0. 

 

moves out of the lens range, to avoid losing control of the 

quadcopter, the user can immediately make a fist in front 

of the Leap Motion device; the program will determine 

that the hand is not open and send a command to the 

quadcopter to hover in the air, successfully resolving this 

minor control problem. Although whether the hand is 

open is expressed in a descriptive manner, from a program 

perspective, this determination is based on whether a 

certain number of fingers are detected. When testing the 

Leap Motion device, we found that it could determine the 

number of fingers and therefore, we used this ability as 

the basis. When the number of fingers is greater than 0, 

the program will determine that YES, the hand is open, 

and continue to detect the hand gesture to control the 

direction of the quadcopter; when the number of fingers 

is 0, the program will determine that NO, the hand is not 

open, and the quadcopter will hover in the air until the 

number of fingers is determined to be greater than 0 

before the flight direction is controlled again. 

Once the gesture controls of the quadcopter had 

been finalized, the final experiments could begin. After 

confirming that the Leap Motion device was connected to 

the computer and was running normally, we connected 

the Parrot AR.Drone 2.0 to the computer by Wi-Fi and 

began running the program, thus initiating the experiment. 

The experiment process was recorded starting from the 

take-off gesture, and after take-off, we began controlling 

the quadcopter’s direction—to the left, to the right, 

forward, backward, up, and down, followed by clockwise 

and anticlockwise rotation, and ending with landing. A 

successful landing marked the completion of one 

experiment, and a total of 50 tests were performed. If a 

gesture had to be executed twice or more to make the 

quadcopter move, it was logged as a failure. Furthermore, 

there was an interval of 5 seconds between each gesture; 

during this interval, if the user’s hand was discovered to 

have deviated from the Leap Motion device’s range of 

detection, the user would make a fist to make the 

quadcopter hover in place, and then move back into the 

range of detection before continuing the experiment. The 

results of all 50 tests are presented in Table 3, which 
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demonstrate that recognition failures for moving left and 

right were more evident than those of other gestures. The 

reason is that when the hand’s movement along the pitch 

axis was greater than 60° from horizontal or near vertical, 

the Leap Motion device could not successfully identify the 

gesture. When the gesture was maintained under 60° and 

gently waved for approximately 1 second, the direction of 

the quadcopter was controlled according to the gesture. 

All failures in the overall experiment were concentrated in 

the first 10 tests, which was determined to be caused by 

the user’s lack of familiarity with the gesture recognition 

controls; however, after 10 attempts, the familiarity led to 

increased success, and the number of times that each 

gesture was successfully recognized in one execution 

increased. The aforementioned gesture connection 

problem was also successfully resolved through 

determining the number of fingers. All in all, the gesture 

recognition controls met expectations and were able to 

control the quadcopter normally. 

 
Table 3. Results of the gesture recognition control experiments. 

 

Conclusion 

In this paper, the fabrication of the quadcopter is 

presented, which also provided insights into the operation 

of some of the major electronic components and how the 

overall structure operated. These insights were helpful in 

the later PID controller adjustments, specifically the rapid 

replacement of parts during malfunctions caused by 

collisions and return to the experiment. The quadcopter 

manufactured in this study was formed with an Arduino 

Nano, which is cheaper than professional flight control 

boards; wireless control was achieved through a 

smartphone Bluetooth connection rather than a 

conventional radio controller, keeping the overall 

manufacturing costs down while meeting the control 

efficiency requirements. In the PID control experiments, 

adjusting the PID values of the MultiWii flight control 

program enabled the quadcopter to achieve steady flight, 

provided insights into its flight principles, and enabled an 

analysis of the PID controller’s effects on the four motor 

units, which yielded the PID control parameters suitable 

for the developed quadcopter. Gesture recognition was 

combined with the quadcopter for gesture control; we 

took advantage of the high performance of the Leap 

Motion device in hand imaging and recognition to 

understand the principles in gesture recognition and 

analyze dynamic and static gestures. These insights were 

applied to controlling the quadcopter to move in four 

basic directions as well as rotate, take off, and land. The 

results of the gesture recognition and the gesture control 

experiments verified that the Leap Motion device was 

highly precise in gesture recognition, and also that this 

type of wireless motion sensor can meet the requirements 

for controlling a quadcopter. 
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