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Abstract: In this paper, two multi-voice singing synthesis frameworks are compared One proposed model consists of 

two blocks, namely, text-to-speech (TTS) converter and speech-to-singing (STS) converter. Synthesized speech is 

generated from lyrics for a target speaker's voice by TTS converter in the front-end. Later, a sung version is synthesized 

as per the given target-melody using encoder-decoder model in the STS module. We have compared our model with 

an existing multi-voice singing synthesis model, based on generative adversarial network (GAN) with phoneme 

synchronization information. The proposed system is systematically evaluated using subjective and objective tests. 

Three performance metrics, namely the mean opinion score (MOS), log spectral distance (LSD) have been analyzed as 

part of the study. Our study shows that the proposed model generates singing voices that adapts well to the target 

melody but the phonetic intelligibility is poor when compared to the baseline system. 
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Introduction 

Music composers may wish to hear different 

melodic variations of their compositions to finalize the 

most attractive tunes.  Besides, compositions may be 

sung in multiple singers to fix the best singing voice. 

Building systems to cater to these goals would result in 

interesting applications in the audio domain.  Multi-

voice singing synthesis has wide variety application in 

speech and music domains. This framework can be used 

in many deep learning applications as a n approach to data 

augmentation A comparative study on two multi-voice 

singing framework is carried out in this paper. Multi-voice 

singing synthesis synthesize singing in targe voice from 

lyrics.  A target-speaker reference speech and target 

melody will be fed to the system as acoustic cues to 

compute the characteristics of the target speaker and 

melody -speaker's reference speech and a target melody.  

    Singing voice synthesis has been studied in different 

aspects, including lyrics-to-singing alignment [1, 2], 

parametric synthesis [3], acoustic modeling [4], and 

adversarial synthesis [5, 6]. Jinlong et al. [7] presented a 

lyrics-to-singing voice synthesis system with variable 

timbre based on Gaussian mixture model (GMM). TTS 

module converts text to speech followed by a melody 

control mechanism to synthesize song from speech. It is 

done by altering the acoustic parameters of speech. 

GMM-based singing voice morphing algorithm is 

employed to vary the timbre. Marc Freixes et al. [8] 

introduced a unit selection-based text-to-speech-and-

singing synthesis framework, which integrates STS 

conversion to enable the generation of both speech and 

singing from an input text and a score. 

 

DeepSinger, a multi-lingual multi-singer singing 

voice synthesis (SVS) system is also proposed using singing 

training data mined from music websites [9]. A lyrics-to-

singing alignment model is designed to automatically 

extract the duration of each phoneme and further design 

a multi-lingual multi-singer singing model using feed-

forward transformer and Griffin-Lim. The relationship 

between musical scores and their acoustic features was 

modeled to generate singing voice in [4]. Most of the 

mailto:rajeev@cet.ac.in


 ORIGINAL ARTICLE                 https://doi.org/10.5875/ausmt.v13i1.2417 

International Journal of Automation and Smart Technology  2         Volume 13 | Issue 1 | 2417 

approaches in singing voice synthesis systems are mostly 

inspired by TTS and follow the basic components of TTS as 

building blocks [9]. In the proposed study, performance 

analysis is done on two models. We proposed a model 

(Model-1) by integrating multi speaker TTS synthesizer [10] 

and encoder-decoder framework [11] to synthesize 

singing voice. The second model (Model-2) is the state-of-

the art model proposed by [12]. Chandana et.al [12] 

employed WGAN approach for singing voice synthesis 

from a target melody. 

 

The paper is organized as follows; initially the model 

architectures are explained, followed by the assessment 

framework.  Subsequently the results are analyzed. 

Finally, the paper concludes by giving inferences about the 

study.  

Model Architectures 

     The performance of two models, namely, Model-1 

and Model-2 are investigated in detail using subjective 

and objective evaluations. 

 

Model-1 

     The block diagram of the Model-1 is shown in Figure 

Figure 2. Proposed framework for multi-voice singing synthesis from lyrics (Model-1) 

Figure 1. Multi-voice singing synthesis from lyrics based on WGAN (Model-2) 

https://doi.org/10.5875/ausmt.v13i1.2417
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1. It consists of two modules namely, TTS (text-to-speech) 

module and STS (speech-to-singing) module. These 

standalone modules are available in the literature. We 

concatenated both modules to develop a new multi-voice 

singing synthesis model without the support of phoneme 

duration information of target singing. 

TTS Module 
TTS module [10] consists of three blocks, namely, 

recurrent speaker encoder, a sequence-to-sequence 

synthesizer and a vocoder as shown in Figure 1. A fixed 

dimensional d-vector is computed in the encoder. Speaker 

encoder is a speaker-discriminative framework trained on 

a speaker verification paradigm.   Encoder maps a log-

Mel spectrogram to d-vectors. 40 channel mel-

spectrogram is processed by three stacked LSTMs.  L2 

normalization is applied at the output of the top layer ti 

create the final embedding. Sequence-to-sequence 

synthesizer predicts a Mel-spectrogram from a sequence 

of grapheme or phoneme inputs, conditioned on the 

speaker embedding vector. The recurrent sequence-to-

sequence with attention Tacotron 2 architecture is 

extended to support multiple speakers in the synthesizer. 

An embedding vector for the target speaker is 

concatenated with the synthesizer encoder output at each 

time step. The synthesizer is trained on pairs of text 

transcript and target audio. Vocoder converts the 

spectrogram into time-domain waveforms. Wavenet-

based vocoder is used in our system [13]. Vocoder inverts 

synthesized mel-spectrograms emitted by the synthesis 

network into time-domain wave forms. 

STS Module 
An encoder-decoder framework [11] with spectra-

to-spectra conversion is utilized for singing voice 

generation as illustrated in Figure 1. A vocal melody 

extractor [14], is used to extract melody contour from the 

inputted target melody, either humming or reference 

singing. Initially, silent frames are removed which aid the 

network to learn the alignment between speech and 

singing during training. The log magnitude spectrogram of 

the speech input is computed using a phase vocoder [15]. 

     An encoder-decoder-based deep learning 

framework [11] produce two encodings, one for speech 

and another for the target melody obtained in the pre-

processing stage. By using these encodings together, a 

sung version of the speech is produced using U-net [16] 

based network architecture. Finally, GriffinLim algorithm 

[17] is employed to reconstruct the waveform from the log 

magnitude-spectrogram. 

For the ease of handling variable length speech 

signals, fully-convolutional architecture (1D) with GRU 

recurrent layers are used. Both time and frequency are 

down sampled by a factor of eight at encoder side and up 

sampled by a factor of eight at the decoder side. Skip 

connections between encoder E1 and decoder D are 

introduced, to control the gradient vanishing problem and 

to train deeper networks [11]. 

 

Model-2 

GAN-based Model-2 is proposed in [12]. DCGAN-

based Model2 architecture [18] is shown in Figure 2. 

Five convolution layers form the integral part of the 

encoder-decoder framework.  Connections in the layers 

mimics the U-net architecture.  The dependencies within 

in the block are modelled by a critic through analysing   

block of fixed length input.   To ensure the dependence 

between consecutive blocks, overlap-add of consecutive 

blocks of output vocoder features are used, as described 

in [12]. Strided convolution is used for down sampling in 

the encoder and linear interpolation followed by normal 

convolution for up sampling is used in decoder [18].   

The network process N-sized blocks of consecutive frames 

to produce same size of output. The WGAN training is 

done using the reconstruction loss, as specified in [12]. 

The inputs to this system consists of frame wise phoneme 

annotations, continuous fundamental frequency 

extracted using spectral autocorrelation (SAC) algorithm, 

singer identity that broadcast throughout the time 

dimension [19] and a noise vector. This input conditioning 

is similar to [20]. The WORLD vocoder is used [21] for 

acoustic modelling of the singing voice. 

Figure 3. Mel-spectrograms (a) synthesized speech file, (b) generated music file: Model-1, (c) generated music file: Model-2 
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Performance Evaluation 

Dataset 

TTS 
     LibriSpeech data [22] is used for training and 

VoxCeleb1, and VoxCeleb2 [23] data is used for the 

validation for the encoder in WaveNet.   LibriSpeech 

data is used for the evaluation of synthesizer and vocoder. 

Validation data is used to tune the pre-trained weights.  

Audio files of 2484 speakers with a duration of 820 hrs are 

part of LibriSpeech corpus. The audio files rea sampled at 

sampling rate of 16kHz. 

STS 
     We use the NUS-48E corpus [24], which consists of 

48 popular English songs, sung by 12 singers both male 

and female. Each singer sings 4 different songs from a set 

of 20 songs, leading to a total of 169 min of recordings, 

with 25,474 phoneme annotations. We train the system 

using 10 out of 12 singers in NUS dataset.  For testing we 

used two singers from NUS-48E corpus dataset and two 

singers never seen before. 

Experimental Setup 

     As we mentioned earlier, we have integrated two 

frameworks namely TTS and STS to obtain Model-1. Lyrics 

and target speakers voice are given as input to TTS 

framework. A speech is synthesized as output, like reading 

out the lyrics in target speaker’s voice. This speech is fed 

to the STS encoder decoder model along with the target 

melody to generate the song. The output of Model-1 is 

compared with Model-2. Songs are synthesized in Model-

1 and Model-2 by giving both singing and humming inputs 

as target melody. We synthesized songs with variable 

duration and maximum    duration we tried is about 1    

minute. The synthesized samples are shared at https://rrs-

mvs-official.github.io/SynthSamples/ 

     The performance of these models are evaluated 

using subjective and objective methodology. For objective 

evaluation, we need to have the ground truth songs sung 

by 4 singers, used for testing. For the singers in NUS 

dataset, ground truth versions of songs are available in the 

dataset itself.  All the neural network architectures and 

audio processing framework for encoder-decoder 

framework are implemented using pytorch and librosa 

[16]. STFT is computed with 1,024-pt FFT size, 64ms 

window size, 16 milliseconds hop size and reused the 

phoneme dictionary in the dataset.  Learning factor λ of 

0.015 is chosen. Adam optimiser is adopted with initial 

learning rate 0.002. The network is trained for 14 epochs 

(1000 iterations each) with a batch size of 16. 

 

     

A hop size of 5 ms is used for extracting the vocoder 

features and the conditioning for WGAN in Model-2. 

Block-size, N = 128 frames, corresponding to 640 ms, a 

weight of recon = 0.0005 for Lrecon are used and trained 

the network for 3000 epochs. RMSProp is used for 

network optimization, with a learning rate of 0. 0001. The 

mel-spectrograms of synthesized speech file, generated 

music files from Model-1 and Model-2 are shown in Figure 

3. 

Evaluation Methodology 

     Subjective and objective evaluation has been 

carried out assess the efficacy of the models. Subjective 

evaluation is conducted using a perception test. The audio 

files will be assessed by listening to the files by evaluators. 

Objective evaluation computes parameters from the 

synthesized files and evaluate to measure the quality of 

files. 

 

Objective Evaluation 

    We used Log spectral distance (LSD) for objective 

evaluation. It is computed by averaging the Euclidean 

distance between true and synthesized log-spectrogram 

frame over time for frequencies between 100 Hz to 3.5 

kHz. LSD is defined as: 

Where, P (w), Q (w) represent power spectra of true and 

synthesized audio files, respectively. 

 

Subjective Evaluation 

     16 subjects evaluated the quality by playing the 

audio files.  All the listeners are presented with target 

lyrics, target voices and target melody (both singing and 

humming) and synthesized songs using Model-1 and 

Model-2. We computed four perceptual metrics as follows;  

 

Adaptation of song to target melody:  

This metric is used to measure how good the generated 

song matches to the target melody.  It measures the drift  

in the melody form the target 

. 

Singing quality:  This metric focus on the quality os 

singing by considering the noise degradation and breaks 

in the singing. It is not mandatory that synthesized files 

are having the singing quality. It may end-u in speech like 

sounds. These factors will be assessed by this metric.  

 

LSD = (1/2π)√∫ (10 log10 (
𝑃(𝑤)

𝑄(𝑤)
)

2𝜋

−𝜋

𝑑𝑤  

 

 

(1) 
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Phoneme quality of song:  Intelligibility is an important 

factor which affect the quality of the synthesized files.  

Phonetic quality is assessed by this metric.  Phonemic 

variation may deteriorate the quality of synthesized voice.  

 

Voice adaptation of target singer:  Our task also 

evaluates whether the singing voice matches with that of 

target. Even though the voice characteristics of the target 

speaker learned, synthesized voice may vary from the 

characteristics of the target voice. Thus, evaluators are 

directed to evaluate the voice adaptation in of the 

generated voice.  Five choicer are given from very low (1) 

to very high (5).  These grades are later converted to a 

numerical score as 5 (Very high), 4 (high), 3 (medium), 2 

(low), 1(very low. 

Results and Analysis 

Objective Evaluation 

As mentioned earlier, we evaluated LSD scores for 

the models under study.  We measured the LSD scores in 

two models, Model-1 and Model-2 with target melody as 

singing inputs as well as humming inputs. The results are 

tabulated in Table 1. 

LSD  
     From Table 1, it is worth noting that LSD of 9.98dB 

is reported for Model-2 as compared to 14.62 dB for 

Model-1 in the case of singing melody input. The best 

system is the scheme with low LSD. The significant margin 

shows that Model-2 matches well to the naturalness of 

true audio files. The trend is same for the case of humming 

voice too. The scores for the test-audio files for both 

singing and humming are plotted in Figure 5 (upper pane). 

It can be seen that lowest LSD is reported for Model-2 for 

all the test cases. 

 
Table 1. Objective evaluation metric LSD of Model-1 and 
Model-2. 

 

Subjective Evaluation 

     Subjective evaluation scoring is performed using 

graphical user interface (GUI). The listeners were given 

guidelines and sufficient time to record their feed-backs in 

the interface. Listeners evaluated the quality of audio by 

considering four criteria, namely, adherence to target 

melody, singing quality, phoneme clarity and voice quality. 

MOS scores are calculated for all the four criteria with four 

different singers each having five singing inputs and five 

humming inputs. Equal weight is given to all the 

evaluation-metric specific MOS (weight of 0.25). Total 

MOS is tabulated in Table 2 for both singing and humming. 

It can be observed that Model-2 performs better than 

Model-1. MOS scores obtained from 16 listeners for four 

criteria are shown in Figure 4. It is worth noting that MOS 

score is better for Model-2 in all evaluation metrics. It 

shows that overall quality of the audio samples 

synthesized by Model-2 dominates the files generated by 

Model-1.  

 

Table 2. Mean opinion score for Model-1 and Model-2. 

Total MOS is computed as weighted combination of four 

metrics. 

 

Figure 5. The objective evaluation metrics LSD 
 
 
Also, we analysed the correlation between objective and 
subjective evaluations to validate the effectiveness of  
the evaluation procedure. As shown in Figure 6, LSD and 
phonetic quality shows a desired negative correlation. As 
LSD increases, phonetic quality decreases. The correlation 
study shows the effectiveness of the tool in the 
performance analysis. On comparing both models, 
melody transfer is more or less same, but the phonetic 
intelligibility is poor in Model-1. This is due to the absence 
of phonetic alignment information in Model-1. 
 

 

Melody Input           Methods 

  Model-

1 

Model-

2 

Singing voice LSD(dB) 14.62 9.98 

Humming voice LSD(dB) 15.45 10.48 

Melody Input Methods 

 Model -1 Model-2 

Singing voice 2.42  3.53 

Humming voice 2.33  3.50 

https://doi.org/10.5875/ausmt.v13i1.2417
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Figure 6. Correlation between MOS (Phoneme quality of 
songs) and LSD. 
 

Conclusion 

The paper compares two models for multi-voice 

singing synthesis. The proposed model synthesizes singing 

voice without any phonetic alignment details. In addition, 

the models provide song in target melody fed to the 

system. The baseline model is the WGAN based multi-

voice-singing-synthesis approach. We examined the 

performance using subjective and objective parameters. 

Since WGAN model used phonetic alignment information 

for song generation, it had good phonetic intelligibility 

compared to our proposed model. As a future work, we 

are planning to enhance the phonetic intelligibility of our 

model by employing style transfer techniques. 
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