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Abstract: Ball balancing robot (BBL) forms a dynamically stable system mounted on a ball, which is in point contact with 

the ground surface. An omni-directional system for the BBL with maneuvering ability in the horizontal plane is attained 

as compared to two-wheeled robots, which can only move forward or backward. The stability of the BBL is defined by 

its capability to retain the upright position under all circumstances. Available literature includes the use of several single 

controllers to stabilize the BBL. This study performs a comparison of two popular controllers for stability analysis of the 

BBL, which included two model-based controllers, i.e., Proportional Integral Derivative (PID) and Linear Quadratic 

Regulator (LQR). A 2D planar model is considered for mathematical modeling at the two vertical planes as well as the 

horizontal plane. Furthermore, the steady state equations are derived using the Euler-Lagrangian method. PID and LQR 

controllers are used to provide stability to the BBL using a mathematical toolkit in MATLAB. The results from MATLAB 

are used to study the differences between PID and LQR for stability of the BBL based on time needed to balance the 

robot. The settling time for the PID and LQR controllers was 0.79 seconds and 2.25 seconds, respectively. The results 

illustrate that the PID controller stabilized the BBL in upright position efficiently and more swiftly as compared to the 

LQR controller. 

Keywords: Ballbots; LQR; MATLAB; Mathematical Modeling; PID. 

 

 

Introduction 

     Self-balancing robots are well acknowledged for 

their ability to stabilize themselves using one or two 

wheels or a ball [1]. The concept of inverted pendulum is 

applied for either type, i.e., the center of mass of the 

robot lies above its point of contact with the ground. The 

pioneering concept based on this method is the two-

wheeled robot, which balances itself with a point contact 

on the ground. This allows it to move freely in forward and 

backward directions, as used in the popular Segway RMP 

wheelchair, known as the IBOT [2, 3]. Subsequently, 

further developments in the same field emerged with 

tele-presence [4] and UBOT [5, 6, and 7]. A major 

limitation is that the wheels of the robot were uni-

directional due to which the bot is falling in the vertical 

plane and not permitting sideways movement. This led to 

the development of the single wheeled robots, which 

overcame this constraint and could perform several tasks 

in desired directions with ease. 

 

Ballbots were developed, as the shortcomings of the 

two-wheeled robots were apprehended [8, 9, 10, and 11]. 

Unlike two wheeled robots, BBL can balance itself on a ball 

and moreover it can maneuver in any direction at any 

instant (omni-directional). The principle on which the BBL 

works is to keep the center of mass of the robot in line 

with the point of contact between the ground surface and 

the ball. Therefore, in order to keep the robot in upright 

position, the movement of the ball is controlled counter 

to movement of the body.  This is achieved by using 
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omni-directional wheels, which rotate the main ball in 

contact with ground in the counter direction further 

maintaining upright position of the robot. 

 

A BBL mainly consists of three mechanical parts: 

body, undercarriage and the ball. The undercarriage 

consists of three omni-directional wheels attached to DC 

motors, which are placed rotation-symmetrically at 120° 

on the ball. The omni-directional wheels are mounted on 

a ball that rolls on the ground allowing the robot to move 

in any direction. The body of the robot is mounted on the 

undercarriage. The dynamics of the BBL is complex given 

the ability to move along all directions in the horizontal 

plane. The first prototype of a BBL was developed by Tom 

Lauwers and Ralph Hollis. They incorporated rollers 

instead of omni-directional wheels and a belt drive 

mechanism, which allowed the ballbot to move forward 

[12, 13]. Consequently, there were many upcoming 

researchers, which began to research on this topic [14, 15, 

16, and 17]. 

 

Laszlo Havasi (2005) autonomously developed a 

ballbot named ERROSphere, which used optimal control 

theory using a linear quadratic regulator (LQR) model 

based on a linear approximation of the system equations. 

Furthermore, Kumagai (2008) named his work as BallIP 

[10] at the Tohoku Gakuin University. The model in this 

case could balance not only the robot itself but also an 

additional weight of 3 kg, which demonstrated another 

application of the ballbot in the field of transportation. In 

2010, students of mechanical engineering department of 

a University in Zurich developed a ball-balancing robot 

named Rezero. The main characteristics of Rezero were 

that it could maneuver like a human being.  

 

A second prototype of Ballbot was made by Tohoku 

Gakuin University (TGU) utilizing stepper motors placed at 

the corners forming a shape of a triangle, which took into 

account the yaw mechanism [12, 18]. University Of 

Adelaide demonstrated their ballbot and tried to balance 

it on using balls of an assortment of sizes [12, 19]. Till date 

the studies on BBL were carried out using single controller 

to stabilize the BBL. This paper presents the comparison 

of two model-based controllers, i.e., PID and LQR.  

 

The current study focuses on the comparison of two 

controllers, LQR and PID with an objective to develop an 

optimal system controller. For previously developed 

balancing robots, researchers have used only a single 

controller for the system. The authors could not find a 

comparison study for the two most popular controllers. 

The objective of the current study is to develop a 

prototype of BBL, study the two controllers on the system, 

and suggest the best out of two for better stability of the 

BBL. 

 

Mathematical Modeling 

     A 2D model for the BBL is considered for this study. 

Mathematical model for two planes i.e., vertical plane 

(YZ/XZ) and horizontal plane (XY) are used for generating 

the equations of motion. 

 

 

Figure 1. 2D model of the BBL. 

 

Where 

rB   Radius of the ball 

rW   Radius of Omni wheel 

IB    Moment of inertia of the ball 

IW    Moment of inertia of the Omni wheel in the YZ-

/XZ-plane 

IWxy  Moment of inertia of the Omni wheel in the XY-

plane 

IA    Moment of inertia of the body of the robot in the 

YZ-/XZ-plane 

IAxy  Moment of inertia of the body of the robot in the 

XY-plane 

l    Distance between COM of the ball and COM of the 

body of the robot 

 

And, 

𝜑𝑥 and 𝜑𝑦  specify the orientation of the ball, 

𝜃𝑥,𝜃𝑦 and 𝜃𝑧  specify the orientation of the body and 

𝜓𝑥,𝜓𝑦 and 𝜓𝑧  specify the orientation of the virtual 

actuating wheels. 

 

Mathematical model 

Energy in YZ/XZ Plane 
 

Derivation of the kinetic energy and the potential 
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energy of the different parts of the BBL including the 

equations for the ball, the frame, and the omni-directional 

wheels were obtained. 

 

The kinetic energy (T) of the ball is given as the 

summation of translational and rotational energy: 

 

𝑻𝑩,𝒚𝒛 =
𝟏

𝟐
. 𝒎𝑩. (𝒓𝑩

𝟐 . �̇�𝒙
𝟐) +

𝟏

𝟐
. 𝑰𝑩. �̇�𝒙

𝟐
 

 
The potential energy (V) of the ball is given by 

 

The potential energy for the ball is zero as the ball is 

moving on horizontal surface and therefore has no 

potential energy. 

 

Similarly, the kinetic and potential energy of the 

body are given underneath 

 

 

𝑻𝑨,𝒚𝒛 =
𝟏

𝟐
. 𝒎𝑨. (𝒓𝑩

𝟐 . �̇�𝒙
𝟐 + 𝟐. 𝒓𝑩. 𝒍. �̇�𝒙. �̇�𝒙. 𝒄𝒐𝒔𝜽𝒙

+ 𝒍𝟐. �̇�𝒙
𝟐 +

𝟏

𝟐
. 𝑰𝑨. �̇�𝒙

𝟐 

 

 

 

Whereas the potential energy is 

 

𝑽𝑨,𝒚𝒛 = 𝒎𝑨. 𝒈. 𝒍. 𝒄𝒐𝒔𝜽𝒙  

 

Energies of the omnidirectional wheel are denoted as 

 

𝑻𝑾,𝒚𝒛 =
𝟏

𝟐
. 𝒎𝑾. [(𝒓𝑩

𝟐 . �̇�𝒙
𝟐 + 𝟐. 𝒓𝑩. (𝒓𝑩 +

𝒓𝑾). �̇�𝒙. �̇�𝒙. 𝒄𝒐𝒔𝜽𝒙 + 

(𝒓𝑩 + 𝒓𝑾)𝟐. �̇�𝒙
𝟐] +

𝟏

𝟐
. 𝑰𝑾. (

rB

rW
. (φ̇x − θ̇x))2 

 

𝑽𝑾,𝒚𝒛 = 𝒎𝑾. 𝒈. (𝒓𝑩 + 𝒓𝑾). 𝒄𝒐𝒔𝜽𝒙                        

  

Lagrangian equation for the YZ/XZ Plane is given by 

summation of kinetic energies for ball, body and 

omnidirectional wheels and subtracting the summation of 

potential energies. 

 

𝑳(𝝋𝒙, 𝜽𝒙, �̇�𝒙, �̇�𝒙) = 𝑻𝑩,𝒚𝒛 + 𝑻𝑨,𝒚𝒛 + 𝑻𝑾,𝒚𝒛  

−𝑽𝑩,𝒚𝒛 − 𝑽𝑨,𝒚𝒛 − 𝑽𝑾,𝒚𝒛  

 

Further to which as the Lagrangian for the YZ/XZ 

plane is used to find the equation of motions by using 

Euler Lagrangian equation, which is given by 

 
𝒅

𝒅𝒕
(

𝝏𝑳

𝝏�̇�𝒙
) −

𝝏𝑳

𝝏𝝋𝒙
= 𝝉𝝋𝒙  

 
𝒅

𝒅𝒕
(

𝝏𝑳

𝝏�̇�𝒙

) −
𝝏𝑳

𝝏𝜽𝒙
= 𝝉𝜽𝒙 

                

 

The equations of motion are derived from the above 

Euler Lagrange further to which result is obtain by 

combining the equations in the form below 

 

𝑴(𝒒𝒚𝒛)�̈�𝒚𝒛 + 𝑪(𝒒𝒚𝒛, �̇�𝒚𝒛)�̇�𝒚𝒛 + 𝑮(𝒒𝒚𝒛) = 𝝉𝒆𝒙𝒕  

 

 

𝑴𝒚𝒛 = [
𝑴𝟏𝟏 𝑴𝟏𝟐

𝑴𝟐𝟏 𝑴𝟐𝟐
] 

  

 

𝑴𝟏𝟏 = 𝒓𝑩
𝟐 [(𝒎𝑨 + 𝒎𝑩 + 𝒎𝑾)] +

𝒓𝑩
𝟐

𝒓𝑾
𝟐 . 𝑰𝑾 + 𝑰𝑩 

 

  

𝑴𝟏𝟐 = 𝒄𝒐𝒔(𝜽𝒙(𝒕)) . 𝒓𝑩[𝒓𝑩. 𝒎𝑾 + 𝒓𝑾. 𝒎𝑾 +

𝒍. 𝒎𝑨  ]  − [
𝒓𝑩

𝟐

𝒓𝑾
𝟐 . 𝑰𝑾] 

𝑴𝟐𝟏 = 𝒄𝒐𝒔(𝜽𝒙(𝒕)) . 𝒓𝑩[𝒓𝑩. 𝒎𝑾 + 𝒓𝑾. 𝒎𝑾 + 𝒍. 𝒎𝑨]

− [
𝒓𝑩

𝟐

𝒓𝑾
𝟐 . 𝑰𝑾] 

 

𝑴𝟐𝟐 = 𝒍𝟐. 𝒎𝑨 + 𝒎𝑾(𝒓𝑩 + 𝒓𝑾)𝟐

+
𝒓𝑩

𝟐

𝒓𝑾
𝟐 . 𝑰𝑾 + 𝑰𝑨 

 

 

𝑪𝒚𝒛 = [
𝟎 − 𝒔𝒊𝒏(𝜽𝒙(𝒕)). �̇�𝒙. 𝒓𝑩(𝒓𝑩. 𝒎𝑾 + 𝒓𝑾 . 𝒎𝑩 + 𝒍. 𝒓𝑩. 𝒎𝑨)

𝟎 𝟎
]  

 

𝑮𝒚𝒛 = [
𝟎

− 𝒔𝒊𝒏(𝜽𝒙(𝒕)). 𝒈. ((𝒓𝑩 + 𝒓𝑾). 𝒎𝑾 + 𝒍. 𝒎𝑨)] 

 

 

𝑽𝑩 = 𝒐  
 

(1) 

(2) 

(3) 

        

(4) 

        

(5) 

 (8) 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

 

(14) 

 

(15) 

(16) 

(17) 

 (7) 

        

(6) 
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State Space 

     Applying Lagrange equation to the above model 
the State Space for YZ/XZ Plane is denoted by  

𝑴𝟏𝟏. �̈�𝒙 + 𝑴𝟏𝟐. �̈�𝒙 + 𝑪𝟏𝟐. �̇�𝒙 = 𝝉𝒙𝟏 

𝑴𝟐𝟏. �̈�𝒙 + 𝑴𝟐𝟐. �̈�𝒙 + 𝑮𝟐. 𝜽𝒙 = 𝝉𝒙𝟐 

𝑽𝟏 = �̇�𝒙 

3D Solid model 

The 3D model for the BBL is prepared using 
commercial software (Solid works 2014 developed by 
Dassault Systems version 22, release date October 7, 
2013). This model represents an overview of the actual 
model of the Ballbot as shown in Figure 2.   

 

Figure 2. 3D Solid works model showing the BBL in 

upright position. 

 

�̇�𝟏 = �̈�𝒙 

�̇�𝟏 = (𝝉𝒙𝟏 − 𝑴𝟏𝟐. �̇�𝟐 − 𝑪𝟏𝟐. 𝑽𝟐)/𝑴𝟏𝟏 

𝑽𝟐 = �̇�𝒙 

 

�̇�𝟐 = (𝝉𝒙𝟐 − 𝑴𝟐𝟏. �̇�𝟏 − 𝑮𝟐. 𝜽𝒙)/𝑴𝟐𝟐 

 

�̇� = 𝑨𝒙 + 𝑩𝒖 

 
𝒚 = 𝑪𝒙 + 𝑫𝒖 

 

 

 

 

 

Table 1. Parameters derived from 3D model 

 

Parameter Description Value 

mb mass of ball.  0.181[kg] 

ma mass of body 1.64 [kg] 

mw mass of omnidirectional wheel 0.00782 [kg] 

rb radius of ball 0.062 [m] 

rw radius of omnidirectional wheel 0.0225 [m] 

l length of end of body to c.o.g. 0.219 [m] 

Ib moment of inertia of ball 4.63 x 10^-4 

[kg-m^2] 

Iw moment of inertia of 

omnidirectional wheel 

1.98 x 10^-5 

[kg-m^2] 

Ia moment of inertia of body 5.4 x 10^-3 

[kg-m^2] 

g gravitational acceleration 9.81 [m/s/s] 

 

 
𝑨 =  [

𝟎    
𝟎    
𝟎    
𝟎    

𝟏
𝟎
𝟎
𝟎

𝟎
   −𝟓𝟏𝟎. 𝟔

𝟎
 𝟏𝟕𝟔. 𝟏

𝟎
   𝟎. 𝟗𝟏𝟓𝟕

𝟏
  −𝟎. 𝟐𝟒𝟎𝟖

] 
 

 

 
𝑩 =  [

𝟎    
−𝟏𝟒𝟒. 𝟕

𝟎    
𝟒𝟗. 𝟔    

] 
 

 

𝑪 =  [
𝟏

 𝟎  
𝟎  
𝟎  

𝟎
𝟏

   𝟎
   𝟎

] 

 

𝑫 =  [
𝟎
𝟎

] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Actual prototype A) Isometric view showing the 

acrylic plate, B) Front view showing the body and 

omnidirectional wheel 

 

 

(18) 

 (19) 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

 (25) 

 (26) 

A 

B 
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Controller design 

Proportional–Integral–Derivative (PID) controller is 
a control loop feedback mechanism (controller) 
commonly used in control systems. A PID controller 
continuously calculates an error value  e(t) as the 
difference between a desired set point and a 
measured process variable and applies a correction based 
on proportional (Kp), integral (Ki), and derivative 
(Kd) terms. 

The controller tries to minimize the error over time 
by tuning of a control variable u(t), which is further 
dependent on coefficients of proportional, integral and 
derivative terms given by the following formula. 

 

 

Figure 3. A block diagram of a PID controller in a 

feedback loop 

 

There are some common methods for obtaining PID 

control parameters: 

 

Manual Tuning: This method involves manually adjusting 

the parameters based on the system's response to 

disturbances. It usually starts with setting the integral and 

derivative gains to zero (Ki = Kd = 0) and gradually 

increasing the proportional gain (Kp) until the system 

starts to oscillate. The integral and derivative gains are 

then adjusted to reduce oscillations and improve stability. 

Manual tuning is an iterative process and requires expert 

knowledge and experience. 

 

Ziegler-Nichols Method: This method provides a 

systematic approach to tune PID parameters based on the 

system's response to step inputs. It involves initially 

setting Ki and Kd to zero and increasing Kp until the system 

exhibits sustained oscillations. The critical gain value (Kcu) 

and the corresponding oscillation period (Pu) are noted. 

Based on these values, the ultimate gain (Ku) and ultimate 

period (Tu) are calculated. The final PID parameters are 

obtained by applying specific formulas based on the 

control type (P, PI, or PID) recommended by Ziegler-

Nichols. 

 

Auto-tuning Algorithms: Several automated tuning 

algorithms, such as the Ziegler-Nichols ultimate gain 

method, Cohen-Coon method, and others, have been 

developed to determine PID parameters automatically. 

These algorithms often involve applying a series of 

predefined test signals to the system and analyzing the 

response data to compute optimal PID parameters. Auto-

tuning algorithms can save time and effort compared to 

manual tuning but may not always provide the best results 

in complex systems. 

 

Model-based Tuning: This method involves developing a 

mathematical model of the system and using it to 

determine PID parameters. The model can be derived 

from system equations or identified from experimental 

data. Model-based tuning techniques, such as pole 

placement or optimization-based methods, use the 

system model's characteristics to calculate PID 

parameters that meet specific control objectives. 

 

The selection of the tuning method depends on the 

system's complexity, available resources, time constraints, 

and the desired control performance. Additionally, tuning 

PID parameters may require multiple iterations and fine-

tuning to achieve the desired system response. 

 

Linear–quadratic regulator (LQR) is a method to define 

state-feedback control gain matrix . 

In LQR controller two parameters, R and Q, are considered 

which balances the control effort (u) and error, 

respectively. The simplest case is to assume R=1 and 

Q=C’*C. 

 

The LQR method basically allows for the control of 

both outputs (the body angle and the ball position). 

So as the value of Q is given by C’*C, Q is represented by 

a 4x4 matrix as 

 

Q=[

1 0 0
0 0 0
0
0

0
0

1
0

0
0
0
0

] 

 

The element (1, 1) in the above matrix denotes the 

weight on the ball’s position and the element (3, 3) 

denotes the weight on the body’s angle. The input weight 

value R is considered at 1. Now further the value of K 

which is given by k=lqr (A,B,Q,R) is plotted in the graph 

shown in Figure 7. 
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Results and Discussion 

The performance of both, PID and LQR controllers 

for the BBL are presented in this section by comparing the 

settling time and peak amplitude. 

 

 

Figure 5. Response of the body position to an impulse 

disturbance under PID control 

 

The response of the body position to an impulse 

disturbance under PID control when the values of Kp =100, 

Ki =1 and Kd =1 is illustrated in Fig. 5. 

The amplitude vs. time graph shows that the Settling time 

for the system is 0.175 seconds and the peak amplitude is 

0.449 radians after 0.02 seconds. The settling time of the 

response is determined to be 0.175 seconds, which is less 

than 2 seconds and which is well within the accepted limit. 

As per the literature the limit for settling time for the robot 

is 2 seconds and tilt angle is 5° [14, 15]. Since the steady-

state error approaches to zero in a sufficiently swift 

manner, no further integral tuning is needed. The peak 

response, however, is larger than the needed value of 0.08 

radians (5)̊. Therefore, the overshoot can be controlled by 

increasing and tuning the amount of derivative control. 

Hence, at Kd=12 proper response is achieved and graph is 

plotted showing its characteristics as shown in Figure 6. 

 

Figure 6. Response of the body position to an impulse 

disturbance under PID control 

Figure 6 depicts the response after changing the 

derivative control Kd=12, the overshoot has been reduced 

so that the body does not move more than 5 ̊away from 

the vertical axis. Additionally, it is observed that the 

settling time for the system is 0.483 seconds and the 

overshoot is controlled, as the peak amplitude value is 

0.048 radians after 0.01 seconds. 

 

 

 

Figure 7. Step response with LQR 

 

Figure 7 illustrates the peak amplitude for LQR 

controller as 0.025 m which is lower as compared to 

earlier results of PID controller. However, the time taken 

to balance the system is 2.25 seconds, which is higher as 

compared to PID controller. 

 

Table 2. Comparison between PID and LQR controller 

 

The comparison in the Table 2 shows that PID 

controller has more overshoot in the beginning but it 

controls and balances the system in 0.798 seconds as 

compared to LQR controller for which overshoot is less but 

settling time for stabilization is 2.25 seconds. Thus for this 

system PID controller gives better results for stabilization 

as compared to LQR controller.  

 

The superiority of the PID controller over the LQR 

controller in this scenario can be attributed to several 

factors. Firstly, the PID controller is capable of handling a 

wide range of system dynamics, making it suitable for 

diverse applications. In contrast, the LQR controller relies 

on a linear model that may not accurately capture 

complex or nonlinear system behaviors. 

Secondly, the PID controller offers greater flexibility in 

parameter tuning. Its proportional, integral, and 

derivative terms can be adjusted to optimize performance 

for specific system characteristics. On the other hand, the 

LQR controller requires careful selection of weighting 

Controllers Rise 

Time(s) 

Settling 

Time(s) 

Peak 

Amplitude 

(m) 

Peak 

time(s) 

PID 0.004 0.798 0.0481 0.01 

     

LQR 0.004 2.25 0.025 0.1 
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matrices, which can be more challenging and may not 

capture the system dynamics as effectively. 

 

Furthermore, the PID controller demonstrates 

robustness by effectively handling uncertainties and 

disturbances through its integral and derivative terms. 

This adaptability allows the controller to respond to 

changing conditions in real-time applications. In contrast, 

the LQR controller may not perform as well in the 

presence of uncertainties. 

 

 

 

 

Figure 8. Comparison of tilt angle response using PID 

controller between SBR (Self-balancing Robot) and BBL 

 

The comparison between BBL and SBR in the 

aspects of the performance of the control system is shown 

in Figure 8 [22]. The results show that the response time 

to get BBL stable is less as compared to SBR. Moreover, 

PID controller has a higher overshoot in case of SBR. As 

illustrated by Wei An for a control system on a two 

wheeled self-balancing robot and using PID controller 

studied the response performance [22]. Similarly, the 

current study illustrates that the BBL is more efficient than 

SBR when compared for stabilization of the robotic system. 

Conclusion and Future Work 

In this paper, a detailed 2D mathematical model of 

a ball-balancing robot, named BBL, has been presented. 

The dynamic model of BBL mobile robot with nonlinear 

equations has been derived using Lagrange’s method. The 

equations derived are then linearized using the Euler-

Lagrangian approach and further analyzed for controller 

design. The linearized equations have been analyzed to 

see whether the system is controllable and observable, 

and can be stabilized. State space model has been derived 

to get final equations for further assessment. 

Comparison between the two model-based controllers, 

i.e., PID and LQR for balancing the robot has been 

presented. Experiments have been carried out to test the 

controllers and the results are presented for stabilization 

time and swift movement. A comparative study based on 

the system between PID and LQR illustrates that the PID 

controller stabilizes the BBL in upright position more 

efficiently and faster as compared to the LQR controller. 

In future work, 3D mathematical modeling will be taken 

into account and the controllers will be compared in real 

time. 
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