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Abstract: The analytical determination of dispersion relations of stress waves propagating 
within an axisymmetric member has been well established during the past four or five decades. 
For dynamic analysis associated with fundamental modes of vibration, various one-dimensional 
(1-D) member theories have been proven to be able to reproduce reasonable approximations for 
the dispersion relationship. These 1-D member theories provide more efficient and simpler solu-
tions than those obtained by the three-dimensional (3-D) elasticity theory since the need for 
evaluating special functions such as Bessel functions is eliminated. To assess the loss in 
prestressing force, elastic waves were applied by various researchers to slender members of axi-
symmetric cross sections, such as seven-wire-strand tendons and underground pipelines. Thus 
the feasibility of using the 1-D member theories to predict the associated dispersion phenomenon 
should be addressed. In this work, formulations of most applicable 1-D linear theories were 
summarized and corresponding dispersion approximations were obtained in terms of dimen-
sionless parameters. These formulations include the three-mode Mindlin-McNiven theory for 
axial vibrations, the two-mode Timoshenko beam theory for transverse vibrations, and the 
nonlinear theory for cable dynamics. 
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1. Introduction 
 

Wave mechanics associated with slender 
members of axisymmetric cross sections has 
been well studied some fifty to sixty years 
ago. Although exact formulations for certain 
simple cases had been derived as early as in 
the late nineteenth century, the complicated 
nature of the exact solutions of these 3-D 
formulations limited their applications to en-
gineering problems until the advent of the era 
of modern numerical computations. On the 
other hand, approximations using simpler 1-D 
theories were widely accepted in the dynamic 
analysis of rod-like members even before the 
computer age. At the present time, the 1-D 

theories are still efficient in providing reason-
able solutions to the fundamental modes of 
vibration and wave propagation. For slender 
members under the action of prestressing 
forces, the derivation of the exact 3-D formu-
lations may not be possible while the 1-D lin-
ear theories can still take into account the 
prestressing effect by approximation. Never-
theless, it is intended in this paper to incorpo-
rate the effect of axial loads into the 1-D lin-
ear theories and to study possible variations of 
the dispersion characteristics associated with 
the prestressed members.  

The dynamic formulations for various  
1-D linear members, such as a rod, a cable, 
and a beam or a beam-column, have been ex-



Chih-Peng Yu and Chih-Hung Chiang 
 

2     Int. J. Appl. Sci. Eng., 2003. 1, 1 

tensively investigated. As far as the elastic 
dispersion relation is concerned, these 1-D 
formulations normally lead to predictions in 
good agreement with those obtained from the 
3-D ones. During the past fifty years, many 
researchers have developed useful 1-D 
approximation theories and proposed valuable 
applications to specific engineering problems. 
For example, a relatively rigorous formulation 
associated with the axial vibration of rods was 
derived as early as 1951 by Mindlin and 
Herrmann [1] and were proven to be practi-
cally correct in predicting the dispersion 
curves for the first two modes of the axial 
wave propagation. Mindlin and McNiven [2] 
later extended this work to further include 
second order axial deformation in the formu-
lation. Through the use of certain combina-
tions of the so-called adjustment coefficients, 
the corresponding predictions of the disper-
sion curves match quite well with the 3-D so-
lutions, particularly for the first-mode longi-
tudinal wave.  

A well-known approximation for the flex-
ural behavior of beams, recognized as the Ti-
moshenko beam theory, has been widely 
adopted in both static and dynamic analyses 
of structures, particularly for deep beams. 
Dynamic analysis using such a theory results 
in very good predictions for the first two 
modes of the flexural wave propagation. 
Based on this approximation theory, more 
general forms considering the effects due to 
the axial force and distributed restraints were 
proposed and applied to dynamic problems 
associated with axially loaded member. Chen 
et al conducted a comprehensive study of the 
dynamic response of an axially loaded beam 
on a viscoelastic foundation using a continu-
ous dynamic stiffness formulation based on 
the Timoshenko beam theory [3]. Yu & 
Roësset used continuous formulations to carry 
out a series of studies on various dynamic 
problems associated with seismic response as 
well as non-destructive dynamic testing of 
structural elements [4-6]. 

Dynamic behavior of tensioned cables is 
usually described by the classical cable theory 
that neglects the second order displacements 
and the inertial effect in the axial direction. 
This simple approximation leads to a non-
dispersive relation associated with the trans-
verse vibration of the tensioned cable. Sarkar 
& Manohar proposed a rather comprehensive 
model regarding the continuous dynamic for-
mulations for a tensioned cable with a quad-
ratic geometric profile and subjected to a con-
stantly moving axial load [7]. Such formula-
tion results in two dispersion branches with 
respect to both the transverse and axial vibra-
tions. 

For members with uniform sectional prop-
erties, the exact solutions based on the corre-
sponding 1-D theories can usually be ex-
pressed in terms of exponential functions and 
thus the derivation of the dispersion formulae 
is straightforward. Similar derivation seems 
impossible for non-uniform members such as 
a seven-wire strand. Only 1-D approximation 
may be obtained for a specific wire in such a 
sophisticated configuration. Instead of at-
tempting to derive the exact formulation for 
non-uniform members, approximations based 
on solutions for curved beams can be used to 
provide dispersion information for the outer 
spiral wires. This approach provides often 
better approximations than the traditional es-
timation using the straight-member solutions. 
In this paper we concentrate however on 
straight members of uniform cross sectional 
properties. Various formulations are consid-
ered, including an axial member under axial 
deformation, a beam under axial load, and a 
cable-like member under both axial 
(prestressing) and lateral (dead) loads. Modi-
fications of the second order theory for axial 
members are made to incorporate the confin-
ing effect due to the peripheral tractions. Such 
modifications provide an efficient way to 
evaluate the dispersion relation of the center 
wire of a seven-wire strand by avoiding some 
additional computations. 
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2. Formulations for axially loaded mem-
bers 

 
2.1. Mindlin-McNiven theory for rod 
 

In this second order theory, three nodal de-
grees of freedom are used to represent the 
first order uniform axial deformation u1, the 
linearly varying lateral contraction uc, and the 
second order quadratic axial deformation u2, 
respectively. Following the derivation pro-
posed by Mindlin and McNiven [2], the gov-
erning equations of a uniform rod with a cir-
cular cross section of radius a can be shown 
as 
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where λ and µ are the Lame's constants, ρ is 
the mass density, R and Z are the distributed 
peripheral stresses in the radial and longitudi-
nal directions, respectively. The adjustment 
factors ki’s are intended to make the spectral 
characteristics match the comparable disper-
sion curves from the exact 3-D theory. In 
these equations, the three deformation vari-
ables, u1, uc, and u2, have been expressed in 
terms of the uniform first-order axial dis-
placement u, the constant lateral contraction 
strain ψ, and the second-order axial deforma-
tion w, respectively, as 

uu =1  
ψauc =  

( )[ ]wu a
r 2

2 21−=  
Integrating the above stress equations over the 
circular cross section, the equations of motion 

can be expressed in terms of the member 
forces with respect to natural boundary condi-
tions as  
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where F and Q are the axial force and lateral 
contraction moment, respectively. Pr is the 
resultant internal force integrated from the 
stress components in the radial and transverse 
directions. F1 is the integration of the quad-
ratic distributed axial force associated with 
the second order axial deformation. These 
forces can also be expressed as 
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By neglecting R and Z and converting all 
equations to the frequency domain, the spec-
tral equations of motion become 
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where 
)( 22

3 Pc IkD ρω=  

)( 2 ADx ρω=  

)( 22
4 AkDs ρω= . 

 
The governing equations of the three-mode 
model can be obtained by expressing Eq. (7a) 
to (7c) in the matrix form.  
Assume the solutions to this system of ordi-
nary second-order differential equations for 
the three displacements to be  
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Substitution of these solutions into Eqs. (7a) 
to (7c) leads to, 
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The spectral characteristic equations of this 
three-mode model can thus be obtained by 
expanding the determinant of the frequency 
dependent matrix S

)
 as 
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Eq. (10) is a cubic equation with respect to 

2r . The three roots of 2r  can be obtained 
either numerically or analytically from ex-
plicit expressions of a cubic equation as 
shown in reference [9]. The dispersion curves 
can thus be derived from the relation between 
the characteristic root and the frequency in 
which the imaginary part of the characteristic 
root represents the wave number of the 
propagating wave. 

Next we consider the application of this 
theory to the modeling of the center wire of a 
seven-wire strand. The confining effect from 
the 6 spiral wires can be taken into account 
assuming that both the confining and fric-
tional forces are uniformly distributed in the 
form of the equivalent peripheral stresses R 
and Z. Although Eq. (2) allows the inclusion 
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of peripheral stresses, only stresses as func-
tions of the three displacements will result in 
changes of the characteristic Eq. (10) and thus 
lead to different dispersion curves. Assuming 
these confining and frictional forces to be dis-
tributed restraints along the center wire, the 
integrated peripheral forces can be expressed 
in a simple form as 

wyuyZa ))
21

ˆ2 +=π   (11)  
in which the coefficients yi’s depend on the 
geometry of the peripheral wires and the axial 
force.  

In Eq. (11), the confining effect is simply 
interpreted as functions of the two axial dis-
placements. This assumption seems reason-
able since different levels of the confining 
stresses in the centrifugal direction cause dif-
ferent restraining effects on the center wire 
and the radial stresses depend actually on the 
magnitudes of the axial forces in the periph-
eral wires. Substitute Eq. (11) into Eqs. (1a) 
to (1c), the revised version of Eq. (9) can be 
shown as  
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An approximate dispersion relation for the 
center wire can then be obtained from solving 
the characteristic equation associated with Eq. 
(12). It is noted that Eq. (2) may also be used 
to provide approximate characteristic equa-
tions for various dynamic problems associated 
with the axial deformation of straight mem-
bers as long as the peripheral stresses can be 
manipulatively correlated with the displace-
ment functions.  

2.2. General theory for beam 
 
Next we consider the traditional Ti-

moshenko beam theory with additional as-
sumptions for the axial force and distributed 
restraints. The governing equation for a gen-
eral flexural member under the action of axial 
force can be shown as 
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where N represents axial force (positive for 
tension), κ is the shear coefficient of the cross 
section, and two spectral constants  are intro-
duced to simply the expression, namely  
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Substitution of the following solution,  
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Normally, the effects of N/EA and N/GA 
are so small that the governing differential 
equation can be reduced to 
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Therefore, the coefficients for the characteris-
tic equation can be expressed as 
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The corresponding dispersion curves can then 
be computed by solving the characteristic root 
with 
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2.3. General theory for cable 
 

According to Sarkar & Manohar [7], the 
governing differential equations for a vibrat-
ing cable taking into account the coupling ef-
fect between axial and transverse deforma-
tions are given as  
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where P(x) is the tension force, E(x) is the 
Young’s modulus, A(x) is cross sectional area, 
m(x) is the mass per unit length, and c0 is the 
moving velocity of the cable’s rigid body mo-
tion. Symbols u and v stand for the displace-

ments in the horizontal (x) and vertical (y) 
axes, respectively.  

For a uniform cable under the action of a 
constant tension force, the governing differen-
tial equations in the frequency domain can be 
derived as  
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Assume the profile of the cable can be 
approximated by a straight line with a slope 
y’ and a zero curvature (y’’ = 0), the system 

of equations in the frequency domain can be 
further simplified as  
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in which λωω 0ic−= , and λ  is the complex 
spectral constant.  

The corresponding spectral equation is then in 
a form as  
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As a result, the phase and group velocities for 
the cable are expressed in the two constants, 
respectively, as 
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where k, the imagery part of λ , is the wave 
number. 

Finally, the special case of a horizontal 
strand at fixed position with y’ = 0 and co = 0 
leads to two non-dispersive wave velocities as  
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The former recovers the traveling velocity 

of the transverse wave of a tensioned cable 
while the latter shows a similar form as the 
wave velocity of an unconfined longitudinal 
wave along bars with a modification term due 
to the tension force. 
 

3. Dispersion curves for prestressed 
members 

 
In this section, all numerical results associ-

ated with the three 1-D member theories were 
computed assuming that the Poisson’s ratio is 
0.29. This particular value of the Poisson’s 
ratio, appropriate for a steel member, allows 
the comparison between subsequent com-
puted results and some well-known published 
data adopted in several textbooks and articles.  
 
3.1. Longitudinal waves in rod 
 

Based on the second order theory proposed 
by Mindlin and McNiven, dispersion curves 
associated with three vibration modes can be 
obtained accordingly with arbitrary values of 
the adjustment coefficients ki. While the ad-
justment coefficients are mainly used to 
match the variation trends, discrepancies at 
the limiting velocities and cut-off frequencies 
of the dispersion curves for all three modes do 
exist in the current theory. For example, it ap-
pears that the approximation theory is incapa-
ble of matching all limiting values and vary-
ing trends simultaneously. Moreover, the lim-
iting velocity for the third branch is not ad-
justable and thus always converging to an in-
correct value, the P-wave velocity. The dis-
persion curve corresponding to the first mode 
however can agree very well with the 3-D so-
lution over the entire frequency/wave number 
ranges as long as the adjustment coefficients 
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satisfies specific conditions derived from the 
exact theory, as illustrated by Mindlin and 
McNiven. Note that the first mode behavior is 
the most important phenomenon when study-
ing the axial vibration due to a uniformly dis-
tributed excitation. Consequently, this second 
order theory serves as a very useful alterna-
tive to reproduce practical dispersion curves 
for the longitudinal wave propagation in rods. 

Figure 1(a) shows the dispersion curves as-
sociated with the phase and group velocities 
for the first three modes of the longitudinal 
waves. The three phase curves, ci, were di-

rectly computed from the so-called Poch-
hammer Eq. [10]. Three group curves cgi were 
numerically evaluated from the phase veloci-
ties and the real part of the wave numbers us-
ing normal finite difference formulae. As can 
be seen from the figure, the first mode curves 
approach the Rayleigh wave velocity Cr and 
the higher order branches converge to the 
shear wave velocity Cs for very large wave 
number k. Only first mode curves reach a lim-
iting velocity of the unconstrained bar veloc-
ity cb = (E/ρ)1/2 at the zero wave number.   

  

(a) Exact dispersion with ν=0.29  (b) Approximation dispersion with ki’s =1.0  

  
(c) Approximate dispersion with k1=0.8794, 

k2=1.1546 

(d) Comparison between dispersion of 1st mode 
wave with k1=0.965, k2=1.0.  

Figure 1.  Exact and approximate dispersion curves of the first three modes for the longitudinal waves in a 
bar with circular cross section (k3=1.1227k1 and k4=1.2785k2 for (c) and (d)). 
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The approximate curves for the first three 
modes, based on the 1-D longitudinal theory 
as shown in figure 1(b), are obtained by as-
signing all adjustment coefficients to be 
unity. Except for the first-mode curves, the 
agreement between the exact and the ap-
proximate curves are poor. Instead of ap-
proaching Rayleigh and shear wave veloci-
ties, the approximate curves reach the shear 
and P-wave velocities respectively. To 
match the approximate curves with the exact 

ones within the region of small values of 
wave numbers, Mindlin and McNiven [2] 
proposed several formulae for the adjust-
ment coefficients. Among them the expres-
sion in Eq. (27) ensures the match between 
the exact and approximate values at the zero 
wave number. Thus it is utilized in this pa-
per when computing the approximate dis-
persion curves unless specified otherwise. 
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In Eq. (27), δ and χ represent the first 
roots of 0)(1 =δJ . J0 and J1 are the Bessel 
functions of the first kind of the zero and the 
first order, respectively. For Poisson’s ratio 
of 0.29, Eq. (27) implies that k3 = 1.1227k1 
and k4 = 1.2785k2.  

The curves plotted using the ki values 
proposed by Mindlin and McNiven [2] are 
shown in figure 1(c), where the correspond-
ing ki for ν = 0.29 are k1 = 0.8794, k2 = 
1.1546, k3 = 0.9873,and k4 = 1.4762. By 
comparing with the exact curves in figure 
1(a), the approximations in figure 1(c) are 
far better within the region of small wave 
numbers than that of large wave numbers. 
However, it is concluded from the paramet-
ric study in this work that the approximate 
dispersion curves associated with the first 
mode waves can be reasonably predicted 
based on various quadruplets of appropri-
ately selected ki. For example, figure 1(d) 
illustrates good agreement between the ap-
proximate and the exact curves for the first 
mode curves when choosing k1 = 0.965, k2 = 
1.0, k3 = 1.1227k1, and k4 = 1.2785k2. For 
easier application of dispersion curves to 
practical cases, the curves in figure 1(d) and 
those appeared subsequently are plotted as 

functions of the dimensionless frequency, 
ωa/cb.  

The effect of peripheral stresses on the 
dispersion curves of an axially loaded mem-
ber can be determined using this approxi-
mate model. Only the longitudinal stress 
acting on a confined straight member will be 
considered in this section. Assuming the 
longitudinal stress is a function of the first-
order axial displacement u, the parameter y2 
in Eq. (11) then becomes zero. The ap-
proximate dispersion curves predicted using 
this second order 1-D theory with peripheral 
stresses specified in Eq. (11) show apparent 
deviations from the original curves where 
the significant peripheral restraints are in-
cluded. Figures 2(a) and 2(b) illustrate re-
spectively the variation of dispersion curves 
associated with phase and group waves in 
which negative values of y1 represent ten-
sion in the peripheral wires causing confined 
effects to the centered wire. The degree of 
restraints clearly affects the approximate 
dispersion curves. A value of 2.3G repre-
sents the spring constant which is generally 
utilized in a Soil Structure Interaction analy-
sis to model the surrounding effect on the 
structural member due to the infinite (soil) 
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medium. A surrounding media of finite 
thickness, such as the thin peripheral wires, 
may results in insignificant restraining effect 
without the aid of significant confining 
stresses. On the other hand, large confining 

stresses caused by a huge prestressing force 
may lead to a significant restraining effect 
and thus a relatively large stiffness constant 
for the distributed springs in the analysis 
model.  

 

  

(a) Variation of dispersion for phase velocity  (b) Variation of dispersion for group velocity  

Figure 2.  Effect of considering peripheral stresses on the predicted dispersion curves of the first mode 
(k3=1.1227k1 and k4=1.2785k2). 

 
The existence of the distributed springs re-

sults in a cut-off frequency below which 
waves are evanescent instead of propagating, 
as can be observed in the low frequency re-
gion of figure 2(b). In addition the phase ve-
locity greatly increases within the range be-
tween the cut-off frequency and a frequency 
near Cp/a, while the group velocity signifi-
cantly decreases for the same frequency range. 
For the higher frequency range, both phase 
and group velocities stay closely to the origi-
nal restraint-free curves. It could be seen from 
figure (2) that low-frequency signals may be 
more appropriate than high-frequency signals 
to be used in distinguishing the pre-stressing 
force applied to the center wire.  

Frequency-dependent coefficients for 
springs derived from the mechanics of a 
curved or helical member may be more suit-
able than the stiffness constant currently illus-
trated in modeling the confining effect caused 
by the peripheral wires. The intension of us-

ing the proposed 1-D theory to model the 7-
wire strand is just to preliminarily evaluate the 
feasibility of its possible application to the 
related dispersion analysis. Given the finite 
diameter of the peripheral wires and their spi-
ral configuration, more rigorous analyses 
would be required to further verify this pre-
liminary conclusion. 
 
3.2. Flexural waves in axially loaded beam 
 

It is well recognized that, for the flexural 
wave propagation, Timoshenko-type theories 
result in very good approximations for the 
first two modes of flexural vibration in rela-
tion to the 3-D exact theory. Figure 3 shows 
the dispersion curves associated with a beam 
of circular cross section with or without the 
interaction of a tensioned axial force. It can be 
seen from figure 3(a) both phase and group 
velocities of the first mode waves approach 
the approximate Rayleigh wave velocity, 
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(κG/ρ)1/2 ≈ Cr, and those of the second mode 
waves approach the unconstraint longitudinal 
wave velocity, cb = (E/ρ)1/2, at the high fre-
quency region. In addition the second mode 
curves exhibit a cut-off frequency at ωcut-off = 
(κGA/ρI)1/2. Figure 3(b) shows as an example 
the dispersion curves with the consideration 
of the effect due to a tensioned axial force in 
which a relatively large force N = 0.1EA is 
used to illustrate the effect. It is interesting to 
note that a tensioned axial force results in in-

creases in both phase and group wave veloci-
ties for the first mode wave while the changes 
in the second mode wave are rather small and 
thus negligible. Another observation is that, 
for static and very low frequency cases, both 
phase and group velocities associated with 
cases with tensioned forces approach the 
transverse velocity of a simple cable wave, Ct 
= (σ/ρ)1/2 with σ and ρ standing for the axial 
stress and mass density, respectively.  

  
 

(a) dispersion curves for flexural members 
without axial force 

 
(b) dispersion curves for flexural members with 

tensioned axial force N of 0.1EA 
 

Figure 3.  Approximate dispersion curves for the first two modes of flexural waves (shear coefficient κ = 
0.9, Poisson’s ratio ν = 0.29). 

 
Concerning the potential application of 

such dispersion relation to the NDT evaluation 
of steel members, the axial force shown in 
figure 3(b) is too high to be realistic. To gain a 
better understanding in the effect of tensile 
axial forces on the dispersion curves, figure 
4(a) summarizes three pairs of curves associ-
ated with typical levels of prestressing forces 
for grade 270 strands, namely forces due to the 
axial strains of 0.5%, 0.7% and 1.0%. The ax-
ial strains of the last two levels are intended to 
characterize realistic strain rates corresponding 
to the stresses at the elastic limit and at yield-
ing in which the yielding stress was assumed 
being deducted of 15% from its elastic value. 

Thus the axial force level for the 1% strain is 
designated as 0.0085 EA as shown in figure 4. 
The phase velocity increases as the tensile 
stress increases while the group velocity does 
the opposite except for the very low frequency 
region. However, the deviation between these 
curves and the original curves without axial 
force seems unclear. To have a better quantita-
tive index in rating the effect of the loading 
levels on the wave velocities, the relative per-
centage of deviation of the curves in relation to 
the original one for the three tensile cases are 
computed and plotted in figures 4(b) and 4(c). 

It is clear that the difference between cases 
of different loading levels is more significant 
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in the low frequency region than that in the 
higher frequency region. Waves of relatively 
low frequencies are more suitable than those of 
higher ones in detecting the loading level of 
the axially loaded members. It is also noted 

that the deviation shown in the dispersion 
curves of the group velocity is not as apparent 
as that for the phase velocity. Consequently, 
the phase velocity is the appropriate quantity 
to be utilized in the analysis task. 

 

 
(a) Dispersion curves for flexural members under various levels of tension forces.  

 
 

  

(b) Relative deviation in phase wave velocity 
caused by various tension forces. 

(c) Relative deviation in group wave velocity 
caused by various tension forces  

Figure 4.  Effect of tension forces on dispersion (shear coefficient κ = 0.9, ν = 0.29). 
 

3.3. Wave propagation in a tensioned cable 
 
Based on Eqs. (25) and (26), the wave ve-

locities associated with a tensioned cable are 

non-dispersive. The transverse wave velocity 
is identical to the cable wave velocity derived 
direction when no axial force is present is ac-
tually consistent with the unconstrained from 
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the traditional simple cable mechanics. The 
longitudinal wave velocity in the axial longi-
tudinal velocity of bars. The tensile force re-
sults in increases only in the longitudinal 
wave velocity but not in the transverse wave 
velocity.  

Owing to the various simplifications em-
ployed in deriving the dispersion relation, the 
cable model seems not as rigorous as the 
other two 1-D models. The second order rod 
theory is incapable of recovering or verifying 
the second wave velocity predicted by the ca-
ble model in which it is found that the in-
crease in the prestressing stresses leads to a 
slight gain in the wave velocity of the longi-
tudinal vibration. However, the simple non-
dispersive wave velocities correspond well 
with the near-static phase velocities of the 
first modes associated with the transverse and 
longitudinal vibrations. 

 
4. Numerical example for a straight wire 

subjected to tension force 
 

In this section, a 7-wire strand of grade 270 
with nominal diameter 12.7 mm, nominal area 
98.7 mm2 is used to illustrate the application 
of the approximate dispersion curves to the 
prediction of dynamic characteristics associ-
ated with vibration and wave propagation of 
various frequency ranges. Young’s modulus, 
Poisson’s ratio and mass density of the wire 
are 200×109 N/m2, 0.29 and 7845 kg/m3, re-
spectively. Based on the dispersion curves 
derived in the previous section, the longitudi-
nal waves were analyzed for the center wire 
assuming its nominal area is 1/7 of the cross 
sectional nominal area, while the transverse 
waves were investigated for the entire strand 
providing the cross sectional properties are 
uniform. With these assumptions, the propa-
gation velocities Cp, cb, Cs, Cr are about 5800, 
5050, 3150, 2900 m/s, respectively, and the 
equivalent radii for a single wire and the en-
tire 7-wire strand are about 2.1 mm and 5.6 
mm. 

 

Example 1 : longitudinal waves in center wire 
According to figure 2, the appropriate fre-

quency range for distinguishing the prestress-
ing effects starts approximately from a di-
mensionless frequency of Cp/a to 2Cp/a. Con-
sequently, it can be predicted that a banded 
signal with its center frequency near 440 kHz 
and most of its energy within 1 MHz may re-
sult in optimal experimental responses for an 
NDT test. On the other hand, the wave veloci-
ties remain constantly approaching Cr regard-
less of the prestressing level. As a result, high 
frequency signals consisting of mostly the 
first mode waves can lead to the steadiest out-
comes for signal analyses involving traveling 
times of waves. It should also be noted that 
the propagation velocity of very high fre-
quency signals, for instance frequency higher 
than 2 MHz, is the Rayleigh wave velocity 
instead of the longitudinal velocities Cp or cb. 
The level of prestressing may also be recov-
ered from detecting the cut-off frequency of 
the first mode. However, we feel that this pre-
liminary conclusion requires more investiga-
tion because that the currently employed 
spring constant is too simple to reflect the 
complex features of the multiple reflections 
from the outer edges of the 6 spiral wires. 
Further studies are needed in order to draw 
more realistic conclusions regarding the cut-
off frequency indication. 
 
Example 2 : Flexural waves in 7-wire strand 

As in the longitudinal case, figure 3 shows 
that the prestressing effect on the dispersion 
relation can be distinguishable at the low fre-
quency region but is not so clear at the higher 
frequency region. Based on the deviation 
trends illustrated in figure 4, the elastic dis-
persion analysis at the low frequency range 
seems potentially useful in extracting the in-
formation regarding the total axial force in a 
strand. The first possible method is to deter-
mine the wave velocity at near zero frequency 
which can reveal the magnitude of the tension 
force since the wave velocity is equal to Ct = 
(σ/ρ)1/2 as discussed in the previous section. 
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The near static wave velocities Ct for the two 
loading cases within elastic limit, 0.005EA 
and 0.007EA, are about 0.071 cb (=360 m/s) 
and 0.083 cb (=420 m/s), respectively. Using 
10% loss in the 0.7% prestressing case as an 
example, the near static wave velocity is 
about 0.080 cb (=400 m/s) which implies a 
difference from the original value of about 
5%. The difference is not very apparent but 
seems to be detectable from a practical point 
of view. 

For cases with the tensile force dramati-
cally varied, the second possible way is to 
monitor changes in wave velocities at very 
low frequency region. Using figure 4(b) as an 
example, a change of stress state from 0.007 
EA to 0.005 EA with a threshold for detect-
able changes of 5% indicates that the fre-
quency range of interest may have to be 
within a dimensionless frequency ωa/cb of 
about 0.05, which corresponds to a frequency 
around 7kHz. However, when considering the 
stress state beyond the yielding stress, the 
above example may not be as useful as it ap-
pears for the following reasons. First, the 
phenomenon of the inelastic wave propaga-
tion may not be reasonably recovered by the 
elastic dispersion curves. Secondly, even if 
the elastic dispersion still provide useful 
correlation with the inelastic dispersion, the 
post-yielding behavior of the strand causes 
relatively little difference in stress when 
comparing to the corresponding change in 
strain. As a result, the deviation in the 
dispersion relation may be too imprecise to be 
decided. AAAAAAAAAAAAAAAAAAA 

Finally, It is worth of noting that the effect 
of different levels of axial forces on nonlinear 
wave propagation in a rod can be studied 
from the classical Pochhammer equation with 
the so-called Murnagham’s third order elastic 
constants as done by Chen & He [11]. How-
ever, such exact solution may not be capable 
of correctly predicting the inelastic dispersion 
for the 7-wire strand due to the complex ge-
ometry of wires. Moreover, the counter part 
solution for the nonlinear transverse waves 

appears to be very difficult. It was never de-
rived to the best knowledge of the authors.  

 
5. Conclusions 
 

In this paper the theoretical background for 
several rigorous 1-D member theories was 
first summarized and then dispersion curves 
for longitudinal and transverse waves were 
computed and plotted in terms of dimen-
sionless parameters. To demonstrate the use 
of these approximate dispersion curves in 
predicting the axial force of a linear member, 
a couple of casestudies associated with both 
the longitudinal and transverse wave propaga-
tions in a 7-wire strand were carried out. 
From the numerical results obtained at current 
stage, the application of these rigorous 1-D 
theories to evaluate the dispersion characteris-
tics for prestressed member is optimistic 
within the elastic limit.  

Regarding the approximation of longitudi-
nal wave propagation in rods, the use of the 3-
mode Mindlin-McNiven theory with appro-
priate adjustment coefficients only guarantees 
good agreement for the low wave num-
ber/frequency region. Arrangement can be 
made to match the exact solutions for the en-
tire frequency region for the first-mode waves. 
Therefore, it should always keep in mind that 
the prediction using such theory is good only 
when the first mode motion is the dominant 
one for the dynamic problem of interest. 

In deriving the dispersion formulae for the 
center wire of a strand, some special modifi-
cations with respect to the peripheral stresses 
were taken into account such that the possible 
effect due to prestressing force can be rea-
sonably recovered. The factor currently con-
sidered is the correlation of the peripheral 
forces with the displacement functions via a 
simple spring constant. Further considerations 
may include more rigorous frequency-
dependent formulae derived from mechanics 
of curved members in replacing the simple 
constant and may also include distributed re-
straints in the radial direction. In other words, 
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the current results indicate that the potential 
of using the 3-mode 1-D theory is optimistic 
but these results need to be further verified 
numerically or even experimentally. Although 
the beam model for the center wire is not dis-
cussed in this paper, additional consideration 
of the peripheral stresses as the distributed 
springs can be easily incorporated into the 
proposed beam theory, as illustrated in the rod 
theory. Nevertheless, once reliable representa-
tions of the confining effects due to peripheral 
wires are available, these improved models 
will enhance the application of rigorous 1-D 
theories to the dispersion studies associated 
with the prestressing strand. 

From the studies on the transverse wave 
propagation for the strand, it was found that 
the near-static wave velocity reflects pretty 
well the level of axial stresses. Therefore, the 
degree of prestressing may also be determined 
from measuring the transverse dispersion in 
the low frequency region. 

Two non-dispersive wave velocities recov-
ered by the cable model proposed by Sarkar 
& Manohar seem not as realistic as those pre-
dicted by the other two 1-D theories. The 
simple form may be resulted from several as-
sumptions made during the linearization of 
the nonlinear differential equations. It should 
be noted that such model was reported being 
very useful in modeling the dynamics of 
sagged cables as illustrated in reference [7]. 

All the dispersion relations of the 1-D 
models in this paper have been obtained as-
suming members remain elastic behavior. 
Non-linearity due to strain-displacement rela-
tionships and constitutive equations are not 
considered. Such nonlinear effects can be 
dealt with by incorporating certain higher or-
der parameters in the Pochhammer equation 
for cases associated the longitudinal wave. 
However, the application of this type of exact 
analysis may not be possible for a 7-wire 
strand. Further investigations regarding both 
theoretical and experimental aspects of this 
topic are still required in order to draw a 
comprehensive set of concluding remarks.  

The 1-D approximation theories provide 
simpler alternatives in modeling certain com-
plicated elasticity problems. The major 
advantage of using an appropriate 1-D 
formulation in the wave propagation analysis 
of slender members, even when exact 
formulations exist, is that the computation of 
dispersion curves can be minimized without 
sacrificing the accuracy of the solution as 
long as the structural response remains elastic. 
This is especially true for parametric studies 
related to dynamic problems involving non-
destructive testing and (NDT) evaluation as 
illustrated by the authors [8]. Owing to the 
fact that the distributed properties can be eas-
ily taken into account by the summarized 
formulations in this work, this type of 1-D 
formulation is particularly useful for dynamic 
analyses involving grouted tendons, embed-
ded piles, and immersed members taking into 
account fluid structure interaction.  
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Appendix   notations 

a = radius of a circular rod 
A = cross sectional area 
c0 = rigid body velocity of cable 
c1 , c2 , c3 , cg1 , cg2 , cg3 = phase and group 
wave velocities for the 1st 3 modes   
Cp , Cs , Cr , cb = P, S, Rayleigh, and un-
constrained bar wave velocities 
Di’s = specific frequency inertances 
E = Young’s modulus 
εp , σp = axial strain and stress in cable due to 
tension force 
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F , F1 = first order (uniform) and second order 
axial forces 
G = shear modulus 
I = moment of inertia 
Ip = polar moment of inertia 
J0 , J1 = Bessel functions of the 1st kind of the 
zero and 1st order 
k = wave number 
ki = adjustment factors for Mindlin and 
McNiven rod theory  
κ = shear coefficient 
λ , µ = Lame’s constants 
λ  = spectral constants for cable theory 
m = mass per unit length for cable 
N = axial force in beam column 
ν = Poisson’s ratio 
P = tension force in cable 
Pr = internal force in radial direction 
Q = lateral contraction moment 
r , r  = spectral constants 
R , Z = peripheral stresses 
ρ = mass density 
u1 , u = uniform axial displacements 
uc , ψ = lateral contraction displacement and 
strain 
u2 , w = quadratic axial displacement function 
and displacement at neutral axis 
ω = circular frequency 
x , x)  = Fourier transform pair 
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