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1. Introduction 
 
In constitutive modeling, the inconsistency 

between global and local numerical proce-
dures is the key to the computational ineffi-
ciency and instability. The incorporation of 
consistent tangent moduli (global) with return 
mapping integration techniques (local) has 
been found to provide fast-convergent, accu-
rate and stable solutions [1-7]. However, in 
these works the formulations have been de-
veloped in stress space, rather than in strain 
space. The advantage of the strain-space over 
stress-space formulation for integrating strain-
hardening-softening behavior of plasticity 
models has been well recognized by many 
researchers [8-16]. This study focuses on the 
modeling of the compressive hardening and 
softening behavior of porous solids such as 

concrete. The strain-space formulation of the 
return mapping algorithm and consistent tan-
gent operator for pressure-dependent plastic-
ity is thus adopted herein (Section 2).  

The majority of the above-mentioned re-
search works involving return mapping 
schemes and consistent tangent moduli ad-
dress pressure-independent single-surface 
plasticity, i.e. the Von Mises (or J2 ) yield 
function. In this study, the return mapping 
algorithm and consistent tangent operator for 
hydrostatic-sensitive plasticity is formulated, 
particularly for the Drucker-Prager yield func-
tion, with nonlinear bounding surface and iso-
tropic hardening rule (Sections 3-4). Further-
more, a confined concrete model has been ex-
tended and serves as an illustration of the cur-
rent formulation (Section 5).  By comparing 
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the present results with available experimental 
data and numerical results, the validity of the 
current development is achieved. Numerical 
examples of concrete under both low and high 
confining pressure are presented (Section 6). 
Finally, conclusions are summarized in Sec-
tion 7.  
 
2. Strain-space plasticity formulation  
 
2.1. Loading function 
 

For simplicity, this study is concerned only 
with small-strain rate-independent plasticity, 
along with smooth yield and plastic potential 
surfaces and isotropic hardening rule.  Based 
on isotropic hardening rule, subsequent yield 
surfaces are assumed to change their sizes de-

pending on a loading parameter k , which can 
be expressed as a function of the accumulated 
plastic work k Wp( ) . Consequently, the load-
ing surface F in strain space takes the form  

 
0))(,,( == p

p WkFF εε          (1) 
 
Using the strain decomposition, Hooke’s law 
is given as: 

 
)( pe ddd εεCσ −=                (2) 

  
Note that boldface lower-case letters (e.g. σ , 
a, b) denote second-order tensors, whereas 
boldface capital letters represent fourth-order 
tensors (e.g. C). 

 
2.2. Loading criteria 
 

As recognized by other researchers 
[8,12,16], the loading conditions correspond-
ing to the loading surface F can be clearly dis-
tinguished in strain space, unlike the ambigu-
ity occurs in stress space (see Table 1).  That 
is,  

0>ε
ε

dF
∂
∂    loading (hardening, softening, or 

perfect plasticity) 

0=ε
ε

dF
∂
∂    neutral loading      (3) 

 

0<ε
ε

dF
∂
∂    unloading 

 

where 
ε∂

∂F  denotes the normal to the loading 

surface 

 
Table 1.  Comparison of stress-space an strain-space formulations 

 
  Loading condition   
Formulation 

 
Loading 
function 

Strain 
hardening 

Strain 
softening 

Perfect 
plasticity 

Neutral 
condition 

Unloading 
condition 

Stress space f = 0 A > 0 A < 0 A = 0 A = 0 A < 0 

Strain space F = 0 B > 0 B > 0 B > 0 B = 0 B < 0 

 

A = ∂
∂σ

σf d  

B = ∂
∂ε

εF d
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2.3. Flow rule 
 

Based on the Il’yushin’s postulate [11], the 
work done dW, by external forces in a closed 
cycle of deformation of an elastoplastic mate-
rial is always non-negative in strain space, i.e., 

 

0
2
1

≥= εσ dddW p                    (4) 

 
Also, ppe

p dddW εσσε == ≥ 0  (see Figure 1)  (5) 
                                 

 
 

Figure 1.  Plastic work increment 
 
where pdσ is known as the relaxation stress, 
and defined in strain space [8] as 
 
                    pep dd εCσ =                            (6)
    
From Eq. (4), the normality of the relaxation 
stress on the loading surface F is guaranteed.  
This leads to the associated flow rule: 
 

ε
σ

∂
∂λ Fdd p =                            (7) 

 
A more general case can be presented by in-
troducing the plastic potential function G 
 

0))(,,( == p
p WkGG εε               (8)   

Similarly, the nonassociated flow rule is given 
as, 
 

rσ λdd p =                        (9)   
 

where  r = 
ε∂

∂G                  (10)  

                 
Substituting Eq. (6) into Eq. (9), the plastic 
strain increment can be obtained as 
 

rDε ep dd λ=                     (11) 
 

 where eD  = 1)( −eC  = I11
µ2
1)( +⊗−

E
ν    (12) 

 
3. Return mapping algorithm 
 

The superiority of return mapping algo-
rithms has been well established and recog-
nized by many researchers [17,18,1,6,7].  
Like other integration schemes, return map-
ping algorithms update the stresses and the 
state variables (e.g. the plastic strains ε p  and 
the accumulated plastic work Wp ), from the 
typical time step tn  to tn+1  at the ith iteration.  
However, unlike tangent-based schemes 
which use the state variables at the previous 
iteration step, return mapping algorithms use 
those at the previous equilibrium step.  This is 
demonstrated in the following formulation.  

First, let Ie  denote the unit tensor field of  
the  elastic  deviatoric  strain  at  the end of 

typical time step [ tn , tn+1 ], i.e. 
e

e

I e
ee =    (13) 

        
3.1. Loading surface F 
 

For modeling porous materials such as 
concrete, the Drucker-Prager loading surface f 
in stress space is often used, and it takes the 
form 
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021 =−+= kJIf α                 (14) 
 
             where I1 = 3p = )(3 pKtr εε −         (15) 

 

J2 = 1
2

(s : s) = )()(2 2 pp ee:ee −−µ         (16) 

 
 

The loading surface in strain space can be 
obtained by transforming the loading surface 
in stress space into strain space.  Similar con-
versions have been adopted by Mizuno and 
Hatanaka [14] and Farahat et al. [16].  The 
loading surface F in strain space can thus be 
obtained as the Drucker-Prager type (see Fig-
ure 2), i.e. 
 

F K I J k= + − =3 2 01 2α µ           (17)             
 

where I1  = )( etr ε = )( ptr εε −          (18) 
 

and  J2  = )(:)(
2
1 pp eeee −−           (19) 

 
 

 
 
 
Figure 2.    Drucker-Prager loading surfaces in strain 

space 
       

3.2. Plastic potential surface G 
 

The plastic potential surface G is defined in 
a similar manner as the loading surface F [16], 
and it is given as 
 

G K I C J k= + − =3 2 01 2α µ        (20) 
 
Note that when C = 1, the plastic potential 
surface G reduces to the loading surface F.    
Also when C is a constant, it yields linear 
bounding surface plasticity.  If C is a functio 
of I1 , it results in nonlinear bounding surface 
plasticity.  For generality, the latter is used in 
the current formulation with an explicit C.  
 
3.3. Flow rule 
 

Substituting Eqs. (18) and (19) into (20), 
the plastic potential function G can be ob-
tained as 
 

( ) [ ])()(3)(,, p
p

p trtrKWkG εεεε −= α         

)():(2 2
1

p
ee WkC −+ eeµ          (21) 

 

where 1εεεεe )(
3
1 ppe tr −−−=        (22) 

  
The normal to the nonassociated flow, 1+nr , 
can be stated as 
 

1

1
1

+

+
+ =

n

n
n

G
ε

r
∂
∂

InCK e1 µα 23 +=        (23) 

 
Note that the associated flow is recovered 
when Cn = 1.   
Using Eqs. (12) and (23), the plastic strain at 
the time step tn+1  can be represented by 
 









+∆+=+ I

np
n

p
n

C e1εε
21 αλ          (24) 
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Similarly, using Eq. (24) the plastic deviatoric strain at time step tn+1  can be obtained as 

p
n 1+e I

np
n

C ee
2

λ∆+=                (25)  

 
In return mapping algorithms, the given 

incremental strain is assumed to be all elastic, 
(see Figure 3).   

 

 
 
Figure 3.  Return mapping algorithm(Generalized 

Midpoint rule) 
 

Thus, the trial strain takes the form 
 

tr
nn

tr
n 11 ++ ∆+= εεε 1+∆+≡ nn εε         (26) 

 
Similarly, the trial deviatoric strain is given as 

 
tr
nn

tr
n 11 ++ ∆+= eee 1+∆+≡ nn ee         (27) 

 
and        tr

n
e

n
etr

n
e

11 ++ ∆+= eee          (28 ) 
 
Using the strain decomposition, Eqs.(25) and 
(27), it yields  
 

I
ntr

n
ee

n
C

eee
2

11 λ∆−= ++              (29) 

 
Using Eqs. (13) and (29), the following rela-
tion can be obtained: 
 

2
11

ntr
n

ee
n

C
λ∆−= ++ ee                (30) 

When Cn = 1 , the above equation (30) is 
equivalent to 
 

λµ∆−= ++ 211
tr
n

ee
n ss                 (31) 

 
Similar expressions to Eq. (31) can be found 
in the derivations of radial-return mapping 
algorithms for J2 plasticity in stress space 
[1,19,20].  This indicates, the Von-Mises 
yield function is recovered. 

On the other hand, using Eqs. (24) for I1  
and Eq. (30) for J2 , they yields  

 
λα∆−−= ++ 3)( 111

p
nnn trI εε        (32) 

 

λ∆−= ++ 22
1

112
ntr

n
e

n

C
J e        (33) 

 
Also, using the incremental relation the ac-
cumulated plastic work Wp  results in 
 









+∆+≅∆ ++ I

n
nnpnp

C
WW e1:σ

2
)( 11

αλλ  (34) 

 
where 1+nσ  can be treated as the averaged or 
weighted stress between the current and up-
dated stresses.  Iterations can also be used to 
better estimate the stress 1+nσ .   
 

Substituting Eqs. (32) and (33) into Eq. 
(17), the loading function F can be obtained 
in terms of ∆λ  as 

 
[ ]λααλ ∆−−=∆ + 3)(3)( 1

p
nntrKF εε    (35) 

λµµ ∆−+ + n
tr
n

e C12 e ( )− =
+

k Wp n 1
0( )∆λ      

 
where Wp n+1

( )∆λ is given in Eq.    (34). 
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Using the above consistency condition Eq. 
(35), ∆λ  can be solved analytically or nu-
merically.  The consistency condition can be-
come very complex due to the hardening 
function k, and the analytical solution may be 
difficult to obtain or it may not even exist.  In 
the present implementation, numerical meth-
ods are employed, particularly, the Van 
Wijngaarden-Dekker-Brent method. 

After solving ∆λ , the stress can be conse-
quently updated using Hooke’s Law and the 
strain decomposition, i.e.  

 
e
n

p
nnn Ktr 1111 2)( ++++ +−= e1εεσ µ        (36) 

 
Based on the above formulation, the de-

veloped return mapping algorithm can be 
summarized in the following steps: 
 
(i) Compute the trial elastic strains (Eqs. (27) 

and (28)) 
 

1εεeee )(
3
1

11111 +++++ ∆−∆=∆≡∆≡∆ nnn
tr
n

tr
n

e tr  

 
Where nnn εεε −=∆ ++ 11  

tr
n

ee
n

tr
n

e
11 ++ ∆+= eee  

 
(ii)  Compute the return unit tensor field Ie  

and the normal r  (Eqs. (13) and (23))  
 

tr
n

e

tr
n

e

I
1

1

+

+=
e

ee  

 

Inn CK e1r µα 231 +=+  
 
(iii)  Find ∆λ  using the consistency condition 

(Eq. (35)) 
 

[ ]λααλ ∆−−=∆ + 3)(3)( 1
p
nntrKF εε  

λµµ ∆−+ + n
tr
n

e C12 e ( )− =
+

k Wp n 1
0( )∆λ  

 

(iv)  Update the plastic strains and the plastic 
work (Eqs. (24), (29) and (34)) 









+∆+=+ I

np
n

p
n

C e1εε
21 αλ  

 

I
ntr

n
ee

n
C eee

2
11 λ∆−= ++  









+∆+≅ ++ I

n
nnpnp

C
WW e1:σ

211
αλ  

 
(v)  Update the stress (Eq. (36))  
 

e
n

p
nnn Ktr 1111 2)( ++++ +−= e1εεσ µ  

 
4.  Consistent tangent operator 
 

In nonlinear finite element analysis, the 
nonlinear response of a structure is approxi-
mated by linear strain paths, incorporated 
with the incremental-iterative strategies such 
as the Newton-Raphson method.  This method 
has been widely used in nonlinear analysis, 
and it is adopted herein. 

Assuming the internal nodal-equivalent 
force vector N(d) to be a function of the dis-
placement vector d, the tangent stiffness K 
may be expressed as 
 

K(d) = 
d
dN

∂
∂ )(                  (37) 

 
Then, K is the consistent tangent stiffness if 
 

d
dNddNdK

d ∆
−∆+

=
→∆

)()(lim)(
0

       (38) 

 
Unlike the continuum tangent operators, 

the consistent tangent operators are consistent 
with the integration algorithms used.  Such 
consistency preserves the quadratic conver-
gence rate of the Newton-Raphson procedure.  
This is because the consistent tangent opera-
tors evaluate the stress state from the last 
equilibrium state, while the continuum tan-
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gent operators use the state at the end of the 
previous iterative step.  This consistency also 
allows the consistent tangent operators to de-
tect possible unloading within the iteration 
step, while the continuum tangent operators 
are not capable of doing so. 

The tangent stiffness operator consistent 
with the developed return mapping algorithm 
in strain space is presented next.  By substitut-
ing Eqs. (24) and (25) into Eq. (36), the stress 
at n+1 step can be obtained as 

 
11εεσ λα∆−−= ++ KKtrKtr p

nnn 3)(1)( 11  

In
p
nn C eee λµµµ ∆−−+ + 222 1       (39) 

 
Hence, the consistent tangent operator can be 
derived from Eq. (39) as 
 

1+=

=
n

cp

εεε
σC
∂
∂ 1λ11 cpKK α3)( −⊗=    

I
cp

nC eλ11I µµ 2)(
3
12 −



 ⊗−+  

cp
nC Γλµ ∆− 2                   (40) 

 
in which  

cpΓ 



 ⊗−⊗−=

+
IItr

n
e

ee11I
e

)(
3
11

1

   (41) 

 

cpλ =
( ) ( )In

n
nn

n
cpn

I

CktrkCK

CkK

eσσ

σΓe1

:
2

9

2
23

11
2

1

++

+

′
+′++

∆′
−+

αµα

λµα
 (42) 

                                                                     

1+

=′
n

kk
ε∂
∂                         (43) 

 
5. Application to confined concrete 
 

Compressive behavior of concrete is ap-
plied here to illustrate the above formulation. 
The specific material parameters and harden-

ing rule developed from experiments for 
modeling confined concrete [16] have been 
adopted.  Note that some modifications have 
been made to the material parameters as well 
as hardening rule suggested by Farahat et al. 
[16].  The modifications are made to better 
simulate confined concrete behavior. 

 
5.1. Material parameters for the failure 

surface F : α , k0  
 

Two material parameters α  and k0  (max k) 
for the failure surface F in Eq. (17) can be 
obtained from available concrete tests [21-
24,16].  The compressive meridian of con-
crete can be assumed to be linear and ex-
pressed as 

 

a
I

f
J

f
b

c c

1 2

3
2

0
′
+

′
− =              (44) 

 

According to the experimental data, material 
constants a and b can be taken as 0.6736 and 
0.445, respectively.  By comparing Eq. (44) 
with the Drucker-Prager failure surface f in 
Eq. (14), it yields two material parameters α  
and k0  to be approximately 0.275 and 
0.315 ′f c , respectively. 
 
5.2. Material parameters for the plastic po-

tential surface G: C 
 

Let the plastic potential surface G (Eq. 
(20)) have the same apex as that of the load-
ing surface F.  The material parameter C can 
then be taken as  

 

C b
a

I
f c

m

= + −
′









1

3
1              (45) 

 
 
When   I I f

1 ≠   ⇒nonlinear bounding sur-
faces 
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I I f
1 =   ⇒ linear bounding surfaces 

 
where )2( NffI σσ +−=          (46) 

 

and σ
α σ
α

f
Nk

=
+ +

−
3 2 3 1

1 3
0 ( )

    (47 ) 

 
Note that in the above equation (45), I f  is 

used by Farahat et al. [16] instead of I1 .  In 
this study, I1  is modified to preserve the 
bounding surfaces to be nonlinear for a given 
confining pressure Nσ , so that concrete dila-
tion behavior under confinement can be better 
simulated.  Also note that when m = 0, the 
plastic potential surface G coincides with the 
failure surface F, i.e., G = F, as shown in Fig-
ure 4, and the associated flow rule is recov-
ered.  Also as it can be seen from Figure 4, 
larger values of m lead to more dilation, and 
vice versa.   

 

 
 

Figure 4.  Failure surface F and 
plastic potential surface G 

 
5.2.   Hardening rule: k Wp( )  
 

The hardening rule for confined and un-
confined concrete is given as 
 

k Wp( ) ( )[ ]= − −







k WN
p

N
0

2

exp β ξ
γ

    (48) 

where β β
γ

N u
f u

f f
I I

I
A= −

−



















1    (49) 

ξ ξN u
f u

f

I I
I

= +
−







1                 (50) 

I fu
c= − ′                         (51) 

A
Wf

u

u
ppeak

=
( )ξ
β

γ
1

0                    (52) 

 (Typically, ≈0
ppeakW  0.03381 MPa, based on 

Mizuno and Hatanaka [14]). 
Note that the amplification factor Af  is not 

suggested by Farahat et al. [16].  This modifi-
cation is made to better simulate confined 
concrete behavior, based on the test results by 
Mizuno and Hatanaka [14]. The above hard-
ening rule has been defined such that strain-
hardening and softening behavior of confined 
and unconfined concrete can both be repre-
sented (see Figure 5).  Similar exponential 
functions for the hardening rule of confined 
concrete can be found in other studies [12,14]. 

 
Figure 5.  The hardening rule k  
(as a function of plastic work pW ) 

Based on the above k in Eq. (48), the 
derivative ′k  in Eq. (43) can be obtained as 

k ′ ( ) ( )[ ]= − −
−

2
1

k W WN
p

N
p

N Nγ β β ξ β
γ γ

 (53) 

 
Such ′k is to use in computing the consistent 
tangent operator (Eq. (40)). 
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6. Numerical examples 
 

The current development is to validate by 
comparing the present predictions with the 
available results for concrete under lateral 
confining pressure.  Both low and high con-
fining pressure cases are considered.  Uncon-
fined concrete is also studied.   

The current results are obtained using the 
developed finite-element program UMAT-
conc, along with other available ABAQUS 
options [25].  UMATconc is an ABAQUS 
user-defined material subroutine served as the 
implementation of the developed computation 
procedures along with the above material pa-
rameters and hardening rule of the modified 
concrete model [26]. The current strain-space 
formulation in fact greatly eased the numeri-
cal implementation, since it is also strain-
based.Three-dimensional solid elements 
C3D8 have been used. The Newton-Raphson 
iterative solution procedure in conjunction 
with the automatic arc-length (modified Riks) 
incrementation has also been employed in the 
following examples. 

 
6.1. Concrete with low confining pressure 
 

The complete loading curves of concrete 
under low confining pressure are considered.  
The experimental data conducted by Mizuno 
and Hatanaka [14] are used.  The concrete 
specimens tested were 10-cm. cubes.  The av-
erage uniaxial compressive strength was re-
ported 21.2 MPa (3.07 ksi).  Three confining 
pressure cases considered herein are 0, 0.29 
MPa (0.042 ksi), and 0.59 MPa (0.086 ksi).  
Details of the test conditions and procedures 
can be found in Kosaka et al. [27] and Hata-
naka et al. [28].     

Like in the tests, two loading steps have 
been applied in each confinement case.  First, 
a constant confining pressure is applied up to 
the desired level.  Then, the axial compressive 
load is increased, by superimposing the nodal 
displacements while maintaining the constant 
confining pressure in the lateral directions.  

The current numerical results are based on the 
material parameters m = 0, γ  = 0.4, along 
with β N  and ξ N  calculated from Eqs. (49) 
and (50) for the specific confining pressure 
σ N . Figure 6 shows the comparison of the 
current results with the analytical results of 
Farahat et al. [16] and the experimental data 
of Mizuno and Hatanaka [14].  As it can be 
seen from Figure 6, the current results agree 
well with the experimental data and numerical 
results for all three confining cases.  The cur-
rent results show that as the confining pres-
sure increases, the peak stresses and strains 
increase and the softening branches are less 
declined.  This coincides with the experimen-
tal observation that the presence of the confin-
ing pressure delays the microcracking process. 
This example has verified the current formu-
lation. 
 

 
 

Figure 6.  Result comparison for concrete 
under low confining pressure 

 
6.2. Concrete with high confining presure 
 

Furthermore, the tests conducted by 
Kotsovos and Newman [29] are studied with 
high confining pressure.  The uniaxial com-
pressive strength is reported to be 47.5 MPa 
(6.89 ksi).  The material parameters used are 
m = 0.7, γ  = 0.4, along with β N  and ξ N  in 
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Eqs. (49) and (50).  Three cases of constant 
confining pressure are studied, 0.39f’c, 
0.75f’c and 1.1f’c.  Similar to the previous 
example, two loading steps have been applied 
for each confining case. 

Figure 7 shows the comparison of the cur-
rent results with the numerical results of 
Farahat et al. [16] and the experimental data 
of Kotsovos and Newman [29].  In view of 
Figure 7, good agreement between the current 
predictions and the numerical results has been 
obtained.  This again illustrates the validity of 
the current formulation.  Also from Figure 7, 
the current results agree reasonably well with 
the test results.  The lateral strain hardening 
and softening, lateral peak strains and peak 
stresses are all well predicted.  However, the 
results obtained for the peak axial strain are 
less satisfactory as the confining pressure in-
creases.  Similar result is also found by Fara-
hat et al. [16].  This can be attributed to the 
assumptions made in the present and Fara-
hat’s models, such as the loading and the plas-
tic potential functions, as well as the harden-
ing rule.  

 

 
 
Figure 7.  Result comparison for concrete 

under high confining pressure 
 

The developed constitutive model differs 
from the model of Farahat et al. [16] primarily 
on the improvement of the integration algo-
rithm and the tangent stiffness operator.  In 

the present model, the developed return map-
ping algorithm and consistent tangent opera-
tor have been used, whereas the tangent-based 
scheme and the continuum tangent operator 
were employed in Farahat’s study.  The cur-
rent examples are intended to serve solely as a 
validation of the developed formulation.  The 
small discrepancy between the current and 
Farahat’s results can be attributed to the 
modifications made in the present model.  
More importantly, as expected the complete 
strain hardening and softening loading curves 
of confined concrete are traced through the 
current strain-space formulation. 

 
7. Conclusions 
 

The return mapping algorithm and consis-
tent tangent operator, together known to pro-
vide efficient and accurate computations for 
constitutive modeling, has been derived in 
strain space for rate-independent hydrostatic-
sensitive plasticity with nonlinear bounding 
surfaces.  In particular, the Drucker-Parger 
yield criterion with isotropic hardening rule is 
presented.  Application of the current formu-
lation to confined concrete behavior has been 
made.  The present results show good agree-
ments with available experimental data and 
numerical results under both low and high 
confining pressure.  This demonstrates the 
validity of the current formulation as well as 
the effectiveness of the proposed modifica-
tions to the confined concrete model.  Since it 
is formulated in strain space rather than stress 
space, the current development can not only 
predict strain-hardening-softening material 
behavior, detect possible unloading within the 
iteration step, but it can also greatly reduced 
the implementation effort for constitutive 
modeling, especially when finite-element 
methods are considered.  Finally, the present 
formulation can be readily extended to other 
applications involving different porous mate-
rials by introducing the appropriate material 
parameters and hardening rules.  
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Appendix    notations 
 

fA  = amplification factor 
εα  = back strain tensor 
cf ′  = concrete compressive strength 

σ N  = confining pressure 
µ  = Lame’s constants 
γ  = model parameter 
k ′  = partial derivative of k  

0
ppeakW  = plastic work constant 

Wp  = plastic work 
ν  = Poisson ratio  

fσ  = stress variable corresponding to confin-
ing pressure σ N  

eD  = the fourth-order elastic compliance ten-
sor 

Ie  = the unit tensor field of the elastic devia-
toric strain at the end of typical time step [ tn , 
tn+1 ] 

cpλ , cpΓ  = consistent tangent variables 
Nβ , Nξ  = model parameters corresponding 

to confining pressure σ N  
β u ,ξ u   = model parameters corresponding to 
uniaxial compression 
1 , I  = the second- and the fourth-order unit 
tensors, respectively  
εd , edε , pdε  = total, elastic and plastic in-

cremental strain tensors, respectively 
I1 , I1  = the first invariants of stress and strain  
tensors, respectively 
J2 , J2 = the second invariants of deviatoric 
stress and strain tensors, respectively 
σ , σ  = total and averaged stresses, respec-
tively 

σd , pdσ  = total and plastic incremental 
Cauchy stress tensors, respectively 
α , k, k0 , C  = material parameters 
ε , eε , pε  = total, elastic, and plastic strain ten-
sors, respectively  

fI , uI = the first invariants of the stress tensor 
σ  at failure with and without confinement, 
respectively 
dλ = non-negative scalar 

cpC = consistent tangent stiffness 
eC = the fourth-order elastic moduli tensor 

 a, b = material constants 
d = displacement vector 
 dW = work done by external forces  
e, ee , pe  = total, elastic, and plastic deviatoric 
strain tensors, respectively 
E, K  = Young’s and bulk modulus, respec-
tively 
F, f =  loading functions in strain and stress 
space, respectively 
G, g = plastic potential functions in strain and 
stress space, respectively 
K = tangent stiffness 
m = dilatancy factor ( 0 1≤ ≤m ) 
N = internal nodal-equivalent force vector 
p = hydrostatic stress 
r = the normal to the plastic potential surface 
G 
s, es  = total and elastic deviatoric stress ten-
sors, respectively 
t = pseudo time (time step) 
∆  = increment 

 = determinate 
⊗  = open product 
:  = inner or scalar product 
( )tr = trial variable 
( )tr  = trace operator 

( )n , ( ) 1+n  = at the ith iteration of time  

step nt , tn+1 , i.e. ( )i
n , ( )in 1+ , respectively. 
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