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Abstract: The discrete wavelet transform has gained the reputation of being a very effective sig-
nal analysis tool for many practical applications. However, due to its computation-intensive na-
ture, current implementations of the transform fall short of meeting real-time processing re-
quirements of most applications. This paper describes a parallel implementation of the discrete 
wavelet transform and its inverse using high-density field programmable logic devices (FPGAs). 
The implementation exploits the lookup table-based architecture of Virtex FPGAs, by reformu-
lating the wavelet computation in accordance with the distributed arithmetic algorithm. Perform-
ance results show that the distributed arithmetic formulation results in a considerable perform-
ance gain compared with the conventional arithmetic formulation of the wavelet computation. 
Finally, we show that the FPGA implementation outperforms alternative software implementa-
tions of the discrete wavelet transform. 
 
Keywords: discrete wavelet transform; distributed arithmetic; FPGA implementation. 
 

                                                                                                                                                                                           
 Corresponding e-mail: ali@psut.edu.jo                                                            Accepted for Publication: July 22, 2003 

© 2003 Chaoyang University of Technology, ISSN 1727-2394 

1. Introduction 
 

The wavelet transform is an emerging sig-
nal processing technique that can be used to 
represent real-life non-stationary signals with 
high efficiency. Indeed, the wavelet transform 
is gaining momentum to become an alterna-
tive tool to traditional time-frequency repre-
sentation techniques such as the discrete Fou-
rier transform and the discrete cosine trans-
form. By virtue of its multi-resolution repre-
sentation capability, the wavelet transform 
has been used effectively in vital applications 
such as transient signal analysis [1], numeri-
cal analysis [2], computer vision [3], image 
compression [4], among many other audio-
visual applications. 

The discrete wavelet transform is computa-
tionally intensive and operates on large data 

sets. This factor, coupled with the demand for 
real time operation in many image processing 
tasks, made the traditional sequential com-
puters fall short in meeting such requirements. 
In turn, this necessitated the search for high 
performance implementations at a reasonable 
cost. Implementations of the discrete wavelet 
transform can be grouped into two major 
categories; software implementations using 
programmable parallel systems, and dedicated 
hardware implementations using customized 
VLSI devices. Each implementation category 
presents different trade-offs in terms of per-
formance, cost, power, and flexibility. 

Several parallel systems that meet the com-
putational requirements of the wavelet trans-
form have been proposed [5, 6]. However, 
programming such multiprocessor systems is 
a tedious, difficult, and time consuming task. 
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Moreover, multiprocessor implementations of 
the discrete wavelet transform are not cost 
effective since parallelism comes at the ex-
pense of augmenting the system with more 
processing engines operating in parallel. This 
is in addition to the fact that the discrete 
wavelet transform is mostly needed to be em-
bedded in consumer electronics, and thus a 
single chip hardware implementation is more 
desirable than a multi-chip parallel system 
implementation. 

Several VLSI architectures have been pro-
posed for the implementation of the discrete 
wavelet transform. The first architecture, pre-
sented by Knowles [7], uses many large mul-
tiplexers for storing intermediate results. 
Parhi and Nishitani proposed a folded archi-
tecture that has shorter latency [8], however, 
it requires complex routing and control net-
work. Chakabarti [9] proposed a systolic ar-
chitecture, but also it requires many parallel 
hardware and complex routing. In general, 
custom VLSI circuits are inherently inflexible 
and their development is costly and time con-
suming, and thus they are not an attractive 
option for implementing the wavelet trans-
form. 

Filed programmable gate arrays (FPGAs) 
provide a new implementation platform for 
the discrete wavelet transform. FPGAs main-
tain the advantages of the custom functional-
ity of VLSI ASIC devices, while avoiding the 
high development costs and the inability to 
make design modifications after production 
[10]. Furthermore, FPGAs inherit design 
flexibility and adaptability of software im-
plementations. In this paper we describe a 
parallel and high speed implementation of the 
discrete wavelet transform and its inverse us-
ing Virtex FPGAs produced by Xilinx [11]. 

We make maximal utilization of the look-
up table (LUT) architecture of Virtex FPGAs 
by reformulating the wavelet transform com-
putation in accordance with the distributed 
arithmetic algorithm [12]. Distributed arith-
metic makes extensive use of look-up tables , 
which makes it ideal for implementing the 

discrete wavelet transform functions onto the 
LUT-based architecture of Virtex FPGAs. 
Moreover, distributed arithmetic is suitable 
for low power portable applications because it 
allows replacement of costly multipliers with 
shifts and look-up tables. 

Indeed, one of the unique features of our 
discrete wavelet transform implementation is 
exploiting the natural match between the 
Virtex architecture and distributed arithmetic. 
Three more unique features are worth men-
tioning at this point. The first is the flexibility 
of the implementation which is made possible 
by virtue of the re-programmability of FPGAs 
which allows easy modification of wavelet 
type. The second is that, unlike most reported 
implementations which concentrate on archi-
tecture development, this implementation 
goes down to the actual implementation level. 
Finally, this paper describes implementations 
for both the forward and inverse transforms, 
whereas most papers report on the implemen-
tation of the forward wavelet transform only. 

The paper is organized as follows. Section 
two gives an introduction to basic wavelets 
computation. Section three highlights the ar-
chitectural match between filed programma-
ble gate arrays and distributed arithmetic. 
Section four describes the implementation of 
discreet wavelet transform and its inverse us-
ing the distributed arithmetic method. Section 
five describes functional simulation of the 
forward and inverse implementations. Section 
six presents the performance results and com-
pares them with the performance results ob-
tained for alternative FPGA and software im-
plementations. Finally, section seven presents 
some concluding remarks. 

 
2. Basic wavelet computation 
 

Wavelets are special functions which, in a 
form analogous to sines and cosines in Fou-
rier analysis, are used as basal functions for 
representing signals. They provide powerful 
multiresolution tool for the analysis of non-
stationary signals with good time localization 
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information [13]. The coefficients of the dis-
crete wavelet transform (DWT) can be calcu-
lated recursively and in a straight forward 
manner using the well-known Mallat’s pyra-
mid algorithm [14]. Based on this algorithm, 
the coefficients of any stage can be computed 
from the coefficients of the previous stage 
using the following iterative equations: 
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Where WL(n,j) is the nth scaling coefficient 

at the jth stage, WH(n,j) is the nth wavelet coef-
ficient at the jth stage, and h0(n) and h1(n) are 
the dilation coefficients corresponding to the 
scaling and wavelet functions, and m is the 
summation running index of the analysis fil-
ters' coefficients, respectively. Eq. (1) can 
then be used for obtaining the coefficients of 
subsequent stages. In practice this decomposi-
tion is performed only for a few stages. 

In order to reconstruct the original data, the 
DWT coefficients are upsampled and passed 
through another set of low pass and high pass 
filters, which is expressed as follows: 
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where g0(n) and g1(n) are respectively the 
low-pass and high-pass synthesis filters corre-
sponding to the mother wavelet, and and l is 
the summation running index of the analysis 
filters' coefficients. It is observed from Equa-
tion (3) that the jth level coefficients can be 
obtained from the (j+1)th level coefficients. 

Daubechies 8-tap wavelet  has been chosen 
for this implementation. This wavelet type is 
known for its excellent special and spectral 
localities which are useful properties in image 
compression [15]. The filters coefficients cor-

responding to this wavelet type are shown in 
Table 1, and have been taken from [16]. H0 
and H1 are the input decomposition filters and 
G0 and G1  are the output reconstruction fil-
ters. 

 
Table 1. Daubechies 8-tap wavelet coefficients 
 

H0 H1 G0 G1 
-0.0106 0.2304 -0.2304 -0.0106
-0.0329 0.7148 0.7148 0.0329
0.0308 0.6309 -0.6309 0.0308
0.1870 -0.0280 -0.0280 -0.187
-0.0280 -0.1870 0.1870 -0.0280
-0.6309 0.0308 0.0329 0.6309
0.7148 0.0329 -0.0329 0.7148
-0.2304 -0.0106 -0.0106 0.2304

 
3. Distributed arithmetic & virtex FPGAs 

 
Distributed arithmetic is an efficient 

method for computing the inner product op-
eration which constitutes the core of the dis-
crete wavelet transform. In this section we 
briefly describe the mathematical derivation 
of the distributed arithmetic algorithm. We 
follow the derivation with an overview of Xil-
inx’s Virtex FPGA architecture and a descrip-
tion of show how it matches the lookup table 
structure of distributed arithmetic computa-
tion . 
 
3.1. Distributed arithmetic 
 

Mathematical derivation of distributed arit- 
hmetic is extremely simple; a mix of Boolean 
and ordinary algebra [17]. Let the variable Y 
hold the result of an inner product operation 
between a data vector x and a coefficient vec-
tor a. The conventional representation the in-
ner product operation is given as follows: 
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Where the input data words xi have been 
represented by the 2’s complement number 
presentation in order to bound number growth 
under multiplication. The variable  xij is the jth 
bit of the xi word which is Boolean, B is the 
number of bits of each input data word and x0i 
is the sign bit. Interchange the order of sum-
mation of Eq. (4), we get: 
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Distributed arithmetic is based on the ob-

servation that the function Fj can only take 2N 
different values that can be pre-computed off-
line and stored in a look-up table. Bit j of each 
data xij is then used to address this look-up 
table. Eq. (5) clearly shows that the only three 
different operations required for calculating 
the inner product. First, a look-up to obtain 
the value of Fj, then addition or subtraction, 
and finally a division by two that can be real-
ized by a shift. 

In its most obvious and direct form, dis-
tributed arithmetic computations are bit-serial 
in nature, i.e., each bit of the input samples 
must be indexed in turn before a new output 
sample becomes available. When the input 
samples are represented with B bits of preci-
sion, B clock cycles are required to complete 
an inner-product calculation. An example of a 
distributed arithmetic implementation of a 4-
element inner product operation is shown in 
Figure 1 along with the conventional imple-
mentation of the same product operation. 

 
3.2. Virtex FPGAs 
 

One of most advanced FPGA families in 
industry is the FPGA series produced by Xil-
inx [18]. The Virtex user-programmable gate 
array comprises two major configurable ele-
ments: configurable logic blocks (CLBs) and 
input/output blocks (IOBs). CLBs provide the 

functional elements for constructing logic and 
IOBs provide the interface between the pack-
age pins and the CLBs. 

 (a) 

 (b) 
 
Figure 1. Multiply accumulate operation (a) con-

ventional implementation and (b) dis-
tributed Arithmetic implementation 

 
3.2.1. Internal configuration 
 

The basic Virtex logic element in a CLB is 
the slice [19]. Two slices are present in each 
CLB as shown in Figure 2. Each slice con-
tains 4-input, 1-output LUTs and two registers. 
Interconnections between these elements are 
configured by multiplexers controlled by 
SRAM cells programmed by a user’s bit-
stream. The LUTs allow any function of five 
inputs, and two functions of four inputs, or 
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some functions of up to nine inputs to be cre-
ated within a CLB slice. The outputs of theses 
functions may be registered, or the registers 
may be used independently of the LUTs. This 
structure allows a very powerful method of 
implementing arbitrary, complex digital logic. 

 

Figure 2. Simplified Virtex configurable slice 
 
3.2.2. Look-up table implementation 
 

Virtex slices have the ability to implement 
distributed memory instead of logic. Each 4-
input LUT in a slice may be used to imple-
ment a 16x1 ROM or RAM, or the two LUTs 
may be combined together to create a 32x1 
ROM or RAM or a 16x1 dual-port RAM. 
This allows each slice to trade logic resources 
for memory in order to maximize the re-
sources available for a particular application. 

Distributed Arithmetic for inner product 
generation can be easily implemented in the 
LUT-based Xilinx Virtex FPGAs. The inner 
product production basically consists of table-
lookup operations and additions. Thus RAM 
or ROM can be employed holding table val-
ues, and table lookup operations can be per-
formed, and then a parallel adder usually fol-
lows to sum up LUT values provided by 
ROM or RAMs. 

4. Distributed arithmetic implementation 
 

The discrete wavelet transform equations 
described in the previous section can be effi-
ciently computed using the quadratic mirror 
filter (QMF) tree shown in Figure 3. In this 
section we describe a distributed arithmetic 
implementation of the QMF tree. The imple-
mentation starts by deriving the distributed 
arithmetic structure of a single FIR filter, and 
then by describing the implementation of the 
QMF filter banks of both the forward and dis-
crete wavelet transforms. 
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Figure 3. Mallat's quadratic mirror Filter tree        

(a) DWT and (b) Inverse DWT tree 
 
4.1. Distributed arithmetic FIR filter 
 

All filters in the pyramid tree structure 
shown in Figure 3 are constructed using FIR 
filters because of their inherent stability. A 
casual FIR filter of length M is characterized 
by: 
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Most discrete wavelet transform implemen-

tations reported in literature employ the direct 
form structure shown in Figure 4. As shown 
in the figure, each filter tap consists of a delay 
element, an adder, and a multiplier [20]. 
However, a major drawback of this imple-
mentation is that filter throughput is inversely 
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proportional to the number of filter taps. That 
is, as filter length is increased, the filter 
throughput is proportionately decreased. 

h[0]
h[1]

Z-1

h[2] h[3] h[4]

-1Z-1 Z Z-1

h[N-1]

Y[n]

-1ZX[n]

Figure 4. Direct FIR filter structure 
 

Distributed arithmetic implementation of 
an FIR filter consists of a look-up table (LUT), 
a cascade of shift registers and a scaling ac-
cumulator, as shown in Figure 5.  

Figure 5. Distributed arithmetic FIR filter 
 

The LUT stores all possible partial prod-
ucts over the FIR filter coefficient space given 
in Table 1. Input samples are presented to the 
input parallel-to-serial shift register at the in-
put signal sample rate. As the input sample is 
serialized, the bit-wide output is presented to 
the bit-serial shift register cascade,1-bit at a 
time. The cascade stores the input sample his-
tory in a bit-serial format and is used in form-
ing the required inner-product computation. 
The bit outputs of the shift register cascade 
are used as address inputs to the look-up table. 
Partial results from the look-up table are 
summed by the scaling accumulator to form a 
final result at the filter output port. Since the 
LUT size in a distributed arithmetic imple-
mentation increases exponentially with the 
number of coefficients, the LUT access time 

can be a bottleneck for the speed of the whole 
system when the LUT size becomes large. 
Hence we decomposed the 8-bit LUT shown 
in Figure 5 into two 4-bit LUTs, and added 
their outputs using a two-input accumulator. 
The modified partitioned-LUT architecture is 
shown in Figure 6. 

 
Figure 6. Efficient distributed arithmetic implemen-

tation of the FIR filter 
 

The total size of storage is now reduced 
since the accumulator is less costly than the 
larger 8-bit LUT. Furthermore, partitioning 
the larger LUT into two smaller LUTs ac-
cessed in parallel reduces access time. In ad-
dition, throughput of the filter is maintained 
regardless of the length of the FIR filter. This 
feature is particularly attractive for flexible 
implementations of different wavelet types 
since each type has a different set of filer co-
efficients. 

 
4.2. Forward DWT implementation 
 

The basic building block of the forward 
discrete wavelet transform filter bank is the 
decimator which consists of an FIR filter fol-
lowed by a down-sampling operator [21]. 
Down-sampling an input sequence x[n] by an 
integer value of 2, consists of generating an 
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output sequence y[n] according to the relation 
y[n] = x[2n]. Accordingly, the sequence y[n] 
has a sampling rate equal to half of that of 
x[n]. 

We implemented the decimator as shown in 
Figure 7a. An active-high output control pin, 
labeled DATA RDY, has been implemented 
in the distributed arithmetic FIR structure and 
connected directly to the CLK input of a 1-bit 
counter. The input port of the FIR filter is 
connected to the input samples source, 
whereas the output port is connected to a par-
allel-load register. The register loads its input 
bits in parallel upon receiving a high signal on 
its CLK input from the counter, and blocks its 
input otherwise. 

Assuming unsigned 8-bit input samples, the 
decimator operates as follows. When the 
DATA RDY signal is activated, every time 
the FIR completes a filter operation, it trig-
gers the counter to advance to the next state. 
If the new state is 1, the parallel-load register 
is activated, and it stores the data received at 
its input from the FIR filter. If the new state is 
0, the register is disabled, and consequently 
the FIR output is blocked from entering the 
register, and ultimately discarded. The above 
procedure repeats, so that when the counter 
has 1 on its output, the FIR data is stored , and 
when it has a 0 on its output, the FIR data is 
discarded. 
 
4.3. Inverse DWT implementation 
 

The basic building block of the inverse dis-
crete wavelet transform filter bank is the in-
terpolator which consists of an FIR filter pro-
ceeded by an up-sampling operator [21]. The 
up-sampler inserts an equidistant zero-valued 
sample between every two consecutive sam-
ples on the input sequence x[n] to develop an 
output sequence y[n] such that y[n] =  x[n/2] 
for even indices of n, and 0 otherwise. The 
sampling rate of the output sequence y[n]  is 
thus twice as large as the sampling rate of the 
original sequence  x[n]. 

We implemented the interpolation filter as 
shown in Figure 7b. The input port of the FIR 
filter is connected to the output port of a par-
allel-load register; whereas the input port of 
the register is connected directly to the input 
samples source. The operation of the register 
depends on the signal received on its active-
high CLR (clear) input from the most signifi-
cant output bit of a 4-bit counter. 

Assuming the input samples source sends 
out successive samples separated by 16 clock 
periods, the interpolator operates as follows. 
Let an input sample be transferred, through 
the parallel-load register, to the FIR filter. The 
transfer process takes place during the first 
eight counts of the 4-bit counter in which the 
counter's MSB remains 0, thus enabling the 
register to transfer its input data to its output 
port.  

During the next eight counts, the MSB of 
the count becomes 1, and thus clearing the 
register and consequently transferring zeros to 
its output. The zero output is maintained until 
the last count (FFFF H) is reached. The above 
procedure repeats so that an input sample en-
ters the FIR filter during the first eight clocks, 
followed by a zero during the next eight 
clocks, and so on. 
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Figure 7. Implementation of the basic blocks of the 

(a) decimator block and (b) interpolator 
block 
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5. Functional simulation 
 

Functional simulation is a major prerequi-
site step towards a correct and efficient FPGA 
implementation of the discrete wavelet trans-
form. Therefore, the distributed arithmetic 
implementations, described in the previous 
section, were modeled by the Verilog hard-
ware description language and verified by its 
functional simulator [22]. Simulation wave-
forms of the forward and inverse wavelet 
transforms are displayed in Figure 8. The 
waveforms prove that the implementations 
execute the operation of the wavelet trans-
form correctly. 

We used uniformly distributed 8-bit ran-
dom input samples to generate the simulation 
waveforms. We also maintained sufficient 
precision of the intermediate and output coef-
ficients since allocating sufficient bits to the 
intermediate and output coefficients is a nec-
essary step to keep the perfect reconstruction 
capabilities of the discrete wavelet transform. 
If we allocate fewer bits than necessary, the 
output of the inverse discrete wavelet trans-
form will not be the same as a delayed version 
of the input of the forward discrete wavelet 
transform. Also, if we’re dealing with an im-
age compression application, the decom-
pressed image will suffer form some defects, 
such as ringing effects and blurring artifacts. 
Simulation waveform of the forward wavelet 
transform architecture of Figure 3a is illus-
trated in Figure 8.  

As an input sample X enters the first filter 
bank stage at a rate of 1sample/8 clocks, one 
sample (H1) leaves to the output, and another 
sample (L1) leaves to the second stage, both at 
a rate of 1sample/ 16clocks. Similarly, the 
second stage sends a sample to the output 
(H2), and another sample (L2) to the third 
stage, both at a rate of 1sample/32 clocks. Fi-
nally, the third stage generates two samples 
(L3 and H3) at a rate of 1 sample/ 64clocks. 
Simulation waveform of the inverse wavelet 
transform architecture of Figure 3b is illus-
trated in Figure 9. The first filter bank stage 

receives two inputs (H3 and L3), both pro-
duced from the third stage of the forward 
DWT at a rate of 1sample/64clock. 

 

 
 
Figure 8. Simplified functional Verilog simulation of 

the forward DWT 
 

The stage up-samples each of them by a 
factor of 2, and sends out their filtered sum-
mation at the rate of 1sample/32 clocks to the 
second stage, to be processed with an input 
sample coming from the second stage of the 
forward DWT stage at a rate of 1sample/32 
clocks (H2). Similarly, the second stage up-
samples both by a factor of 2, and then sends 
out their filtered summation at a rate of 
1sample/16 clocks to the third stage to be 
processed with an input sample coming from 
the first stage of the forward DWT at a rate of 
1sample/ 16clocks (H1). 

Finally, the third stage up-samples both by 
a factor of 2, and then sends out their filtered 
summation at a rate of 1sample/ 8clocks to 
the output. This last output represents the re-
constructed signal. 
 

 
 
Figure 9. Simplified functional Verilog simulation of 

the inverse DWT 
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6. Performance evaluation 
 

In this section we present the experimental 
results obtained for the distributed arithmetic 
implementation of the discrete wavelet trans-
form and its inverse. We also compare the 
results with those of an FPGA implementa-
tion based on conventional arithmetic, and 
with the results of two software implementa-
tions. 
 
6.1. Experimental results 
 

We have implemented the parallel designs 
described in the previous section using one of 
the largest available Xilinx Virtex FPGA de-
vices, XCV300. This device contains 322,970 
gates (3072 slices) and can operate at a maxi-
mum clock speed of 200 MHz. Therefore, 
performance is usually measured with respect 
to two evaluation metrics; the throughput 
(sample rate) and is given in terms of the 
clock speed, and device utilization, and is 
given in terms number of Virtex logic slices 
used by the implementation. 

The distributed arithmetic implementation 
was verified with Verilog HDL Simulator, 
and synthesized using Xilinx Foundation Se-
ries. The forward discrete wavelet transform 
implementation operated at a throughput of 
92.7 MHz, and required 374 Virtex slices 
which represents around 12 % of the total 
3072 slices. Throughout of the inverse dis-
crete wavelet transform implementation was 
89.1 MHz, and the hardware requirement was 
461 slices which represents around 15 % of 
the total Virtex slices. 

The bit stream corresponding to the imple-
mentation was downloaded to a prototyping 
board called the XSV-300 FPGA Board, de-
veloped by XESS Inc [23]. The board is based 
on a single Xilinx XCV300 FPGA. It can ac-
cept video with up to 9-bits of resolution and 
output video images through a 110 MHz, 24-
bit RAMDAC. Two independent banks of 
512K x 16 SRAM are provided for local buff-
ering of signals and data. 

6.2. Performance comparison 
 

We implemented the discrete wavelet trans-
form architecture shown in Figure 3 using the 
conventional arithmetic approach. The for-
ward discrete wavelet transform achieved a 
throughput of 54.3 MHz, and required 560 
Virtex slices which represents 18 % of the 
total Virtex slices, and the inverse discrete 
wavelet transform achieved a throughput was 
47.8 MHz, and required 619 slices which 
represents around 20 % of the total Virtex 
slices. 

It is noted from the results obtained above, 
and further illustrated in Figure 10, that the 
throughput of the distributed arithmetic im-
plementation is higher than the throughput of 
the conventional arithmetic implementation.  

This is expected since the distributed arith- 
metic implementation replaced the time-con- 
suming conventional multiply accumulate op-
erations with fast look-up tables and shift op-
erations. Furthermore, partial products of all 
multiply accumulate operations were pre-
computed offline and stored in the LUTs, thus 
saving a great a mount of real-time computa-
tion. As for Virtex slice utilization, distributed 
arithmetic, uses less hardware resources than 
the conventional arithmetic, as illustrated in 
Figure 11.  

 

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut
 (M

H
z)

 

Conventional Arithmetic
Implementation

Distributed Arithmetic
Implementation

Implementation

Forward DWT Inverse DWT

 
 
Figure 10. Comparison between the throughput of 

two DWT implementations 
 



Fast Discrete Wavelet Transformation Using FPGAs and Distributed Arithmetic 

Int. J. Appl. Sci. Eng., 2003. 1, 2          169 

0

100

200

300

400

500

600

700

U
til

iz
at

io
n 

(S
lic

e)

Conventional Arithmetic
Implementation

Distributed Arithmetic
Implementation

Implementation

Forward DWT Inverse DWT

 
 
Figure 11. Comparison between the utilization of 

two DWT implementations 
 

This is also expected since the conventional 
arithmetic multiplier requires much more 
logic resources than the distributed arithmetic 
multiplier which requires small LUTs, sim-
ples adders and shift registers. The wavelet 
transform was also implement- ed on the 
TMS320C6711; a Texas Instrument digital 
signal processor with an a complex architec-
ture suitable for image processing applica-
tions [24]. The TMS320C6711 is a highly in-
tegrated single chip processor and can operate 
at 150 MHz (6.7 ns clock cycle with a peak 
performance of 900 MFLOPS [25]. 

The processor was programmed such that 
the main portion of the wavelet transform was 
written in C, and certain sections in assembly. 
Also, parallel instructions were used when-
ever possible to exploit the abundant parallel-
ism inherent in the wavelet transform. Sample 
execution times obtained for both the forward 
and inverse discrete wavelet transforms were 
0.153 µs (6.53 MHz) and 0.276 µs (3.62 
MHz), respectively. 

To complete the performance evaluation 
circle, we coded the forward and inverse 
wavelet transforms in C, and executed corre-
sponding programs on a conventional PC 
powered by an 800 MHz Pentium III proces-
sor. The execution times obtained for both the 
forward and inverse discrete wavelet trans-

forms were 0.1280 msec (0.00781 MHz) and 
0.1485 msec (0.00673 MHz), respectively. 

It is noted from the results obtained above, 
and summarized in Table 2, that the two 
FPGA implementations perform much better 
than the TMS20C6711 and Pentium III soft-
ware implementations. The superior perform-
ance of the FPGA-based implementations is 
attributed to the highly parallel, pipelined and 
distributed architecture of Xilinx Virtex 
FPGA. Moreover, it should be noted that the 
Virtex FPGAs offer more than high speed for 
many embedded applications. They offer 
compact implementation, low cost and low 
power consumption; things which can’t be 
offered by any software implementation. 
 
Table 2. Throughput of different implementations 
 

Implementation Forward 
DWT 
(MHz) 

Inverse 
DWT 
(MHz) 

Pentium III 0.00781 0.00673 
TMS320C6711 6.530 3.620 
Conventional  
arithmetic 

54.3 47.8 

Distributed  
arithmetic 

92.7 89.1 

 
6.3. Ongoing research 
 

After completing this FPGA implementa-
tion of the discrete wavelet transform and its 
inverse, we are now working on integrating a 
whole wavelet-based image compression sys-
tem on a single, dynamic, runtime reconfigur-
able FPGA. A typical image compression sys-
tem consists of an encoder and a decoder. At 
the encoder side, an image is first transformed 
to the frequency domain using the forward 
discrete wavelet transform. 

The non-negligible wavelet coefficients are 
then quantized, and finally encoded using an 
appropriate entropy encoder. The decoder 
side reverses the whole encoding procedure 
described above. Transforming the 2-D image 
data can be done simply by inserting a matrix 
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transpose module between two 1-D discrete 
wavelet transform modules such as those de-
scribed in this paper. 
 
7. Conclusions 
 

In this paper we reported on the perform-
ance of several implementations of the dis-
crete wavelet transform and its inverse; two 
implementations using the highly parallel 
Virtex filed programmable gate array devices 
(FPGAs), and two software implementations; 
one using the TMS320C6711 digital signal 
processor and the other using the 800 MHz 
Pentium III Intel processor. 

Based on the results obtained of the various 
implementations, we observed that the im-
plementation which was based on the distrib-
uted arithmetic algorithm achieved the best 
performance results. This has been possible 
by reformulating the computation of the 
wavelet transform so that it matches the 
lookup architecture of the Viretx FPGA. It 
was also observed that the two software im-
plementations were far inferior to the FPGA 
implementations in terms of execution speed. 
The TMS320C6711 digital signal processor 
performed much better than the Pentium III , 
however, its performance is still much lower 
the performance of the least efficient, direct 
FPGA implementation. 

Finally, it may be concluded that using 
FPGAs, coupled with reformulating the com-
putation of the wavelet transform in accor-
dance with the distributed arithmetic algo-
rithm, results in the performance levels re-
quired for real-time implementations. 
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