
International Journal of Applied Science and Engineering
2003. 1, 2: 160-171

160 Int. J. Appl. Sci. Eng., 2003. 1, 2

Fast Discrete Wavelet Transformation Using FPGAs and
Distributed Arithmetic

Ali M. Al-Haj

Department of Electronics Engineering,

Princess Sumaya University for Technology,
Al-Jubeiha P.O. Box 1438, Amman 11941, Jordan.

Abstract: The discrete wavelet transform has gained the reputation of being a very effective sig-
nal analysis tool for many practical applications. However, due to its computation-intensive na-
ture, current implementations of the transform fall short of meeting real-time processing re-
quirements of most applications. This paper describes a parallel implementation of the discrete
wavelet transform and its inverse using high-density field programmable logic devices (FPGAs).
The implementation exploits the lookup table-based architecture of Virtex FPGAs, by reformu-
lating the wavelet computation in accordance with the distributed arithmetic algorithm. Perform-
ance results show that the distributed arithmetic formulation results in a considerable perform-
ance gain compared with the conventional arithmetic formulation of the wavelet computation.
Finally, we show that the FPGA implementation outperforms alternative software implementa-
tions of the discrete wavelet transform.

Keywords: discrete wavelet transform; distributed arithmetic; FPGA implementation.

 Corresponding e-mail: ali@psut.edu.jo Accepted for Publication: July 22, 2003

© 2003 Chaoyang University of Technology, ISSN 1727-2394

1. Introduction

The wavelet transform is an emerging sig-
nal processing technique that can be used to
represent real-life non-stationary signals with
high efficiency. Indeed, the wavelet transform
is gaining momentum to become an alterna-
tive tool to traditional time-frequency repre-
sentation techniques such as the discrete Fou-
rier transform and the discrete cosine trans-
form. By virtue of its multi-resolution repre-
sentation capability, the wavelet transform
has been used effectively in vital applications
such as transient signal analysis [1], numeri-
cal analysis [2], computer vision [3], image
compression [4], among many other audio-
visual applications.

The discrete wavelet transform is computa-
tionally intensive and operates on large data

sets. This factor, coupled with the demand for
real time operation in many image processing
tasks, made the traditional sequential com-
puters fall short in meeting such requirements.
In turn, this necessitated the search for high
performance implementations at a reasonable
cost. Implementations of the discrete wavelet
transform can be grouped into two major
categories; software implementations using
programmable parallel systems, and dedicated
hardware implementations using customized
VLSI devices. Each implementation category
presents different trade-offs in terms of per-
formance, cost, power, and flexibility.

Several parallel systems that meet the com-
putational requirements of the wavelet trans-
form have been proposed [5, 6]. However,
programming such multiprocessor systems is
a tedious, difficult, and time consuming task.

Fast Discrete Wavelet Transformation Using FPGAs and Distributed Arithmetic

Int. J. Appl. Sci. Eng., 2003. 1, 2 161

Moreover, multiprocessor implementations of
the discrete wavelet transform are not cost
effective since parallelism comes at the ex-
pense of augmenting the system with more
processing engines operating in parallel. This
is in addition to the fact that the discrete
wavelet transform is mostly needed to be em-
bedded in consumer electronics, and thus a
single chip hardware implementation is more
desirable than a multi-chip parallel system
implementation.

Several VLSI architectures have been pro-
posed for the implementation of the discrete
wavelet transform. The first architecture, pre-
sented by Knowles [7], uses many large mul-
tiplexers for storing intermediate results.
Parhi and Nishitani proposed a folded archi-
tecture that has shorter latency [8], however,
it requires complex routing and control net-
work. Chakabarti [9] proposed a systolic ar-
chitecture, but also it requires many parallel
hardware and complex routing. In general,
custom VLSI circuits are inherently inflexible
and their development is costly and time con-
suming, and thus they are not an attractive
option for implementing the wavelet trans-
form.

Filed programmable gate arrays (FPGAs)
provide a new implementation platform for
the discrete wavelet transform. FPGAs main-
tain the advantages of the custom functional-
ity of VLSI ASIC devices, while avoiding the
high development costs and the inability to
make design modifications after production
[10]. Furthermore, FPGAs inherit design
flexibility and adaptability of software im-
plementations. In this paper we describe a
parallel and high speed implementation of the
discrete wavelet transform and its inverse us-
ing Virtex FPGAs produced by Xilinx [11].

We make maximal utilization of the look-
up table (LUT) architecture of Virtex FPGAs
by reformulating the wavelet transform com-
putation in accordance with the distributed
arithmetic algorithm [12]. Distributed arith-
metic makes extensive use of look-up tables ,
which makes it ideal for implementing the

discrete wavelet transform functions onto the
LUT-based architecture of Virtex FPGAs.
Moreover, distributed arithmetic is suitable
for low power portable applications because it
allows replacement of costly multipliers with
shifts and look-up tables.

Indeed, one of the unique features of our
discrete wavelet transform implementation is
exploiting the natural match between the
Virtex architecture and distributed arithmetic.
Three more unique features are worth men-
tioning at this point. The first is the flexibility
of the implementation which is made possible
by virtue of the re-programmability of FPGAs
which allows easy modification of wavelet
type. The second is that, unlike most reported
implementations which concentrate on archi-
tecture development, this implementation
goes down to the actual implementation level.
Finally, this paper describes implementations
for both the forward and inverse transforms,
whereas most papers report on the implemen-
tation of the forward wavelet transform only.

The paper is organized as follows. Section
two gives an introduction to basic wavelets
computation. Section three highlights the ar-
chitectural match between filed programma-
ble gate arrays and distributed arithmetic.
Section four describes the implementation of
discreet wavelet transform and its inverse us-
ing the distributed arithmetic method. Section
five describes functional simulation of the
forward and inverse implementations. Section
six presents the performance results and com-
pares them with the performance results ob-
tained for alternative FPGA and software im-
plementations. Finally, section seven presents
some concluding remarks.

2. Basic wavelet computation

Wavelets are special functions which, in a
form analogous to sines and cosines in Fou-
rier analysis, are used as basal functions for
representing signals. They provide powerful
multiresolution tool for the analysis of non-
stationary signals with good time localization

Ali M. Al-Haj

162 Int. J. Appl. Sci. Eng., 2003. 1, 2

information [13]. The coefficients of the dis-
crete wavelet transform (DWT) can be calcu-
lated recursively and in a straight forward
manner using the well-known Mallat’s pyra-
mid algorithm [14]. Based on this algorithm,
the coefficients of any stage can be computed
from the coefficients of the previous stage
using the following iterative equations:

)2()1,(),(0 nmhjmWjnW

m
LL −−= ∑ (1)

)2()1,(),(1 nmhjmWjnW

m
LH −−= ∑ (2)

Where WL(n,j) is the nth scaling coefficient

at the jth stage, WH(n,j) is the nth wavelet coef-
ficient at the jth stage, and h0(n) and h1(n) are
the dilation coefficients corresponding to the
scaling and wavelet functions, and m is the
summation running index of the analysis fil-
ters' coefficients, respectively. Eq. (1) can
then be used for obtaining the coefficients of
subsequent stages. In practice this decomposi-
tion is performed only for a few stages.

In order to reconstruct the original data, the
DWT coefficients are upsampled and passed
through another set of low pass and high pass
filters, which is expressed as follows:

)2()1,(

)2()1,(),(

1

0

lngjlW

kngjkWjnW

l
H

k
LL

−+

+−+=

∑

∑
 (3)

where g0(n) and g1(n) are respectively the
low-pass and high-pass synthesis filters corre-
sponding to the mother wavelet, and and l is
the summation running index of the analysis
filters' coefficients. It is observed from Equa-
tion (3) that the jth level coefficients can be
obtained from the (j+1)th level coefficients.

Daubechies 8-tap wavelet has been chosen
for this implementation. This wavelet type is
known for its excellent special and spectral
localities which are useful properties in image
compression [15]. The filters coefficients cor-

responding to this wavelet type are shown in
Table 1, and have been taken from [16]. H0
and H1 are the input decomposition filters and
G0 and G1 are the output reconstruction fil-
ters.

Table 1. Daubechies 8-tap wavelet coefficients

H0 H1 G0 G1
-0.0106 0.2304 -0.2304 -0.0106
-0.0329 0.7148 0.7148 0.0329
0.0308 0.6309 -0.6309 0.0308
0.1870 -0.0280 -0.0280 -0.187
-0.0280 -0.1870 0.1870 -0.0280
-0.6309 0.0308 0.0329 0.6309
0.7148 0.0329 -0.0329 0.7148
-0.2304 -0.0106 -0.0106 0.2304

3. Distributed arithmetic & virtex FPGAs

Distributed arithmetic is an efficient

method for computing the inner product op-
eration which constitutes the core of the dis-
crete wavelet transform. In this section we
briefly describe the mathematical derivation
of the distributed arithmetic algorithm. We
follow the derivation with an overview of Xil-
inx’s Virtex FPGA architecture and a descrip-
tion of show how it matches the lookup table
structure of distributed arithmetic computa-
tion .

3.1. Distributed arithmetic

Mathematical derivation of distributed arit-
hmetic is extremely simple; a mix of Boolean
and ordinary algebra [17]. Let the variable Y
hold the result of an inner product operation
between a data vector x and a coefficient vec-
tor a. The conventional representation the in-
ner product operation is given as follows:

+−=

=

∑∑

∑
−

=

−

=

−

=
1

1
0

1

1

0

2
B

j

j
iji

N

i
i

N

i
ii

xxa

xaY
 (4)

Fast Discrete Wavelet Transformation Using FPGAs and Distributed Arithmetic

Int. J. Appl. Sci. Eng., 2003. 1, 2 163

Where the input data words xi have been
represented by the 2’s complement number
presentation in order to bound number growth
under multiplication. The variable xij is the jth
bit of the xi word which is Boolean, B is the
number of bits of each input data word and x0i
is the sign bit. Interchange the order of sum-
mation of Eq. (4), we get:

FF

xaaxY

j
B

j
j

N

i
ii

j
B

j

N

i
iij

−=

−+

=

−
−

=

=

−
−

= =

∑

∑∑ ∑

2

)(2

1

1

1
0

1

1 1 (5)

Distributed arithmetic is based on the ob-

servation that the function Fj can only take 2N
different values that can be pre-computed off-
line and stored in a look-up table. Bit j of each
data xij is then used to address this look-up
table. Eq. (5) clearly shows that the only three
different operations required for calculating
the inner product. First, a look-up to obtain
the value of Fj, then addition or subtraction,
and finally a division by two that can be real-
ized by a shift.

In its most obvious and direct form, dis-
tributed arithmetic computations are bit-serial
in nature, i.e., each bit of the input samples
must be indexed in turn before a new output
sample becomes available. When the input
samples are represented with B bits of preci-
sion, B clock cycles are required to complete
an inner-product calculation. An example of a
distributed arithmetic implementation of a 4-
element inner product operation is shown in
Figure 1 along with the conventional imple-
mentation of the same product operation.

3.2. Virtex FPGAs

One of most advanced FPGA families in
industry is the FPGA series produced by Xil-
inx [18]. The Virtex user-programmable gate
array comprises two major configurable ele-
ments: configurable logic blocks (CLBs) and
input/output blocks (IOBs). CLBs provide the

functional elements for constructing logic and
IOBs provide the interface between the pack-
age pins and the CLBs.

 (a)

 (b)

Figure 1. Multiply accumulate operation (a) con-

ventional implementation and (b) dis-
tributed Arithmetic implementation

3.2.1. Internal configuration

The basic Virtex logic element in a CLB is
the slice [19]. Two slices are present in each
CLB as shown in Figure 2. Each slice con-
tains 4-input, 1-output LUTs and two registers.
Interconnections between these elements are
configured by multiplexers controlled by
SRAM cells programmed by a user’s bit-
stream. The LUTs allow any function of five
inputs, and two functions of four inputs, or

Ali M. Al-Haj

164 Int. J. Appl. Sci. Eng., 2003. 1, 2

some functions of up to nine inputs to be cre-
ated within a CLB slice. The outputs of theses
functions may be registered, or the registers
may be used independently of the LUTs. This
structure allows a very powerful method of
implementing arbitrary, complex digital logic.

Figure 2. Simplified Virtex configurable slice

3.2.2. Look-up table implementation

Virtex slices have the ability to implement
distributed memory instead of logic. Each 4-
input LUT in a slice may be used to imple-
ment a 16x1 ROM or RAM, or the two LUTs
may be combined together to create a 32x1
ROM or RAM or a 16x1 dual-port RAM.
This allows each slice to trade logic resources
for memory in order to maximize the re-
sources available for a particular application.

Distributed Arithmetic for inner product
generation can be easily implemented in the
LUT-based Xilinx Virtex FPGAs. The inner
product production basically consists of table-
lookup operations and additions. Thus RAM
or ROM can be employed holding table val-
ues, and table lookup operations can be per-
formed, and then a parallel adder usually fol-
lows to sum up LUT values provided by
ROM or RAMs.

4. Distributed arithmetic implementation

The discrete wavelet transform equations
described in the previous section can be effi-
ciently computed using the quadratic mirror
filter (QMF) tree shown in Figure 3. In this
section we describe a distributed arithmetic
implementation of the QMF tree. The imple-
mentation starts by deriving the distributed
arithmetic structure of a single FIR filter, and
then by describing the implementation of the
QMF filter banks of both the forward and dis-
crete wavelet transforms.

X[n]
1H (z)

2H (z)0

2

H (z)1

H (z)0 2

2

H (z)1

H (z)0 2

2

H [n]1

2 G (z)

2 G (z)0

1

Y[n]

0G (z)2

G (z)2 1

2

2

G (z)0

G (z)1

H [n]2

H [n]3

L [n]3

L [n]3

H [n]

H [n]3

2

H [n]1

(a)

(b)

Figure 3. Mallat's quadratic mirror Filter tree

(a) DWT and (b) Inverse DWT tree

4.1. Distributed arithmetic FIR filter

All filters in the pyramid tree structure
shown in Figure 3 are constructed using FIR
filters because of their inherent stability. A
casual FIR filter of length M is characterized
by:

∑
−

=

−=
1

0
][)(

M

k

kzkhzH (6)

Most discrete wavelet transform implemen-

tations reported in literature employ the direct
form structure shown in Figure 4. As shown
in the figure, each filter tap consists of a delay
element, an adder, and a multiplier [20].
However, a major drawback of this imple-
mentation is that filter throughput is inversely

Fast Discrete Wavelet Transformation Using FPGAs and Distributed Arithmetic

Int. J. Appl. Sci. Eng., 2003. 1, 2 165

proportional to the number of filter taps. That
is, as filter length is increased, the filter
throughput is proportionately decreased.

h[0]
h[1]

Z-1

h[2] h[3] h[4]

-1Z-1 Z Z-1

h[N-1]

Y[n]

-1ZX[n]

Figure 4. Direct FIR filter structure

Distributed arithmetic implementation of
an FIR filter consists of a look-up table (LUT),
a cascade of shift registers and a scaling ac-
cumulator, as shown in Figure 5.

Figure 5. Distributed arithmetic FIR filter

The LUT stores all possible partial prod-
ucts over the FIR filter coefficient space given
in Table 1. Input samples are presented to the
input parallel-to-serial shift register at the in-
put signal sample rate. As the input sample is
serialized, the bit-wide output is presented to
the bit-serial shift register cascade,1-bit at a
time. The cascade stores the input sample his-
tory in a bit-serial format and is used in form-
ing the required inner-product computation.
The bit outputs of the shift register cascade
are used as address inputs to the look-up table.
Partial results from the look-up table are
summed by the scaling accumulator to form a
final result at the filter output port. Since the
LUT size in a distributed arithmetic imple-
mentation increases exponentially with the
number of coefficients, the LUT access time

can be a bottleneck for the speed of the whole
system when the LUT size becomes large.
Hence we decomposed the 8-bit LUT shown
in Figure 5 into two 4-bit LUTs, and added
their outputs using a two-input accumulator.
The modified partitioned-LUT architecture is
shown in Figure 6.

Figure 6. Efficient distributed arithmetic implemen-

tation of the FIR filter

The total size of storage is now reduced
since the accumulator is less costly than the
larger 8-bit LUT. Furthermore, partitioning
the larger LUT into two smaller LUTs ac-
cessed in parallel reduces access time. In ad-
dition, throughput of the filter is maintained
regardless of the length of the FIR filter. This
feature is particularly attractive for flexible
implementations of different wavelet types
since each type has a different set of filer co-
efficients.

4.2. Forward DWT implementation

The basic building block of the forward
discrete wavelet transform filter bank is the
decimator which consists of an FIR filter fol-
lowed by a down-sampling operator [21].
Down-sampling an input sequence x[n] by an
integer value of 2, consists of generating an

Ali M. Al-Haj

166 Int. J. Appl. Sci. Eng., 2003. 1, 2

output sequence y[n] according to the relation
y[n] = x[2n]. Accordingly, the sequence y[n]
has a sampling rate equal to half of that of
x[n].

We implemented the decimator as shown in
Figure 7a. An active-high output control pin,
labeled DATA RDY, has been implemented
in the distributed arithmetic FIR structure and
connected directly to the CLK input of a 1-bit
counter. The input port of the FIR filter is
connected to the input samples source,
whereas the output port is connected to a par-
allel-load register. The register loads its input
bits in parallel upon receiving a high signal on
its CLK input from the counter, and blocks its
input otherwise.

Assuming unsigned 8-bit input samples, the
decimator operates as follows. When the
DATA RDY signal is activated, every time
the FIR completes a filter operation, it trig-
gers the counter to advance to the next state.
If the new state is 1, the parallel-load register
is activated, and it stores the data received at
its input from the FIR filter. If the new state is
0, the register is disabled, and consequently
the FIR output is blocked from entering the
register, and ultimately discarded. The above
procedure repeats, so that when the counter
has 1 on its output, the FIR data is stored , and
when it has a 0 on its output, the FIR data is
discarded.

4.3. Inverse DWT implementation

The basic building block of the inverse dis-
crete wavelet transform filter bank is the in-
terpolator which consists of an FIR filter pro-
ceeded by an up-sampling operator [21]. The
up-sampler inserts an equidistant zero-valued
sample between every two consecutive sam-
ples on the input sequence x[n] to develop an
output sequence y[n] such that y[n] = x[n/2]
for even indices of n, and 0 otherwise. The
sampling rate of the output sequence y[n] is
thus twice as large as the sampling rate of the
original sequence x[n].

We implemented the interpolation filter as
shown in Figure 7b. The input port of the FIR
filter is connected to the output port of a par-
allel-load register; whereas the input port of
the register is connected directly to the input
samples source. The operation of the register
depends on the signal received on its active-
high CLR (clear) input from the most signifi-
cant output bit of a 4-bit counter.

Assuming the input samples source sends
out successive samples separated by 16 clock
periods, the interpolator operates as follows.
Let an input sample be transferred, through
the parallel-load register, to the FIR filter. The
transfer process takes place during the first
eight counts of the 4-bit counter in which the
counter's MSB remains 0, thus enabling the
register to transfer its input data to its output
port.

During the next eight counts, the MSB of
the count becomes 1, and thus clearing the
register and consequently transferring zeros to
its output. The zero output is maintained until
the last count (FFFF H) is reached. The above
procedure repeats so that an input sample en-
ters the FIR filter during the first eight clocks,
followed by a zero during the next eight
clocks, and so on.

CLK

DATA
IN

DATA
OUT

DATA
READY

FIR
CLK OUT

Counter
1-bit

CLK

D Q

CLR
CLOCK

X[n] Y[n]

m-bit
Register

Counter
4-bit

CLOCK CLK
CLK

IN
DATA

n-bit
Register
CLK

OUT3

D

CLR

Q

FIR
READY

DATA
OUT

DATA

Y[n]

OUT2
OUT1
OUT0

(a)

(b)

X[n]

Figure 7. Implementation of the basic blocks of the

(a) decimator block and (b) interpolator
block

Fast Discrete Wavelet Transformation Using FPGAs and Distributed Arithmetic

Int. J. Appl. Sci. Eng., 2003. 1, 2 167

5. Functional simulation

Functional simulation is a major prerequi-
site step towards a correct and efficient FPGA
implementation of the discrete wavelet trans-
form. Therefore, the distributed arithmetic
implementations, described in the previous
section, were modeled by the Verilog hard-
ware description language and verified by its
functional simulator [22]. Simulation wave-
forms of the forward and inverse wavelet
transforms are displayed in Figure 8. The
waveforms prove that the implementations
execute the operation of the wavelet trans-
form correctly.

We used uniformly distributed 8-bit ran-
dom input samples to generate the simulation
waveforms. We also maintained sufficient
precision of the intermediate and output coef-
ficients since allocating sufficient bits to the
intermediate and output coefficients is a nec-
essary step to keep the perfect reconstruction
capabilities of the discrete wavelet transform.
If we allocate fewer bits than necessary, the
output of the inverse discrete wavelet trans-
form will not be the same as a delayed version
of the input of the forward discrete wavelet
transform. Also, if we’re dealing with an im-
age compression application, the decom-
pressed image will suffer form some defects,
such as ringing effects and blurring artifacts.
Simulation waveform of the forward wavelet
transform architecture of Figure 3a is illus-
trated in Figure 8.

As an input sample X enters the first filter
bank stage at a rate of 1sample/8 clocks, one
sample (H1) leaves to the output, and another
sample (L1) leaves to the second stage, both at
a rate of 1sample/ 16clocks. Similarly, the
second stage sends a sample to the output
(H2), and another sample (L2) to the third
stage, both at a rate of 1sample/32 clocks. Fi-
nally, the third stage generates two samples
(L3 and H3) at a rate of 1 sample/ 64clocks.
Simulation waveform of the inverse wavelet
transform architecture of Figure 3b is illus-
trated in Figure 9. The first filter bank stage

receives two inputs (H3 and L3), both pro-
duced from the third stage of the forward
DWT at a rate of 1sample/64clock.

Figure 8. Simplified functional Verilog simulation of

the forward DWT

The stage up-samples each of them by a
factor of 2, and sends out their filtered sum-
mation at the rate of 1sample/32 clocks to the
second stage, to be processed with an input
sample coming from the second stage of the
forward DWT stage at a rate of 1sample/32
clocks (H2). Similarly, the second stage up-
samples both by a factor of 2, and then sends
out their filtered summation at a rate of
1sample/16 clocks to the third stage to be
processed with an input sample coming from
the first stage of the forward DWT at a rate of
1sample/ 16clocks (H1).

Finally, the third stage up-samples both by
a factor of 2, and then sends out their filtered
summation at a rate of 1sample/ 8clocks to
the output. This last output represents the re-
constructed signal.

Figure 9. Simplified functional Verilog simulation of

the inverse DWT

Ali M. Al-Haj

168 Int. J. Appl. Sci. Eng., 2003. 1, 2

6. Performance evaluation

In this section we present the experimental
results obtained for the distributed arithmetic
implementation of the discrete wavelet trans-
form and its inverse. We also compare the
results with those of an FPGA implementa-
tion based on conventional arithmetic, and
with the results of two software implementa-
tions.

6.1. Experimental results

We have implemented the parallel designs
described in the previous section using one of
the largest available Xilinx Virtex FPGA de-
vices, XCV300. This device contains 322,970
gates (3072 slices) and can operate at a maxi-
mum clock speed of 200 MHz. Therefore,
performance is usually measured with respect
to two evaluation metrics; the throughput
(sample rate) and is given in terms of the
clock speed, and device utilization, and is
given in terms number of Virtex logic slices
used by the implementation.

The distributed arithmetic implementation
was verified with Verilog HDL Simulator,
and synthesized using Xilinx Foundation Se-
ries. The forward discrete wavelet transform
implementation operated at a throughput of
92.7 MHz, and required 374 Virtex slices
which represents around 12 % of the total
3072 slices. Throughout of the inverse dis-
crete wavelet transform implementation was
89.1 MHz, and the hardware requirement was
461 slices which represents around 15 % of
the total Virtex slices.

The bit stream corresponding to the imple-
mentation was downloaded to a prototyping
board called the XSV-300 FPGA Board, de-
veloped by XESS Inc [23]. The board is based
on a single Xilinx XCV300 FPGA. It can ac-
cept video with up to 9-bits of resolution and
output video images through a 110 MHz, 24-
bit RAMDAC. Two independent banks of
512K x 16 SRAM are provided for local buff-
ering of signals and data.

6.2. Performance comparison

We implemented the discrete wavelet trans-
form architecture shown in Figure 3 using the
conventional arithmetic approach. The for-
ward discrete wavelet transform achieved a
throughput of 54.3 MHz, and required 560
Virtex slices which represents 18 % of the
total Virtex slices, and the inverse discrete
wavelet transform achieved a throughput was
47.8 MHz, and required 619 slices which
represents around 20 % of the total Virtex
slices.

It is noted from the results obtained above,
and further illustrated in Figure 10, that the
throughput of the distributed arithmetic im-
plementation is higher than the throughput of
the conventional arithmetic implementation.

This is expected since the distributed arith-
metic implementation replaced the time-con-
suming conventional multiply accumulate op-
erations with fast look-up tables and shift op-
erations. Furthermore, partial products of all
multiply accumulate operations were pre-
computed offline and stored in the LUTs, thus
saving a great a mount of real-time computa-
tion. As for Virtex slice utilization, distributed
arithmetic, uses less hardware resources than
the conventional arithmetic, as illustrated in
Figure 11.

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut
 (M

H
z)

Conventional Arithmetic
Implementation

Distributed Arithmetic
Implementation

Implementation

Forward DWT Inverse DWT

Figure 10. Comparison between the throughput of

two DWT implementations

Fast Discrete Wavelet Transformation Using FPGAs and Distributed Arithmetic

Int. J. Appl. Sci. Eng., 2003. 1, 2 169

0

100

200

300

400

500

600

700

U
til

iz
at

io
n

(S
lic

e)

Conventional Arithmetic
Implementation

Distributed Arithmetic
Implementation

Implementation

Forward DWT Inverse DWT

Figure 11. Comparison between the utilization of

two DWT implementations

This is also expected since the conventional
arithmetic multiplier requires much more
logic resources than the distributed arithmetic
multiplier which requires small LUTs, sim-
ples adders and shift registers. The wavelet
transform was also implement- ed on the
TMS320C6711; a Texas Instrument digital
signal processor with an a complex architec-
ture suitable for image processing applica-
tions [24]. The TMS320C6711 is a highly in-
tegrated single chip processor and can operate
at 150 MHz (6.7 ns clock cycle with a peak
performance of 900 MFLOPS [25].

The processor was programmed such that
the main portion of the wavelet transform was
written in C, and certain sections in assembly.
Also, parallel instructions were used when-
ever possible to exploit the abundant parallel-
ism inherent in the wavelet transform. Sample
execution times obtained for both the forward
and inverse discrete wavelet transforms were
0.153 µs (6.53 MHz) and 0.276 µs (3.62
MHz), respectively.

To complete the performance evaluation
circle, we coded the forward and inverse
wavelet transforms in C, and executed corre-
sponding programs on a conventional PC
powered by an 800 MHz Pentium III proces-
sor. The execution times obtained for both the
forward and inverse discrete wavelet trans-

forms were 0.1280 msec (0.00781 MHz) and
0.1485 msec (0.00673 MHz), respectively.

It is noted from the results obtained above,
and summarized in Table 2, that the two
FPGA implementations perform much better
than the TMS20C6711 and Pentium III soft-
ware implementations. The superior perform-
ance of the FPGA-based implementations is
attributed to the highly parallel, pipelined and
distributed architecture of Xilinx Virtex
FPGA. Moreover, it should be noted that the
Virtex FPGAs offer more than high speed for
many embedded applications. They offer
compact implementation, low cost and low
power consumption; things which can’t be
offered by any software implementation.

Table 2. Throughput of different implementations

Implementation Forward
DWT
(MHz)

Inverse
DWT
(MHz)

Pentium III 0.00781 0.00673
TMS320C6711 6.530 3.620
Conventional
arithmetic

54.3 47.8

Distributed
arithmetic

92.7 89.1

6.3. Ongoing research

After completing this FPGA implementa-
tion of the discrete wavelet transform and its
inverse, we are now working on integrating a
whole wavelet-based image compression sys-
tem on a single, dynamic, runtime reconfigur-
able FPGA. A typical image compression sys-
tem consists of an encoder and a decoder. At
the encoder side, an image is first transformed
to the frequency domain using the forward
discrete wavelet transform.

The non-negligible wavelet coefficients are
then quantized, and finally encoded using an
appropriate entropy encoder. The decoder
side reverses the whole encoding procedure
described above. Transforming the 2-D image
data can be done simply by inserting a matrix

Ali M. Al-Haj

170 Int. J. Appl. Sci. Eng., 2003. 1, 2

transpose module between two 1-D discrete
wavelet transform modules such as those de-
scribed in this paper.

7. Conclusions

In this paper we reported on the perform-
ance of several implementations of the dis-
crete wavelet transform and its inverse; two
implementations using the highly parallel
Virtex filed programmable gate array devices
(FPGAs), and two software implementations;
one using the TMS320C6711 digital signal
processor and the other using the 800 MHz
Pentium III Intel processor.

Based on the results obtained of the various
implementations, we observed that the im-
plementation which was based on the distrib-
uted arithmetic algorithm achieved the best
performance results. This has been possible
by reformulating the computation of the
wavelet transform so that it matches the
lookup architecture of the Viretx FPGA. It
was also observed that the two software im-
plementations were far inferior to the FPGA
implementations in terms of execution speed.
The TMS320C6711 digital signal processor
performed much better than the Pentium III ,
however, its performance is still much lower
the performance of the least efficient, direct
FPGA implementation.

Finally, it may be concluded that using
FPGAs, coupled with reformulating the com-
putation of the wavelet transform in accor-
dance with the distributed arithmetic algo-
rithm, results in the performance levels re-
quired for real-time implementations.

References

[1] Riol, O. and Vetterli, M. 1991. Wavelets

and signal processing. IEEE Signal
Processing Magazine, 8, 4: 14-38.

[2] Beylkin, G., Coifman, R., and Rokhlin,
V. 1992. “Wavelets in Numerical Analy-
sis in Wavelets and Their Applications”.
New York: Jones and Bartlett: 181-210.

[3] Field, D. J. 1999. Wavelets, vision and
the statistics of natural scenes. Philoso-
phical Transactions of the Royal Society:
Mathematical, Physical and Engineering
Sciences, 357, 1760: 2527-2542.

[4] Antonini, M., Barlaud, M., Mathieu, P.,
and Daubechies, I. 1992. Image coding
using wavelet transform. IEEE Transac-
tions on Image Processing, 1, 2: 205-220.

[5] Sava, H., Fleury, M., Downton, A., and
Clark, A. 1997. Parallel pipeline imple-
mentation of wavelet transforms. IEE
Proceedings-Vision Image and Signal
Processing, 144: 6.

[6] Aware, Inc. 1991. “Aware Wavelet
Transform Processor (WTP) Preliminar”.
Cambridge, MA.

[7] Knowles, G. 1990. VLSI architecture for
the discrete wavelet transform. Electron
Letters, 26, 15: 1184-1185.

[8] Parhi, K. and Nishitani, T. 1993. VLSI
architectures for discrete wavelet trans-
forms. IEEE Transactions on VLSI Sys-
tems: 191-202.

[9] Chakabarti, C. and Vishwanath, M. 1995.
Efficient realizations of the discrete and
continuous wavelet transforms: from
single chip implementations to mappings
on SIMD array computers. IEEE Trans-
actions on Signal Processing, 43, 3: 759-
771.

[10] Seals, R. and Whapshott, G. 1997. “Pro-
grammable Logic: PLDs and FPGAs”.
UK: Macmillan.

[11] Xilinx Corporartion. 2002.
www.xilinx.com.

[12] White, S. 1989. Applications of distrib-
uted arithmetic to digital signal process-
ing: a tutorial. IEEE ASSP Magazine: 4-
19.

[13] Burrus, C., Gopinath, R., and Guo, H.
1998. “Introduction to Wavelets and
Wavelet Transforms: A Primer”. New
Jersey: Prentice Hall.

[14] Mallat, S. 1989. A theory for multresolu-
tion signal decomposition: the wavelet
representation. IEEE Transactions on

Fast Discrete Wavelet Transformation Using FPGAs and Distributed Arithmetic

Int. J. Appl. Sci. Eng., 2003. 1, 2 171

Pattern Analysis and Machine Intelli-
gence, 11, 7: 674-693.

[15] Daubechies, I. 1988. Orthonomal bases
of compactly supported wavelets. Com-
munications on Pure and Applied
Mathematics, 41: 906-966.

[16] Salomon, D. 1999. “Data Compression:
The Complete Reference”. Springer.

[17] Mintzer, L. 1996. “The Role of Distrib-
uted Arithmetic in FPGAs”. Xilinx Cor-
poration.

[18] Xilinx Corporation. 1998. “Xilinx breaks
one million-gate barrier with delivery of
new Virtex series”.

[19] Xilinx Corporation. 2000. “Virtex Data
Sheet”.

[20] Oppenheim A. and Schafer, R. 1999.
“Discrete Signal Processing”. New Jersy:
Prentice Hall.

[21] Vaidyanathan, P. 1993. “Multirate Sys-
tems and Filter Banks”. New Jersey:
Prentice Hall.

[22] Palnitkar, S. 1996. “Verilog HDL”. Sun-
Soft Press.

[23] Xess Corporation. 2002. www.xess.com.
[24] Texas Instruments Corporation. 2000.

“TMS320C6711 Data Sheet”.
[25] Kehtarnavaz N. and Simsek, B. 2000.

“C6x-Based Digital Signal Processing”.
New Jersey: Prentice Hall.

