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Abstract: Goodman and Cowin proposed in 1972 a continuum theory of a dry cohesionless 
granular material in which the solid volume fraction ν is treated as an independent kinematical 
field for which an additional balance law of equilibrated force is postulated. In the derivation of 
said balance of equilibrated of force there exists some logical inconsistency and it results in the 
incorrect explanation of this balance equation and the incorrect balance of internal energy. It is 
demonstrated that the balance of equilibrated force can be modified by a simple dimensional 
analysis. The resulted modified Goodman-Cowin theory is then applied to investigate the consti-
tutive models of flowing granular materials. A complete thermodynamic analysis based upon 
Müller-Liu approach is performed and the constitutive responses of a granular material in ther-
modynamic equilibrium are obtained. From the theoretical investigations it shows that the results 
are more general than those obtained from the original theory and for simple shearing flow 
problems the current theory can reproduce all results from previous works based on the original 
theory. 
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1. Introduction 
 

Granular materials are collections of a large 
number of discrete solid particles with inter-
stices filled with a fluid or a gas. In most 
flows involving granular materials, the inter-
stitial fluid plays an insignificant role in the 
transportation of momentum and thus flows 
of such materials can be considered dispersed 
single phase rather than multi-phase flows. 
Detailed reviews of flows of granular materi-
als have been presented by Duran [4], Hutter 
& Rajagopal [10], Savage [18] and Wang & 
Hutter [22]. 

Granular materials are discrete in nature. 
Many theories have been developed to de-

scribe the behaviour of flowing granular ma-
terials, and generally the methods which are 
adopted can be classified into three different 
classes: the molecular dynamics approach, the 
statistical mechanics approach and the con-
tinuum mechanics approach. In adopting the 
continuum mechanics approach the discrete 
nature of granular materials will be “smeared” 
and consequently, granular materials exhibit 
then microstructural effects on their macro-
scale, which is accounted for, in general, by 
adding an additional dynamical equation for 
the solid volume fraction ν. Different authors 
do not unanimously agree upon the form of 
this equation. Svendsen and Hutter [19] 
treated the solid volume fraction as an internal 
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variable and writed an evolution equation 
balancing its time rate of change with its pro-
duction. Wilmanski [24] on the other hand, 
using statistical arguments on the microscale 
demonstrates that the Svendsen-Hutter equa-
tion needed to be complemented by a flux 
term, thus arriving at a complete balance law. 
Goodman and Cowin [2, 6, 7, 8] were on the 
ground of the theories of elastic materials in-
troducing a balance law of equilibrated force 
in which the second time derivative of ν were 
balanced with a flux and a production term, 
and in comparison with other theories based 
upon the continuum mechanics approach the 
inclusion of ν&&  is the most significant point 
of their theory. 

In deriving their reduced constitutive rela-
tions from a class of constitutive postulate 
Goodman and Cowin used the classical 
Coleman-Noll approach of thermodynamics, 
i.e., the linear momentum equation, the en-
ergy balance and the balance of equilibrated 
force have all arbitrary assignable external 
source terms, so that these balance laws 
would not affect the exploitation of the en-
tropy inequality. Whereas such a procedure 
can be tolerated for the momentum and en-
ergy sources, it is physically utter nonsense 
for the balance law of equilibrated force. This 
is an internal law all by itself, and at least this 
law must influence the thermodynamics. Re-
cently Wang & Hutter [22] adopted their the-
ory and rederived the constitutive models of a 
flowing granular material by Müller-Liu ap-
proach with which all balance laws are treated 
as constraints via Lagrange multipliers in the 
exploitation of entropy inequality. It shows 
that the results are more general and will 
agree with Coleman-Noll approach if the 
Helmholtz free energy does not depend upon 
ν& . 

Based upon the theories of elastic media 
Cowin and Goodman [3] used a variational 
principle to derive the balance equation of 
equilibrated force. In the derivation there ex-
ists some logical inconsistency and it will be 
shown that this inconsistency can be removed 

by a simple dimensional analysis. The modi-
fied Goodman-Cowin theory, especially the 
modified balance of equilibrated force, will be 
applied to investigate the constitutive models 
of a granular material by using Müller-Liu 
approach. It shows that the obtained constitu-
tive responses in thermodynamic equilibrium 
are more general and for simple shearing flow 
problems the current theory can reproduce all 
results obtained by Wang & Hutter [23]. 
Firstly the Goodman-Cowin theory will be 
outlined, and some detailed and important 
comments on it will be given. Sequentially 
the modification of Goodman-Cowin theory 
will be presented and the resulted modified 
Goodman-Cowin theory will be applied to 
investigate the constitutive responses, espe-
cially the constitutive responses in thermody-
namic equilibrium, of a granular material. 
This paper is summarized and commented in 
section 6. 
 
2. Outline of Goodman-Cowin theory 
 

The necessary thermal and mechanical field 
variables are introduced as primitive quanti-
ties. Specifically, apart from the velocity v, 
there exists a kinematic variable, the volume 
fraction or the volume distribution function ν, 
introduced by Goodman [8], that accounts for 
the distribution of the solid volume in a 
granular body. It is complemented by the true 
mass density of grains γ, the stress tensor t, 
body force b, specific internal energy e, heat 
flux q and heat supply r. In addition, to ac-
count for energy flux and energy supply asso-
ciated with the time rate of change of ν, a 
higher order stress and body force were in-
troduced by Goodman and Cowin [6, 8]. Such 
terms are expected since the volume fraction 
and the motion of a granular body are as-
sumed to be kinematically independent. Ac-
cordingly, a balance equation for ν is pro-
posed which is called the balance of equili-
brated force and it contains as  phenome-
nological parameters the equilibrated inertia α, 
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the equilibrated stress vector h, the equili-
brated intrinsic body force f and the equili-
brated external body force w. The distributed 

solid body must satisfy the balance laws of 
motion of continuum mechanics. Accordingly, 
the following filed equations must be satisfied:

r.divfgradeenergy internal of Balance

),wf( divforce edequilibrat of Balance

,momentumangular  of Balance

,  div momentumlinear  of Balance

,0 div )(mass of Balance

T
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Here ⋅•)(  denotes the time rate of change of 

)(•  and equals to v⋅•+∂•∂ )(gradt)( . In 
the theory the bulk density of a granular body 
ρ is decomposed into the production of the 
true mass density of grains γ and the volume 
fraction ν, i.e., ρ = γν, and it is noted that for 
granular materials with incompressible grains, 
i.e., γ = const., the bulk density can still vary 
via the variation of volume fraction ν. The 
balance Eqs. (1~3) are analogous to the clas-
sical balance equations of mass, linear mo-
mentum and angular momentum. The balance 
of equilibrated force is assumed in this sim-
plest form (4) accordingly to Goodman and 
Cowin [2, 6] and its derivation is based upon 
a variational principle (see Cowin and Good-
man [3]). The balance of internal energy (5) 
differs from the traditional statement by the 
occurrence of the power terms associated with 
ν& . Eqs. (1~5) should be regarded as con-
straints via Lagrange multipliers in the ex-
ploitation of the entropy inequality, and the 
entropy inequality is then investigated to 
identify the constitutive responses of a granu-
lar material. 
 
3. Comments on Goodman-Cowin theory 
 

(1) The balance of equilibrated force is a  

self-equilibrated force system. This type of 
equation arises also in the theories of disloca-
tion, liquid crystal and elastic media (see 
Green & Rivlin [9], Leslie [12], Mindlin [15] 
and Toupin [20, 21]). Goodman [8] has shown 
that the higher order stress of the theories for 
elastic media degenerates to an equilibrated 
stress related to a system of self-equilibrated 
forces resulting in either a center of compres-
sion or a center of dilatation, i.e., the stress 
vector h can be regarded as a “double force 
without moment” and results in a center of 
compression or dilatation, which can be un-
derstood as the influence of dislocation in 
elastic media. 
 
(2) Eq. (4) is a balance equation for the in-
ternal variable ν and under the scope of con-
tinuum mechanics ν cannot have any external 
source of forces, since all events associated 
with a self-equilibrated force balance system 
happen “inside” a material point, thus w can 
be treated simply as zero. 
 
(3) The stored energy function φ used in the 
derivation of (4) (see Cowin and Goodman 
[3]), corresponds to the free energy in ther-
modynamic equilibrium under isothermal 
condition (see Fang [5]). 

 

(1)

(2)

(3)

(4)

(5)
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(4) Eq. (4) is devoted to the evolution of 
volume fraction ν, not to the pore space, 
which equals to 1-ν. But physically it can be 
understood that the pore space generates ei-
ther an expansion or a contraction force. 
 
(5) In comparison with other equations of 
this type the most significant point of (4) is 
that the second time rate of change of ν is in-
cluded. The use of ν&&  is rather reasonable 
since from the conservation of mass (1), γ&  
can be described by ν&  if divv is known. It 
means γγ&  and νν&  bear some “similar 
mathematical structures”. If a balance equa-
tion is proposed only for ν& , then in the en-
suring thermodynamics analysis determining 
the constitutive relations the effects of γ&  and 

γgrad  cannot be appropriately taken into ac-
count. 
 
(6) As indicated by Passman et al. [16], with 
Goodman-Cowin theory, especially with Eq. 
(4), it is impossible to show the difference 
between two granular bodies with uniform 
distribution of grains but of different sizes. 
 
 

(7) Eq. (4) is a balance of energy, not a bal-
ance of force, since the equilibrated external 
body force w has the dimension of energy per 
unit mass (see Cowin and Goodman [3]), and 
its name “balance of equilibrated force” will 
result in incorrect interpretation. The left hand 
side of Eq. (4) emerges from the balance of 
linear momentum and its original form reads 

dt)(d νρα & , consequently α has the dimen-
sion length. However, in view of Eq. (4) the 
dimension of α should be a length square; 
therefore there exists a logical inconsistency 
in the original derivation of (4). 
 

Besides, according to Goodman and 
Cowin’s assumption [6], the variation of ν is 
kinematically independent of the motion of 
the body; consequently the variation of ν pro-
vides an extra energy supply and energy flux 
under which the traditional balance of internal 
energy should be modified. In doing so, the 
kinetic energy, the energy flux and the energy 
supply associated with the variation of ν are 
assumed to be (the first column of (5)).

supply.energy 
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1 2
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The postulation of the first column of (5) is 
based upon the similarity of the balance of 
linear momentum (the second column of (5)). 
However, the dimension of ν&  is not vecloity, 
consequently the postulated kinetic energy, 
energy flux and energy supply associated with 
ν&  should be modified. These all are the 
starting points of our modification of Good-
man-Cowin theory. 
 

4. Modification of Goodman-Cowin the-
ory 

 
We assume there exists a length scale l  

associated with the volume fraction ν such 
that the time rate of change of the “momen-
tum associated with ν” of a granular body B is 
postulated as 
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.dV)(
dt
d

B ∫ νγν &l                   (6) 

Expression (6) should be balanced by its flux, 
supply and productions terms, viz., 

∫∫∫ +γν+⋅=νγν
∂ B B B 

,dV)wf(dA   dV)(
dt
d nh&l

 (7) 
here B∂  denotes the surface of the granular 
body B and n is its outward unit vector. By 
using the conservation of mass, Reynolds 
transport theorem and the divergence theorem 
expression (7) can be transformed into 

.0dV)wf( div)(
B 

}{ =+γν−−ν+νγν∫ h&&l&l&   

 

Since dV is arbitrary chosen, in order to fulfill 
(8), the integrand of (8) should be zero and it 
leads to an evolution equation of ν in differ-
ential form 

),wf(div)( +γν+=ν+νγν h&&l&l&         (9) 

which is called here the modified balance of 
equilibrated force and becomes now a force 
balance, not an energy balance. Even though 
(9) is somewhat similar to (4), its physical 
meaning is complete different. Due to the 
force nature of (9) the following expressions 
are proposed for the energies associated with 
the variation of ν

supply,energy :f      flux;energy :     ; with associatedenergy  kinetic:)(
2
1 2 νρνννρ &l&l&l h           (10) 

since ν&l  now has the dimension of velocity. 
With (10) the balance of internal energy is 
then modified as 

),(f)(gradrdive νρ−ν⋅+ρ+−⋅=ρ &l&l& hqDt
 (11) 

which differs from (5) apparently, and it is 

noted that in (11) the influence of l  is in-
cluded. Eqs. (1~3, 9, 11) construct the modi-
fied Goodman-Cowin theory. There exist 
three different cases that the free length scale 
l  can behave:

quantity. field tindependen an regarded is : 
quantity, veconstituti a regarded is : 

constant, a regarded is :I Case

l

l

l

IIICase
IICase

•
•
•

 

In the current paper only Case I will be dis-
cussed. The other two cases will be discussed 
in separated papers.  
 
5. Application of modified Goodman- 

Cowin theory-Constitutive model of a 
granular material 

5.1. Balance equations 
 
The balance equations of the modified 

Goodman-Cowin theory are given by 
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Eqs. (12~13) are identical with (1) and (2), 
respectively. With l  = const. the modified 
balance of equilibrated force (9) and the bal-
ance of internal energy (11) reduce to Eqs. 
(14~15). In Eq. (14) the equilibrated external 
body force w is not included since ν  is an 
internal variable. The balance of angular mo-
mentum is not considered here because this 
requirement can be directly achieved in the 
assumption of the constitutive class of a 
granular body. Balance Eqs. (12~15) should 
be considered as constraints via Lagrange 
multipliers in the exploitation of the entropy 
inequality in the next subsection. 
 
5.2. Entropy inequality 
 

There is an additive quantity, the entropy, 
with specific density η, flux Φ, supply s and 
production π, for which we may write an 

equation of balance in the form 
 

.sdiv γν−+ηγν=π Φ&               (16) 
 
The entropy principle states that the entropy 
production π  is non-negative in all thermo-
dynamic processes, and so the entropy ine-
quality must hold: 
 

.0sdiv ≥π=γν−+ηγν Φ&            (17) 
 
Any process, which satisfies (17), represents a 
so-called admissible process. Such a process, 
however, must in addition satisfy the balance 
Eqs. (12~15). Liu [13,14] has shown that one 
can account for these balance Eqs. (12~15) in 
the entropy inequality (17) by employing La-
grange multipliers as follows

,0)f)grad(rdive()fdiv(      
)div()div (sdiv

e ≥νγν+ν⋅−γν−+⋅−γνλ−γν−−νγνλ−
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     (18) 

and satisfying this new inequality for all (un-
restricted) fields. Explicitly, the balance equa-
tions appear as constraints on the class of 
physically-realizable processes, where λγ, λv, 
λν and λe represent the corresponding La-
grange multipliers. 

Introducing the free energy 
 

,e θη−=Ψ                      (19) 

and introducing the assumption θ=λ 1e a , 
where θ  is the empirical temperature, and 
substituting them into (18) yields for the en-
tropy inequality in the form 

     .0)f)grad(rdive(1)fdiv(      

)div()div (sdiv)e(

≥νγν+ν⋅−γν−+⋅−γν
θ

−γν−−νγνλ−
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θ
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ν

γ
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    (20) 

In deducing it, we assume that the material 
behaviour is independent of the supplies; so 
the sum of all external source terms in (20) 
must vanish, implying that 

,0rs =
θ
γν

+γν⋅+γν− bλ v           

which serves as an equation determining the 
entropy supply in terms of other supply terms 
and is more general than the classical selec-

tion via the contribution of b. The entropy and 
its flux as well as the Lagrange multipliers 
must be considered as auxiliary quantities. 
This form of the entropy inequality (20) will 
be used to investigate the constitutive postu-
lates in the next subsection. 

5.3. Constitutive assumptions and restrict- 
Tions 

We adopt Wang and Hutter’s [23] postula-

(21)
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tion of the constitutive responses of a granular 
body in the form 

)grad , , , , , , , ,(ˆ
0 vvθθγνννν gradgradCC &=  

(22) 
for the material quantities 

{ }. , ,f , , , ,C ΦqhtηΨ=              (23) 

According to the assumptions of Goodman 
and Cowin [6], we assumed that the response 
functions for granular materials depend upon 
a reference configuration through the refer-
ence volume fraction 0ν . Invoking the prin-

ciple of material objectivity the expression 
(22) reduces to 
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where D denotes the symmetric part of the 
velocity gradient and is known as the stretch-
ing tensor. If the functional dependence of Ψ , 
t, h, q and Φ in (24) is incorporated into the 
entropy inequality (20) by use of the chain 
rule of differentiation and using the identity 
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Let x be given by x = 
{ v& , ν&& , γ& , θ& , ⋅θ)grad( , D& , 0gradν , ν&grad ,

)grad(grad ν , γgrad , )grad(grad θ , gradD}. It 
is now straightforward to see that the inequal-
ity (26) has the form 

,0b ≥+⋅ xa                        (27) 

where the vector a and the scalar b are func-
tions of the variables listed in (24), but not of 
x, and the vector x depends on time and space 
derivatives of these quantities. Accordingly 
(27) is linear in x, and since these variables 
can take any values, it would be possible to 
violate (27) unless 

,0band ≥= 0a             (28) 

where (28)1 leads to the so-called Liu identi-
ties and (28)2 gives rise to the residual en-
tropy inequality. Explicitly, the entropy ine-
quality must hold for all independent varia-
tions of x. These variables appear linearly in  
(26), and thus their coefficients must vanish. 
It then follows that the Lagrange multipliers 
λv, λν and λγ are given by 

,,1,
γ∂
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θ
γ

−=λ
ν∂
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θ
−=λ= γν
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whilst the specific entropy density becomes 
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Moreover, the free energy must obey the rela-
tions 
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must hold among Φ, h, q, where sym{A} de-
notes the symmetric part of a tensor A. Eqs. 
(29~35) correspond to the condition a = 0 in 
(28) and are known as Liu identities.  

To simply the ensuring analysis, it is as-
sumed here that the free energy is not a func-
tion of the time rate of change of ν. Under this 
assumption the emerging constitutive rela-
tions are in correspondence with those of 
Goodman and Cowin [2, 6, 7] which were 
gained by use of the classical Coleman-Noll 
approach. With ) , (ˆ ν⋅Ψ≠Ψ & , there follows 

.01
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Furthermore, with this assumption and the 
condition (31) the functional dependence of 
Ψ  reduces to 
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If we assume that (37) is isotropic with re-

spect to νgrad , then it must have the form 
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holds true, here ⊗ denotes dyadic product. In 
the next step we define the extra entropy flux 
vector k via the formula 
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which, with λv = 0, λν = 0, reduces to 

.kqΦ +
θ

=                         

Substituting (41) into (33)-(35) gives rise to 
the following identities for k 

.
grad

sym,
grad

sym,,, }{}{
0

0k0k0
D
k0k0k

=
θ∂

∂
=

ν∂
∂

=
∂
∂

=
γ∂

∂
=

ν∂
∂           

(33)

(34)

(35)

(37)

(36) (40)

(38)

(39)

(41)

(42)
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With condition (42) and under the require-
ment that k is an isotropic vector fucntion, k 
is then identified as 

k = 0.                             (43) 

Thus, the entropy flux takes its traditional 
form i.e., Φ = q/θ is obtained. This result will 
not follow, when the Helmholtz free energy-
depends upon ν& . Indeed, in that case λν is 
nontrivially determined by the free energy and 
so the entropy flux must deviate in direction 
from that of the heat flux by a contribution 

proportional to h, the equilibrated stress vec-
tor.  

With (43) and λν = 0, expression (32) 
becomes 

.
grad ν∂

Ψ∂γν
=

l
h                    

In view of (38) and (44), another expression 
for the equilibrated stress vector h can be de-
duced as follows, namely

  

.
)gradgrad,,,,(Â

)gradgrad(
2A

,Agrad
grad

0

ll

l

ν⋅νθγνν
=

ν⋅ν∂
Ψ∂γν

=

ν=
ν∂

Ψ∂γν
=h

             

 

With this, the Liu-identities are now fully ex-
ploitated. Next we investigate the residual en-
tropy inequality. The residual entropy ine-

quality, corresponding to (28)2, or b ≥ 0, is 
given by

  

.01fdiv       

)grad(1gradgrad
grad

       

)grad(1f

}{}{

}{}{

≥⋅
θ

+γνλ+γνλ−

θ⋅
θ∂

∂
θ

−
θ∂

∂
λ+

θ∂
∂

⋅+
θ∂

∂
ν⋅⊗

ν∂
Ψ∂

θ
γν

+

ν⋅
ν∂

∂
θ

−
ν∂

∂
λ+

ν∂
∂

⋅+
ν∂

∂
+ν

θ
γν

−γλ−
ν∂
Ψ∂

θ
γν

−=π′

νγ

ν

νγ

Dtv

qhtλΦv

qhtλΦ

v

v&l

          (46) 

 
Substituting (29), (36), (38), (41), (43) and 
(44) into (46) results in the new form of the 

residual entropy inequality

 ,0)gradp(grad)fp( ≥⋅ν⊗+ν++
θ

θ⋅
−νγν−β−=π′θ DhItq

l&l                      

where the definitions 

pressure,ion configurat  :  pressure, namic  thermody:  p 2

ν∂
Ψ∂

γν=β
γ∂
Ψ∂

γ=         

        
have been introduced. At this point it should 
be pointed out that the proposed constitutive 
class (24) is only suitable for granular materi-

als with compressible grains. For granular 
materials with incompressible grains, γ is no 
longer an independent filed quantity, and in 

(44)

(47)

(48)

(45)
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this case one can delete γ from (24) and repeat 
the above thermodynamic analysis. It is found 
that the same constitutive restrictions can be 
obtained, provided that here the thermody-
namic pressure p = -γλγ is no longer deter-
mined by the free energy as expressed in (48)1, 
but becomes an unknown variable. The de-
tailed thermodynamic analysis will not be re-
peated here. 
 
5.4. Thermodynamic equilibrium 
 

Further restrictions on the constitutive rela-
tions can be obtained from the residual en-
tropy inequality (47) in the context of ther-
modynamic equilibrium, which is character-
ized in the current local formulation by van-
ishing the entropy production, i.e., θπ′ = 0. 
Inequality (47) can be represented as 

 

). , ,(

), , ,(

,0)(

DY

hItX

YYX

θν

νν
θ

θ
νγβ

πθ

grad

gradp
grad

fp

&

ll

=

⊗++
−

−−=

≥⋅=′

 (49) 
Thus, we define thermodynamic equilibrium 
as those states, in which the independent dy-
namic variables Y all vanish. Besides, θπ′ 
also possesses its minimum value, namely 0, 
in thermodynamic equilibrium. Necessary 
conditions for this minimum are that 

.,,definite-semipositive is )(

,,0)(

0

2

0

Y

Y

Y

Y

∈
∂∂

′∂

∈=
∂

′∂

=

=

ji
ji

i
i

YY
YY

Y
Y

πθ

πθ

 

(50) restricts the equilibrium forms of the de-
pendent constitutive fields, while (51) con-
strains the signs of material functions in it. 
Here we will only deal with the first condition. 

It yields the equilibrium values of the equili-
brated intrinsic body force f, the heat flux q 
and the stress t  

,,, νν
γν

β
gradp

p
f

EEE
⊗−−==

−
= hIt0q l

l

 (52) 
where the subindex E indicates that the in-
dexed quantity is evaluated in thermodynamic 
equilibrium. Referring to (44) and (48) it is 
evident that the constitutive relations for the 
equilibrated intrinsic body force f, the equili-
brated stress vector h, the heat flux q and the 
stress tensor t in thermodynamic equilibrium 
are known once the free energy Ψ  is known. 
Expression (52)3 also demonstrates that in 
equilibrium the stress need not to be a hydro-
static pressure. Clearly, h will play a signifi-
cant role in the theory if the system makes 
inhomogenerous distribution of grains impor-
tant. In that case, dilatant behaviour is ob-
served and grains in close contact with each 
other can give rise to very high local stress. 
Furthermore, the existence of h gives rise to 
Mohr-Coulomb friction in equilibrium (see 
Cowin [1] and Savage & Jeffery [17]). 
 
5.5. Remark 
 

In the original theory Goodman and Cowin 
did not further discuss the role played by the 
equilibrated inertia α (here l ). The reason 
might be that, since in their formulation α 
appears only in the expression of the La-
grange multiplier λν. If we assume that Ψ  is 
not a function of ν& , λν will become zero and 
α will not enter the formulation of the consti-
tutive relations for h, f, q and t. But referring 
to (44) and (52) it is apparent that in the cur-
rent modified theory the free length scale l  
does really enter the formulation in the con-
stitutive relations for h, f, q and t. A com-
parison of the results obtained from the cur-
rent and the original theories is summarized in 
Table 1. 
 

(50)

(51)
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6. Conclusions 
 

In the current paper detailed discussions of 
Goodman-Cowin theory have been provided. 
It is pointed out that there exists some logical 
inconsistency in the original theory, and the 
inconsistency can be removed by a simple 
dimensional analysis. The most significant 
point of the Goodman-Cowin theory, namely, 
the balance of equilibrated force, has been 
logically corrected such that the resulted 
modified balance of equilibrated force be-
comes more physically reasonable. A com-

plete thermodynamic analysis for the current 
modified Goodman-Cowin theory has also 
been performed. It shows that the current the-
ory contains a free length scale l  and it does 
really enter the formulation in the constitutive 
relations for h, f, q and t, and accordingly has 
influence upon these constitutive quantities. 
Consequently, the current theory is more rea-
sonable and general than the original one. The 
results also indicate some possible ways to 
postulate the non-equilibrium parts of h, f, q 
and t. 

 
  

Table 1. A comparison between the current and original theories 
 Original theory 

(Wang & Hutter’s results [23]) 
α : equilibrated inertia;   [α]=L2 

,f div γν+=νγνα h&&  

Current theory 
 

[ ] Lscale;length  free: =ll  

constant:  ,f div)( l&&l&l& γν+=ν+νγν h
λv λv = 0 λv = 0 

λν (assumed) 0  ,1
=

ν∂
Ψ∂

ν∂
Ψ∂
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−=λν

&&
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=
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θ
−=λν

&&l
 

λγ 
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EE
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EE
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,gradp
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hIt
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EE
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p, β 
ν∂
Ψ∂

γν=β
γ∂
Ψ∂

γ=  ,p 2  
ν∂
Ψ∂

γν=β
γ∂
Ψ∂

γ=  ,p 2  

 
For simple shearing flow problems, 

non-equilibrium parts of h, f, q and t should 
be postulated such that the complete field 
equations can be obtained. If we adopt Wang 
and Hutter’s [23] non-equilibrium parts of h, f, 
q and t, then the field equations obtained from 

the current theory are exactly the same as 
those from the original theory, which in turn 
means, that our theory can reproduce the all 
results obtained by Wang & Hutter [23]. From 
this point of view the current theory should 
not be understood to be non-useful, but 
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should rather be regarded to be more general 
and reasonable than the original one.  
As discussed before, there exist three different 
cases of the free length scale l . In this paper 
only the first case, namely, l  is constant, has 
been discussed. The physical meaning of l  
is still somewhat uncertain, but a bold inter-
pretation can be a mean diameter of the grains 
or a length scale over which o localized vol-
ume fraction over which the influence of this 
grain is transmitted. The first case in which l  
is considered a material constant is adequate 
for the first interpretation, while in the third 
case in which l  is considered an independ-
ent field quantity is valid for the second inter-
pretation. The second case, in which l  is 
treated as a constitutive variable, is devoted to 
derive a more general functional dependence 
of this constitutive variable from which the 
theory developed by Passman et al. [16] can 
be generalized.  Discussions for other two 
cases will be given in separated papers. 
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Symbol list 
 
b = external body force 
c = constitutive class 
d = symmetric part of velocity gradient 
e = specific internal energy 
f = equilibrated intrinsic body force 
h = equilibrated stress vector 
k = extra entropy flux vector 
l = free length scale 
p = thermodynamic pressure 
q = heat flux vector 
r = specific external energy supply 
s = specific external entropy supply 
π′ = residual entropy production 

Ψ = helmholtz free energy 
t = stress tensor 
v = velocity 
w = equilibrated external body force 
α = equilibrated inertia 
β = configuration pressure 
ρ = bulk density 
γ = true mass density of grains 
ν = volume fraction 
ν0 = reference volume fraction 
η = specific entropy density 
θ = empirical temperature 
π = entropy production 
Φ = entropy flux vector 
φ = stored energy function 
λγ = lagrange multiplier corresponding to the 

balance of mass 
λv = lagrange multiplier corresponding to the 

balance of linear momentum 
λν = lagrange multiplier corresponding to the 

balance of equilibrated force 
λe = lagrange multiplier corresponding to the  

balance of internal energy 
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