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1. Introduction 
 

Process optimization is to find a setting of 
the controllable variables, or called input 
variables, so as to obtain the best outcomes of 
a process. The outcomes of a process are of-
ten referred to as the outputs or responses of a 
system. In this study, optimization of a proc-
ess with multiple outputs is considered. For 
example, in a tool life problem, we attempt to 
determine the cutting speed and depth of cut 
so as to obtain a maximal life of the tool (a 
primary response) and retain a satisfied rate 
of metal removed (a secondary response) at 
the same time. 

Response optimization methods are popu-
lar tools for process optimization. Usually, 
these methods include two stages. In the first 
stage, we use regression analysis to model a 

system's responses; that is, we identify the 
relationship between responses and input 
variables through regression functions. In the 
second stage, we use optimization techniques 
to obtain a setting of system parameters that 
give system the most desirable responses. 
Traditionally, in the first stage, linear regres-
sion with the regressors in a first-order or 
second-order polynomial form is used to ap-
proximate the response surfaces. However, 
frequently encountered in practice, systems 
are complicated and highly nonlinear, and 
thus, linear regression is not suitable. In re-
cent years, nonparametric regression ap-
proaches, such as neural networks and fuzzy 
inference systems, are widely adopted for 
modeling nonlinear systems. These nonpara-
metric approaches learn the relations between 
input variables and responses directly from 
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the observations without assuming any 
pre-specified functional form. The combina-
tion of fuzzy inference systems and neural 
networks, together with genetic algorithms, 
create a new research area called soft com-
puting. Soft computing emerges as a comput-
ing approach that tries to mimic human's abil-
ity of reasoning and learning in an uncertain 
environment. One representative technique of 
soft computing is neuro-fuzzy systems. A 
neuro-fuzzy system is a fuzzy inference sys-
tem presented in a network structure, and 
equipped with neural network learning abili-
ties. In this study, we use a neuro-fuzzy sys-
tem, named multiple adaptive neuro-fuzzy 
inference system (MANFIS) [7], to model a 
system that has multiple responses; and fur-
thermore, we also use a genetic algorithm 
(GA) [5] to optimize this system’s responses 
based on the model of MANFIS. 

A multiple response system has m response 
y1, y2,..., ym, which are affected by a set of 
input variables x = (x1, x2,..., xp)T. Tradition-
ally, the relations between responses and in-
put variables are defined through functions: 

,...,,2,1  ,)( mify iii =+= εx          (1) 

where fi is the functional relation between x 
and the i-th response yi, and εi are i.i.d. ran-
dom errors with zero means and constant 
variances σi

2, ∀i. The objective of the multi-
ple response optimization is to find a solution 
x* such that each response will attain a com-
promised optimum. 

Many approaches have been proposed to 
solve the multiple response optimization 
problem. Derringer and Suich [4] transform 
each response function into a desirability 
function, and then maximize the geometric 
mean of the individual desirability functions 
to obtain a compromised solution. Khuri and 
Conlon [8] presented a procedure based on a 
distance function that calculates the overall 
closeness where the response functions 
achieve their respective optimum at the same 
set of conditions; a compromised solution is 

then found by minimizing this distance func-
tion over the experimental region. Pignatiello 
[13], Ames et al. [1] and Vining [16] all pro-
pose to minimize a measure based on a mul-
tivariate loss function, which evaluates the 
loss when responses deviate from their targets. 
For the special case of two responses, Myers 
and Carter [11] introduced a dual response 
approach, which optimizes the primary re-
sponse subject to an appropriate constraint on 
the secondary response. The disadvantage of 
their approach is that such an optimization 
scheme can be misleading due to the unreal-
istic restriction of forcing the constrained re-
sponse to a specific value [10]. To remedy the 
disadvantage of the approach of Myers and 
Carter [11], Kim and Lin [9] formulate the 
dual response problem as a multiple objective 
decision making (MODM) programming and 
introduce a fuzzy optimization methodology, 
which is based on Zimmermann's maximin 
approach [17]. Their approach optimizes the 
primary response and the secondary response, 
simultaneously, by maximizing a compro-
mised satisfaction degree of both responses. 
The degrees of satisfaction of both the mean 
response and deviation are defined by mem-
bership functions originated in fuzzy set the-
ory. Though the previous approaches varied 
in their solution procedures, they commonly 
assumed linear response surfaces. 

In this study, to deal with nonlinear re-
sponses, the system is modeled by MANFIS, 
and the multiple response optimization prob-
lem is formulated as an MODM. However, 
since we use the nonparametric regression 
tool MANFIS to model responses, exact 
functional forms of responses are not known 
and hence derivative-based optimization 
methods cannot be directly applied to obtain 
the optimal solution. Therefore, we will use a 
genetic algorithm as well as a numerical 
method to search optimal solutions on the re-
sponse surfaces. Performances of these two 
algorithms will be compared. 

The remainder of this paper is organized as 
follows. In the next section, the architecture 
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of MANFIS and its learning process are 
summarized. Section 3 formulates the multi-
ple response optimization problem as an 
MODM. Two optimization algorithms, a ge-
netic algorithm and a numerical method, are 
presented in Section 4 to solve the MODM. 
For illustration, Section 5 uses the two algo-
rithms, respectively, to solve a chemical 
process optimization problem. To improve 
the performances of both algorithms, we also 
suggest a combination of these two algo-
rithms. Computational results show this com-
bined algorithm is promising. Concluding 
remarks are given in the last section. 

 
2. Multiple adaptive neuro-fuzzy infer-

ence system 
 
MANFIS is an extension of the sin 

gle-output neuro-fuzzy system ANFIS [6], for 
producing multiple outputs. A neuro-fuzzy 
system can serve as a nonparametric regres-
sion tool, which model the regression rela-
tionship non-parametrically without reference 
to any pre-specified functional form. MAN-
FIS can be viewed as an aggregation of many 
independent ANFIS. The architecture of 

MANFIS is depicted in Figure 1. 
 

 
 

Figure 1. Architecture of MANFI S 
 

Every single ANFIS in an MANFIS simu-
lates the functional relations fi, i=1,..., m, in 
Equation (1). ANFIS can be considered as a 
network presentation of a TSK fuzzy infer-
ence system [15], and the if-then rules in TSK 
are comprised in the network structure. To 
illustrate the architecture of ANFIS, an ex-
ample with a two-dimensional input is visu-
alized in Figure 2. 

 

 

Figure 2. Architecture of ANFIS 
To reflect different adaptive capabilities, the nodes in ANFIS are represented by circles 
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or squares, in which, square nodes represent 
adaptive nodes and circle nodes represent 
fixed nodes. Adaptive nodes contain parame-
ters that can be adjusted by learning, while 
the fixed nodes do not contain adjustable pa-
rameters. In this study, the adaptive nodes in 
layer 1 of the ANFIS are parameterized by 
Gaussian functions with their means and de-
viations. Nodes in layer 2 are fixed nodes la-
beled Π, which is a fuzzy conjunction opera-
tor. Functions of nodes in this layer are to 
synthesize the information from the first layer. 
The operator Π is defined as a multiplication 
of all of its incoming signals, and output the 
firing strength wj, j=1,...,4. Nodes in layer 3 
labeled by N simply performs a normalization 
of signals from layer 2 and output the nor-

malized firing strength ∑
=

=
4

1
/

r
rjj www , 

j=1,...,4. The adaptive nodes in layer 4 of the 
ANFIS contain linear functions of the input 
variables with their coefficients as the ad-
justable parameters; that is, zj = ajx1+bjx2+cj, 
j=1,...,4. The single node in layer 5 is a fixed 
node, which computes the overall output as 
the summation of all incoming sig-

nals: ∑
=

=
4

1
ˆ

j
jj zwy . 

Assuming that we have conducted an ex-
periment with n runs on an m-response sys-
tem, n observations are collected with the 
format of (xk, y1k,...,yik,...,ymk), k=1,...,n, where 
xk is the input condition at the k-th run and yik 
is the i-th response at the k-th run. With these 
observations, MANFIS can approximate the 
multiple responses yi, i=1,...,m, by minimiz-
ing an error measure E defined as  

∑∑
= =

−=
n

k

m

i
ikik yyE

1 1

2 ,)ˆ(                 (2) 

where ikŷ  is the estimate of the i-th re-
sponse for the k-th run. The minimization of 
E is carried out in an iterative manner, which 
is referred to as a learning process. The 
learning process of MANFIS terminates when 

the error measure E reduces to a satisfactory 
level. Since E is a summation of the squared 
errors from m independent ANFIS, the learn-
ing of MANFIS can be treated as the learning 
of m independent ANFIS. Furthermore, since 
ANFIS is a multi-layered-feed-forward net-
work, backpropagation learning algorithms 
used in neural networks can be directly ap-
plied to its learning. The details of this learn-
ing process can be found in [6]. 
 
3. MODM formulation of multiple re-

sponse optimization 
 

By means of the learning process, MAN-
FIS obtains an estimation of desired outputs 
with given inputs. Let iŷ , i=1,...,m, be the 
i-th output of MANFIS, and they are esti-
mates of multiple responses y1,...,ym, respec-
tively. To indicate these estimates are func-
tions of the input variables x, they will be 
denoted as iŷ (x), i=1,...,m. 

Since the system under discussion has mul-
tiple responses, the optimization of the sys-
tem in fact involves the optimization of sev-
eral individual responses at the same time. 
For all the system responses, they can be di-
vided into three sets: 1) the-larger-the-better, 
denoted by L; 2) the-smaller-the-better, de-
noted by S; and 3) the-nominal-the-best, de-
noted by N. We have formulated this optimi-
zation problem as a multiple objective deci-
sion making problem with the following form 
[2]:  

,  s.t.
,)(ˆ min

),(ˆ min
),(ˆ max

B
NtTy

Ssy
Lly

tt

s

l

∈

∈∀−

∈∀
∈∀

x
x
x
x

               (3) 

where Tt is the nominal target of the t-th re-
sponse; and B is a feasible region of x. 

To solve the above multiple objective op-
timization problem, we follow the idea of 
Zimmermann's maximin approach [17]. Ac-
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cording to the maximin approach, the solution 
of (3) can be obtained by maximizing an 
overall satisfactory degree among all indi-
vidual objectives in (3). That is, for each ob-
jective, it has its own satisfactory degree, and 
the overall satisfaction is an intersection of all 
individual satisfactory degrees, where the in-
tersection is defined through a min operator. 
The satisfactory degree for each objective is 
evaluated by an user-defined membership 
function )ˆ(ˆ iy y

i
µ . Let λ be the overall satis-

factory degree, and then we can convert the 
original MODM (3) to:  

[ ].1,0
,

,....,,1,))(ˆ( s.t.
 max

ˆ

∈
∈

=≥

λ

λµ
λ

B

miyiyi

x

x
          (4) 

Each response's membership function 
))(ˆ(ˆ xiy y

i
µ  should be well chosen so as to 
reflect its characteristic. For the response be-
longed to the set of the-larger-the-better, its 
degree of satisfaction reaches 1 when it is at 

)}(ˆ{maxˆ * xx iBi yy ∈=  and then decreases 
monotonically to 0 at )}(ˆ{minˆ xx iBi yy ∈

− = . A 
typical membership function for )(ˆ xiy , i ∈ L, 
could be stated as  
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The above membership function is graphi-
cally shown in Figure 3. 

For the response belonged to the set of 
the-smaller-the-better, we set the satisfactory 
degree to 1 when a response is at −

iŷ  and 
then it decreases monotonically to 0 at   
 
 
above membership function is depicted in 
Figure 4. 

 
Figure 3. Membership function of ))(ˆ(ˆ xiy y
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Figure 4. Membership function of ))(ˆ(ˆ xiy y

i
µ :  

''the smaller the better'' case 
 

Similarly, for the response of the set of 
the-nominal-the-best, the degree of satisfac-
tion is maximized when it is at its target Ti, 
and decreases as it is away from Ti. Member-
ship functions of this type can be defined as  
 

1

0 ŷi 
ŷi

* ŷi
-

µ(ŷi) 

1
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ŷi
* ŷi

-

µ(ŷi) 

(6) 
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Membership function of (7) is depicted in 
Figure 5. 
 

 
Figure 5. Membership function of ))(ˆ(ˆ xiy y

i
µ : 

''the nominal the best'' case 
 

The problem formulation of (4) cannot be 
directly solved by the use of derivative-based 
methods due to unknown functional forms of 

)(ˆ xiy . Derivative-free methods such as ge-
netic algorithm and simulated annealing are 
ideally suited for solving problems where de-
rivative information is unavailable. Alterna-
tively, we can approximate the derivatives 
with numerical methods. In this study, we 
will apply GA and a numerical method, re-
spectively, to solve (4). 
 
4. Solution procedures 
 

In the previous section, we have formu-
lated the multiple response optimization 
problem as an MODM. In this section, we 
suggest using two different algorithms, a ge-
netic algorithm and a numerical method, to 
solve this MODM. 

 
 

4.1. Genetic algorithm 
 

Genetic algorithm first proposed by Hol-
land [5] is a derivative-free stochastic opti-
mization approach based on the concepts of 
biological evolutionary processes. GA en-
codes each point in a solution space into a 
binary bit string called a chromosome. Op-
erations of chromosomes including selection, 
crossover, and mutation, are used to generate 
new chromosomes so as to explore the solu-
tion space. Each chromosome is evaluated by 
a fitness function. Such a fitness function 
corresponds to the objective function of the 
original problem. A great variety of genetic 
algorithms have been proposed in the litera-
ture. In this study, we will just use a basic 
form of GA. Nevertheless, it performs well as 
observed in our computation results. This ge-
netic algorithm contains a roulette wheel se-
lection, a single point crossover, and a ran-
dom flipping mutation. 

The fitness of chromosomes is determined 
via (4). It is not straightforward to determine 
the values of λ for a certain solution by using 
(4). Therefore, we rewrite (4) as  

{ }
.

,))(ˆ(min s.t.
  max

ˆ,...,1

B

yiymi i

∈

= =

x

xµλ
λ

          (8) 

By employing the trained MANFIS, the 
formulation of (8) is presented in a network 
form in Figure 6, and λ can be directly read 
from the output end of this network. Genetic 
algorithm for solving the multiple response 
optimization problem has been formulated in 
our earlier paper [3]. In this paper, we further 
investigate its performance with computa-
tional experiments in Section 5. 
 
4.2. Numerical method 
 
  A numerical method based on Lagrange 
relaxation for solving the multiple response 
optimization problem has been formulated in 

1 

0 
Ti

ŷi 
ŷi

* ŷi
- 

µ(ŷi) 
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[2]. Though this earlier method has the 
 

 
 

Figure 6. Network presentation of formulation (8) 
 
advantage of providing an upper bound of the 
optimal solution, it is rather complicated. In 
this paper, a simpler numerical method, 
which directly solves the primal problem, is 
formulated as the follows. 

Recalling the formulation of (8), to indicate 
λ being a function of x we denote it as λ(x). 
The gradient of λ(x) is defined as 
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By fixing the values of all xk≠j, and by giving 
a small increment ∆xj on xj, the partial deriva-

tive 
jx∂

∂ )(xλ  can be approximated through  

j

pjpjj

j x
xxxxxxx

x △

)...,,...,,()...,,△...,,()( 11 λλλ −+
≅

∂
∂ x  (10) 

After the gradient is determined, the 
maximization of λ(x) can be done by an itera- 
 
 

tive manner through the updating of x, sub-
ject to the feasible region constraint. The rule 
of this updating is  

 
xnew = xold + s∇λ(xold),              (11) 
 
where s is a step size. The steps of this nu-
merical method are summarized below. 
 
Step 0. Initialization: 

set the iteration counter r = 0, the ac-
curacy requirement τ , and the step 
size s; arbitrarily choose initial value 
x0 within the feasible region. 

 
Step 1. Gradient calculation: 

calculate the gradient of λ through 
Eq. (10) with xr. 

 
Step 2. Updating of x:  

xr+1 = xr + s∇λ(xr). 
 
Step 3. If λ( xr+1) - λ(xr) ≤ τ, stop; 

otherwise, go to Step 4. 
 
Step 4. Increase the iteration counter r ←r + 1. 

Go to Step 1. 
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5. Computational comparison 
 

To illustrate our approach, a chemical 
process optimization problem taken from 
Myers and Montgomery [12] is reproduced as 
the follows. 

A chemical process has three controllable 
variables: reaction time (x1), temperature (x2), 
and percent catalyst (x3); and its responses are 
percent conversion (y1), and thermal activity 
(y2). For this process, it is important to maxi-
mize y1 while y2 is held between 55 and 60 
with a nominal target 57.5. Experiments are 
conducted with different setups of reaction 
time, temperature, and percent catalyst to 
collect data of this chemical process. 

 

5.1. Modeling by MANFIS 
 

MANFIS is employed to model the re-
sponse surfaces of the above chemical proc-
ess. The MANFIS for this problem has two 
output nodes corresponding to the two re-
sponses of this process, and hence this 
MANFIS consists of two independent ANFIS. 
The Fuzzy Toolbox in MATLAB software 
provides functions of constructing, editing 
and training of ANFIS. We use this software 
to construct two independent ANFIS net-
works and train them by the experimental 
data. The convergence behavior of one of the 
learning process is shown in Figure 7. 
 

 

 
 

Figure 7. Convergence of the learning of y2

After completing the training of MANFIS, 
the multiple response problem is solved by 
using the formulation of (8). Since the re-
sponse y1 belongs to the set of the-larger-the 
better, its membership function should take 
the form of (5); and the response y2 has a 
nominal target, so it will take the membership 
function (7). In order to determine these 
membership functions, the maximum and 

minimum for individual response must be ob-
tained. Maximum and minimum of responses 
can be obtained by formulating single objec-
tive programming problems for individual 
responses, and solving the problems with any 
derivative-free algorithm. Alternatively, they 
can also be subjectively determined according 
to users' judgment or their expectation. In our 
example, it is desired that the response of 

thermal activity to be held between 55 and 60, 
therefore, it is reasonable to set 55 and 60 as 

the minimum and maximum of this response, 
respectively. Similarly, the minimum and ma-
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ximum of the response of percent conversion 
are set as 50 and 100, respectively. The possi-
ble ranges for x1, x2 and x3 are set as [-2, 2]. 

 
5.2. Solving by GA 
 

The genetic algorithm is implemented on 
the MATLAB platform and run on an IBM 
compatible PC with Pentium III-800 CPU. 
Ten trials are conducted, with the parameters 
in GA setting as: population size = 24, 

cross-over rate = 0.7, and mutation rate = 0.12. 
The results are listed in Table 1, in which, the 
second column is the time (in seconds) con-
sumed by each trial to obtain the best solution, 
and the last two columns are the responses 
yielded by the best solutions. From Table 1 
we can see that all the ten trials produce high 
quality solutions, i.e. all trials except the third 
trial obtain optimal solutions. Nevertheless, 
they usually consume a lot of computation 
times. 

 
Table 1. Results of chemical process optimization by GA 

Responses Trial Time λ 

y1 y2 

1 313 0.999 100 57.5

2 585 0.998 100 57.5

3 1672 0.982 99 57.5

4 1086 0.997 100 57.5

5 415 0.996 100 57.5

6 1714 0.997 100 57.5

7 1157 0.999 100 57.5

8 539 0.999 100 57.5

9 1917 0.991 100 57.5

10 1497 0.996 100 57.5

 
5.3. Solving by the numerical method 
 

The numerical method is also implemented 
on the MATLAB platform and run on the 
same machine. Ten trials are also carried out 
and their results are shown in Table 2. The 
starting points in these trials are arbitrarily 
chosen. We found that the quality of solutions 
obtained by this numerical method cannot 
compete with those obtained by GA, and the 
starting points critically affect the results. In 

particular, four (Trial 3, 6, 8 and 9) out of ten 
trials are failed because of the starting points 
are falling in a flat area of the response sur-
face and hence no gradient can be found. 

 
5.4. Combining GA and numerical method 

 
Though the numerical method failed to 

produce high quality solution, it can fast solve 
the problem. If we can provide a starting point 
in the vicinity of the optimal solution, the

number method should reach the optimal so-
lution very fase. On the other hand, though 

GA usually takes a long time to find a high 
quality solution, in the first few generations.
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Table 2. Results of chemical process optimization by the numerical method 

Responses 
Trial Time λ 

y1 y2 

1 126 0.763 88 56.7 

2 134 0.763 88 56.9 

3 - - - - 

4 217 0.967 98 57.4 

5 224 0.762 88 56.9 

6 - - - - 

7 85 0.763 88 56.9 

8 - - - - 

9 - - - - 

10 209 0.763 88 56.9 
 
 
 

Table 3. Results of chemical process optimization by the combined algorithm 
Responses Trial Alg. Time λ 
y1 y2 

GA 83 0.78   1 
NM 135 0.91 96 57.7
GA 84 0.96   2 
NM 3 0.98 99 57.5
GA 86 0.79   3 
NM 61 0.84 92 57.1
GA 89 0.91   4 
NM 10 0.99 100 57.6
GA 83 0.89   5 
NM 111 0.91 95 57.3
GA 83 0.95   6 
NM 4 0.96 98 57.4
GA 83 0.97   7 
NM 2 0.98 99 57.5
GA 83 0.88   8 
NM *    

* : no improvement 

 



Process Optimization by Soft Computing and Its Application to a Wire Bonding Problem 

Int. J. Appl. Sci. Eng., 2004. 2, 1     69 

The idea is to combine these two algorithms 
together. That is, use GA to find a starting 
point for the numerical method. We have 
conducted 8 trials to justify this idea. In each 
trial, GA is run first for 20 generations to ob-
tain a solution, and this solution will serve as 
a starting point for the numerical method. 
Computational results are shown in Table 3, 
in which, the second column is the algorithm 
used and NM denotes the numerical method. 
In Trial 1, 3 and 4, the numerical method pro-
vides significant improvement of the starting 
solutions, and among which, Trial 1 and 4 
produce high quality solutions. Though Trial 
2, 5, 6, and 7 do not significantly improve 
their starting solutions, they all produce high 
quality solutions. It is observed that the start-
ing solutions of these trials are already in 
good shapes; and this may be why it is diffi-
cult for the NM to improve much on these 
starting solutions. The final trial found no im-
provement for its starting solution, possibly 
caused by the starting solution falling on a 
plateau of the response surface. Though the 
results in Table 3 show imperfection of the 
combined algorithm, we still consider the 
combination of GA and numerical method is 
promising for two reasons: 1) this combined 
algorithm consumes much less time than GA 
to find a satisfactory solution and, 2) it is pos-
sible to find a high quality solution in a mod-
erate number of trials. 
 
6. Application to a wire bonding problem 
 

Wire bonding is a welding process, in 
which wire and pad surface are brought into 
intimate contact by using thin wire and a 
combination of heat, pressure and ultrasonic 
energy. Dynamic random access memory 
(DRAM) chips and most commodity chips in 
plastic packages are assembled by wire bond-
ing. About 1.2-1.4 trillion wire interconnec-
tions are produced annually.  

Wire bonding failures include bond off 
center, bond not sticking on die, wire breaking 
and so on. In a production environment, wire 

pull strength is usually monitored to minimize 
process drift. To achieve a stable performance 
of the wire bonding process, the operating 
variables such as bonding parameters need to 
be strictly regulated. Critical bonding pa-
rameters include bonding force, bonding time, 
and ultrasonic power. To find optimal setups 
of bonding parameters, traditionally, a serious 
of bonding tests is performed by varying 
bonding parameters to draw out the optimal 
bonding conditions1. Evaluation of wire pull 
strength is used to define the optimality of 
bonding parameters. In the evaluation, three 
sets of curves of wire pull strength versus ul-
trasonic power, bonding time, or bonding 
force can be obtained by varying one of these 
parameters while holding the other two con-
stant at their optimum. In such an approach, 
the search is less efficient and frequently falls 
in a local optimum especially when the re-
sponse surface is highly nonlinear. 

To demonstrate the potential usage of our 
approach in real-world problems, the pro-
posed approach in Section 4 is applied to the 
optimization of a wire bonding process in an 
IC packaging company in Taiwan. By fixing 
parameters of cut mode, heat, and looping of 
the wire bonder, and varying the parameters 
of bonding force, bonding time, and ultra-
sonic power, a design of experiment is con-
ducted to collect data of the process. Each of 
the three variable parameters is set with three 
levels, and hence the experiment results in a 
combination of 27 trials of bonding tests. 
Each trial contains 100 replications, and the 
two concerning responses are average wire 
pull and its deviation, where average wire pull 
is a the-larger-the-better response, and devia-
tion is a the-smaller-the-better response. 

Firstly, MANFIS is employed to model the 
responses of this process. To ensure the gen-
erality of the MANFIS model, and to fully 
utilize the limited number of experimental 
data, an extreme cross-validation technique 
called leave one-out cross-validation [14] is 
used. The idea of cross-validation is to divide 
the sample data into a construction 
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sub-sample, which forms the training data set, 
and a validation sub-sample, which forms the 
test data set. The leave one-out 
cross-validation is to divide the sample size n 
into a training data set containing n-1 obser-
vations, and leave the rest single observation 
as the test datum. Such a technique considers 
the division of the observations in all n possi-
ble ways. The cross- validation criterion is 
defined as 

∑∑
= =

−=
n

i

m

k
ikik iOyy

nm
CV

1 1

2 ,])\[ˆ(1)(P    (12) 

where P is the set of critical factors that affect 
the accuracy of MANFIS, and ]\[ˆ iOyik  is 
an estimate of yik and it is obtained from an 
MANFIS that is trained by the sample data 
excluding the i-th datum. The set of critical 
factors P contains only one factor, the number 
of nodes (in layer 1) associated with an input 
variable. To find the best setup of P, CV(2), 
CV(3), and CV(4) is compared, and we found 
that CV(3) is the minimum. With the result of 
cross-validation, the MANFIS for modeling 
the wire bonding process is constructed as: 
two independent ANFIS, and in each ANFIS 
there are 3 nodes associated with each input 
and hence resulting in 9 nodes in layer 1, 27 
nodes in layer 2, 27 nodes in layer 3, and 27 
nodes in layer 4.  

The optimization of the wire bonding 
process is modeled by the formulation of (3), 
with a primary objective of maximizing the 
wire pull and a secondary objective of mini-
mizing process variation. To construct mem-
bership functions for these two objectives we 
need to know their respect minimum and 
maximum as defined in Section 3. The mini-
mum of wire pull is set as its specification (i.e. 
its minimal requirement), and the maximum 
of wire pull is determined according to past 
experience of running test on bonding. The 
minimum and maximum of the process varia-
tion are determined through a process per-
formance index (Ppk). The definition of Ppk 

for one-sided specification (lower limit only) 
is 

Ppk = 
p

p LSL
σ

µ
3
−

,                   (13) 

where µp is the mean of the process, σp is the 
deviation of the process, and LSL is the lower 
limit of the process. Since the company is 
pursuing six-sigma process capability, we use 
this performance goal to determine the ex-
pected minimum of the process variation; that 
is, we set Ppk = 2 and induce the minimum of 
σp as (µp - LSL)/6. Furthermore, a company 
usually needs to reach a process capacity 
higher than four-sigma to satisfy most cus-
tomers, and hence we can determine the 
maximum for δp as (µp - LSL)/3.99.  

By employing the genetic algorithm to 
solve the wire bonding optimization problem 
based on the formulation of (8), we obtain a 
solution that is better than the company’s cur-
rent software can find. 
 
7. Concluding remarks 
 

This study used a neuro-fuzzy network, 
MANFIS, to model a multiple response sys-
tem, and optimizes the system by a genetic 
algorithm and a numerical method respec-
tively. MANFIS provides the advantage of 
modeling a nonlinear and complicated system 
without the need of finding suitable functional 
forms for the system, and its neural network 
learning ability also equips MANFIS with 
high efficiency in system modeling. A chemi-
cal process optimization problem is used to 
illustrate our approach. From the computa-
tional results, it is found that GA always finds 
process conditions that yield very satisfied 
responses, though it consumes much compu-
tational time. On the other hand, the numeri-
cal method is fast but its solution quality 
cannot compete with GA's. To improve per-
formances of these two algorithms, we com-
bine GA and the numerical method by run-
ning GA first for few generations to obtain a 
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starting solution for the numerical method. 
Computational results show that this com-
bined algorithm is promising. The proposed 
approach of process optimization is applied to 
a wire-bonding problem in IC manufacturing.  

 
References: 
 
[ 1] Ames, A. E., Mattucci, N. S., Mac-

Donald, G. Szonyi, and Hawkins, D. M. 
1997. Quality loss functions for optimi-
zation across multiple response surfaces. 
Journal of Quality Technology, 29: 
339-346. 

[ 2] Cheng, C. B. 2000. Multi-response opti-
mization based on a neuro-fuzzy system. 
Neural Network World, 10: 545-551. 

[ 3] Cheng, C. B., Cheng, C. J., and Lee, E. 
S . 2002. Neuro-fuzzy and genetic algo- 
rithm in multiple response optimization. 
Computers and Mathematics with Appl- 
ications, 44: 1503-1514. 

[ 4] Derringer, G. and Suich, R. 1980. Si-
multaneous optimization of several re-
sponse variables. Journal of Quality 
Technology, 12: 214-219.  

[ 5] Holland, J. H. 1975. ”Adaptation in 
natural and artificial systems”. Univer-
sity of Michigan Press, Michigan. 

[ 6] Jang, J. S. R. 1993. ANFIS: adap-
tive-network-based fuzzy inference sys-
tem. IEEE Transactions on Systems, 
Man and Cybernetics, 23: 665-684.  

[ 7] Jang, J. S. R., Sun, C. T., and Mizutani, 
E. 1997. “Neuro-Fuzzy and Soft Com- 
puting: a Computational Approach to 
Learning and Machine Intelligence”. 
Prentice-Hall. New Jersey. 

[ 8] Khuri, A. I. and Conlon, M. 1981. Si-
multaneous optimization of multiple re-
sponses represented by polynomial re-
gression functions. Technometrics, 23: 
363-375. 

[ 9] Kim, K. J. and Lin, D. 1998. Dual re-
sponse surface optimization: a fuzzy 
modeling approach. Journal of Quality 
Technology, 30: 1-10.  

[10] Lin, D. and Tu, W. 1995. Dual response 
surface optimization. Journal of Quality 
Technology, 27: 34-39. 

[11] Myers, R. H. and Carter, W. H. 1973. 
Response surface techniques for dual 
response systems. Technometrics, 15: 
301-317.  

[12] Myers, R. H. and Montgomery, D. C. 
1995. “Response Surface Methodology”. 
John Wiley and Sons, Inc. New York. 

[13] Pignatiello, J. J. Jr. 1993. Strategies for 
robust multiresponse quality engineer-
ing. IIE Transactions, 25: 5-15. 

[14] Stone, M. 1974. Cross-validatory choice 
and assessment of statistical predictions. 
Journal of the Royal Statistical Society. 
Series B, 36: 111-147. 

[15] Takagi, T. and Sugeno, M. 1985. Fuzzy 
identification of systems and its applicat- 
ion to modeling and control. IEEE Tran- 
 sactions on Systems, Man, and Cybernet- 
ics,15: 116-132. 

[16] Vining, G. G. A. 1998. Compromise ap-
proach to multiresponse optimization. 
Journal of Quality Technology, 30: 
309-313. 

[17] Zimmermann, H. J. 1978. Fuzzy 
programming and linear programming 
with several objective functions. Fuzzy 
Sets and Systems, 1: 45-55.

 


