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Abstract: Goodman and Cowin proposed a continuum theory of a dry cohesionless granular 
material in which the solid volume fraction ν is treated as an independent kinematical field. With 
their theory the most important phenomenon of granular materials, dilatancy, can well be simu-
lated. The key point of their theory lies in the postulation of the balance of equilibrated force, 
which is a balance equation proposed for the evolution of ν. In derivation of this equation the 
existence of the stored energy function φ and its specific functional dependence have been as-
sumed, and a variational analysis for φ is performed. In the current paper a complete thermody-
namic analysis based upon Müller-Liu approach will be given, and the results show that the 
stored energy function φ corresponds to the Helmholtz free energy function Ψ in thermodynamic 
equilibrium under isothermal condition, which in turn, indicates that the specification of the 
functional dependence of φ in the derivation of the balance of equilibrated force is reasonable. 
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1. Introduction 
 

Granular materials are collections of a large 
number of discrete solid particles with inter-
stices filled with a fluid or a gas. Many theo-
ries have been developed to describe the be-
haviour of flowing granular materials from 
approaches of molecular dynamics, statistical 
mechanics or continuum mechanics. The 
so-called Goodman-Cowin theory is one of 
the theories based upon continuum mechanics 
approach, and it has been shown that with this 
theory the most important phenomenon, dila-
tancy, can well be simulated (see Goodman 
and Cowin [5, 6, 7], Wang and Hutter [22]). 
The most significant point of their theory lies 

in the postulation of a balance equation, 
called the balance of equilibrated force, for 
volume fraction ν, in which the second time 
derivative of ν is included. Recently, Fang [4] 
has given a detailed comment on this theory 
and shown that there exists some logical in-
consistency in the derivation of the balance of 
equilibrated force, and this equation can be 
physically corrected by a simple dimensional 
analysis. From his study the modified Good-
man-Cowin theory is obtained. A complete 
thermodynamic analysis has also been per-
formed for the constitutive restrictions of the 
constitutive variables of the modified theory. 

The original derivation of the balance of 
equilibrated force is based upon a variational 
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analysis (see Cowin and Goodman [3])a. In 
the derivation the existence of the stored en-
ergy function φ is assumed and its functional 
dependence in equilibrium is specified, 
namely, φ = φ(γ, ν, gradν), where γ denotes 
the true mass density of grains. Granular ma-
terials are discrete in nature, and due to the 
different arrangement of grains some kind of 
energy associated with the distribution of 
grains should exist in a granular body. Ac-
cordingly, in certain sense granular materials 
can be treated as ordered materials, and the 
concept of stored energy function φ, used by 
Green & Rivlin [8], Leslie [11], Mindlin [15] 
and Toupin [19, 20] for their theories of elas-
tic materials, can be equally applied for 
granular materials. In fact, the counterpart of 
the stored energy function φ used in mechan-
ics is simply the Helmholtz free energy func-
tion Ψ used in thermodynamics, and Valanis 
[21] has indicated that φ corresponds to Ψ in 
thermodynamic equilibrium under isothermal 
condition, but without any theoretical evi-
dence. However, since the postulated func-
tional dependence of φ affects strongly the 
form of the resulted balance equation of 
equilibrated force, there remains a question 
why only γ, ν, gradν are proposed as the in-

dependent arguments of the functional de-
pendence of φ.  

We recall that in the scope of rational 
thermodynamics the entropy principle is so 
applied, that the restrictions of constitutive 
quantities can be obtainedb. In the current pa-
per a complete thermodynamic analysis based 
upon Müller-Liu approach is applied to ex-
ploitate the entropy inequalityc. By assuming 
the Helmholtz free energy Ψ as a constitutive 
variable, its functional dependence in ther-
modynamic equilibrium can be identified, 
which indicates that the stored energy func-
tion φ corresponds to the Helmholtz free en-
ergy Ψ in thermodynamic equilibrium under 
isothermal condition, and in turn shows that 
the postulation of φ = φ(γ, ν, gradν) is rea-
sonable and enough for the derivation of the 
balance of equilibrated force. 
 
2. Thermodynamic processes 
 
2.1. Balance equations 

 
Following the original Goodman-Cowin 

theory the balance equations are given by
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where γ, v, t, b, α, h, f, e, D, q and r are the 
true mass density of grains, velocity, stress 
tensor, external body force, equilibrated iner-
tia, equilibrated stress vector, equilibrated in-
trinsic body force, specific internal energy, 

stretching tensor, heat flux and external en-
ergy supply, respectively. Here ⋅•)(  denotes 
the time rate of change of )(•  and equals to 

v⋅•+∂•∂ )(gradt)( . The balance Eq. (1), Eqs. 

(1)

(2)

(3)

(4)

(5)
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(2)-(3) are analogous to the classical balance 
equations of mass, linear momentum and an-
gular momentum. The balance of equilibrated 
force is assumed in this simplest form (4) ac-
cordingly to Goodman and Cowin [5], and no 
equilibrated external body force is included 
since volume fraction ν is an internal variable. 
The balance of internal energy (5) differs 
from the traditional statement by the occur-
rence of the power terms associated with ν& . 
Eqs. (1)-(2), Eqs. (4)-(5) should be considered 
as constraints via Lagrange multipliers in the 
exploitation of the entropy inequality, while 
Eq. (4) can be direct achieved by assuming 
the constitutive class, and the entropy ine-
quality is then investigated to identify the 
constitutive responses of a granular material, 

and especially in the current paper, the con-
stitutive response of the free energy Ψ. 
 
2.2. Entropy inequality 

 
There is an additive quantity, the entropy, 

with specific density η, flux Φ, supply s and 
production π, for which we may write an 
equation of balance in the form 

.sdiv γν−+ηγν=π Φ&                  (6) 

The entropy principle states that the entropy 
production π  is non-negative in all thermo-
dynamic processes, and so the entropy ine-
quality must hold: 

.0sdiv ≥π=γν−+ηγν Φ&              (7) 
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Any process, which satisfies (7), represents a 
so-called admissible process. Such a process, 
however, must in addition satisfy the balance 
Eqs. (1)-(2), Eqs. (4)-(5). Liu [12, 13] has 
shown that one can account for these balance 
equations in the entropy inequality (7) by em-
ploying Lagrange multipliers as follows and 
satisfying this new inequality for all (unre-
stricted) fields. Explicitly, the balance equa-
tions appear as constraints on the class of 
physically-realizable processes, where λγ, λv, 

λν and λe represent the corresponding La-
grange multipliers. 

Introducing the free energy 

,e θη−=Ψ                          (9) 

and introducing the assumption θ=λ 1e d , 
where θ  is the empirical temperature, and 
substituting them into (8) yields for the en-
tropy inequality in the for

     .0)fgradrdive(1)fdiv(      

)div()div (sdiv)e(

≥νγν+ν⋅−γν−+⋅−γν
θ

−γν−−νγναλ−
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θ
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       (10) 

In deducing it, we assume that the material 
behaviour is independent of the supplies; so 
the sum of all external source terms in (10) 
must vanish, implying that 

,0rs =
θ
γν

+γν⋅+γν− bλ v             (11) 

which serves as an equation determining the  

entropy supply in terms of other supply terms 
and is more general than the classical selec-
tion via the contribution of b. The entropy and 
its flux as well as the Lagrange multipliers 
must be considered as auxiliary quantities. 
Entropy inequality (10) will be used to inves-
tigate the constitutive postulates in the next 
subsection. 
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2.3. Constitutive assumptions and restric-
tions 

 
Based upon Wang & Hutter’s [22] postula-

tion of the constitutive responses of a granular 
body, the constitutive class 

 

)grad , , , ,,,, , , , ,(ˆ
00 vvθθγγγγνννν gradgradgradCC &&=              (12) 

is proposed for the material quantities 

{ }. , ,f , , , ,C ΦqhtηΨ=               (13) 

It is noted that the constitutive class (12) is 
the most general one for a dry cohesionless 
granular material since for the true mass den-

sity of grains γ, its value of a reference con-
figuration γ0, its gradient and its time rate of 
change are additionally considered as inde-
pendent arguments. Invoking the principle of 
material objectivity expression (12) reduces to

), ,grad , ,,grad,, , ,grad , ,(ĈC 00 Dθθγγγγνννν= &&                    (14) 

with which the requirement of the balance of 
angular momentum is automatically satisfied. 

If the functional dependence of Ψ , t, h, q 
and Φ in (13) is incorporated into the entropy 
inequality (10) by use of the chain rule of dif-
ferentiation and using the identities 
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Let x be given by x = 
{ v& , ν&& , γ&& , θ& , ⋅θ)grad( , D& , 0gradν , ν&grad ,

)grad(grad ν , 0gradγ , γ&grad , )grad(grad γ , 

)grad(grad θ , gradD}. It is now straightfor-
ward to see that the inequality (16) has the 
form 
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must hold among Φ, h, q, where sym{A} de-
notes the symmetric part of a tensor A. Eqs. 
(19)-(27) correspond to the condition a = 0 in 
(18) and are known as Liu identities. 

To simply the ensuring analysis, it is as-
sumed here that the free energy Ψ is not a 
function of the time rate of change of ν. Un-
der this assumption the emerging constitutive 

relations are in correspondence with those of 
Goodman and Cowin [5,6] which were gained 
by use of the classical Coleman-Noll ap-
proach.With ) , (ˆ ν⋅Ψ≠Ψ & , there follows  
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tion (21) the functional dependence of Ψ re-
duces to 

).grad,grad , ,, , ,(ˆ
00 γνθγγννΨ=Ψ      (29) 

If we assume that Ψ is an isotropic scalar 
function, then from (29) it must have the form  
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From (33)1-(33)3 the functional dependence of 
k is identified as 
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Integrating (33)5,6,7 with each other results in
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where ⊗ denotes dyadic product. Ai, Bi (i=1-3) 
are 2nd-order skw-symmetric tensors, Ci 
(i=1-3) are 3rd-order skew-symmetric tensor 
and di (i=1-3) are vector functions. A1, B1 and 
C1 are not functions of gradν and gradγ, A2, 
B2 and C2 are not functions of gradν and 
gradθ, while A3, B3 and C3 are not functions 

of gradγ and gradθ. Since, moreover, the vec-
tor k must be isotropic, then it follows imme-
diately that Ai = Bi = 0 (i=1-3) and Ci = 0 
(i=1-3) because there are no isotropic 
skew-symmetric second and third order ten-
sors; thus
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since there is no isotropic vector function of 
only scalar function arguments. Thus, the en-
tropy flux takes its traditional form i.e., Φ = 
q/θ is obtained. This result will not follow, 
when the Helmholtz free energy depends 
upon ν& . Indeed, in that case λν is nontrivially 
determined by the free energy and so the en-

tropy flux must deviate in direction from that 
of the heat flux by a contribution proportional 
to h, the equilibrated stress vector. Substitut-
ing (36) into (33)4 yields 
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thus, another restriction of the functional de-
pendence of Ψ is obtained. With (37) and (29) 
now the functional dependence of Ψ can be 
identified as 

).gradgrad , , , ,,(ˆ
00 ν⋅νθγνγνΨ=Ψ     (38) 

Further restrictions on Ψ will be given by in-
vestigating the residual entropy inequality in 
thermodynamic equilibrium. With (32) and 
(36) the expression (22) for the equilibrated 
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Substituting (28), (32), (36), (38) and (39) 
into (40) results in the new form of the resid-
ual entropy inequality 
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where the definition  
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ν

γνβ
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has been introduced, and I denotes the unit 

tensor. It should be noted that in (41) the La-
grange multiplier λγ is not yet determined by 
the free energy Ψ. 
 
2.4. Thermodynamic equilibrium 
 

Further restrictions on the constitutive rela-
tions can be obtained from the residual en-
tropy inequality (41) in the context of ther-
modynamic equilibrium, which is character-
ized in the current local formulation by van-
ishing the entropy production, i.e., θπ′ = 0. 
Inequality (41) can be represented as
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Thus, we define thermodynamic equilibrium 
as those states, in which the independent dy-
namic variables Y all vanish. Besides, θπ′ 

also possesses its minimum value, namely 0, 
in thermodynamic equilibrium. Necessary 
conditions for this minimum are that
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(44)1 restricts the equilibrium forms of the 
dependent constitutive fields, while (44)2 
constrains the signs of material functions in it. 
Here we will only deal with the first condition. 

It yields the equilibrium values of the equili-
brated intrinsic body force f, the heat flux q, 
the stress t and the Lagrange multiplier λγ   
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where the subindex E indicates that the in-
dexed quantity is evaluated in thermodynamic 
equilibrium. Here it is noted that according to 
the definition of thermodynamic equilibrium 
and expression (38), the functional depend-
ence of the free energy Ψ is the same either in 
thermodynamic equilibrium or in 
non-equilibrium. Consequently when Ψ is 
known, the Lagrange multiplier λγ can be di-
rectly determined by (45)4 and can be inter-
preted as thermodynamic pressure. Besides, in 
(38) ν0 and γ0 are material constants, and fur-
thermore for the case of thermodynamic equi-
librium under isothermal condition the func-
tional dependence of Ψ on temperature θ can 
be removed, consequently in this case the 
functional dependence of Ψ can be identified 
as 

), , , ,,(ˆ
00 ννγνγν gradgrad ⋅Ψ=Ψ   (46) 

with which the statement that the stored en-
ergy function φ corresponds to the Helmholtz 
free energy function Ψ in thermodynamic 
equilibrium under isothermal condition has 
been proved to be true. 
 
3. Conclusions 
 

In the current paper the statement that the 

stored energy function φ corresponds to the 
Helmholtz free energy function Ψ in thermo-
dynamic equilibrium under isothermal condi-
tion has been proved to be true. This result 
shows that the postulated functional depend-
ence of the stored energy function φ proposed 
by Cowin and Goodman [3] for the derivation 
of the balance of equilibrated force is enough 
and reasonable. There is no need to propose a 
more general functional dependence of φ 
since from the current thermodynamic analy-
sis it is seen that the inclusion of other inde-
pendent argument outside γ, ν and gradν has 
no influence upon the final constitutive form 
of the free energy Ψ, which in turn, the stored 
energy φ. From the gradient theory of internal 
variables proposed by Valanis [21] it is also 
understood that the balance of equilibrated 
force of Goodman-Cowin theory can be re-
garded as the “1st order gradient theory of ν” 
of Valanis since outside γ and ν only gradν is 
considered as an independent argument of the 
functional dependence of φ. 

A complete thermodynamic analysis is also 
performed in the current paper and the con-
stitutive responses in thermodynamic equilib-
rium of the stress tensor t, the equilibrated 
intrinsic body force f and the heat flux vector 
q have been obtained. In deducing these addi-

(44)

(45)
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tional requirement that γ&  must vanish is in-
troduced for the definition of thermodynamic 
equilibrium. This is so because γ&  is intro-
duced as additional independent argument of 
the constitutive class, if it is not introduced, 
thermodynamic equilibrium can then be de-
fined by conventional ways, but in this case 
the Lagrange multiplier λγ can not be deter-
mined directly from the free energy Ψ and 
should be regarded as an undetermined field 
quantity. 
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Symbol list 
 
b = external body force 
c = constitutive class 
d = symmetric part of velocity gradient 
e = specific internal energy, 
f = equilibrated intrinsic body force 
h = equilibrated stress vector 
k = extra entropy flux vector 
q = heat flux vector 
r = specific external energy supply 
s = specific external entropy supply 
t = stress tensor 
v = velocity 
w = equilibrated external body force 
α = equilibrated inertia 
β = configuration pressure 
γ = true mass density of grains 
γ0 = reference true mass density of grains 
ν = volume fraction 
ν0 = reference volume fraction 
η = specific entropy density 
π′ = residual entropy production 
Ψ = helmholtz free energy 
φ = stored energy function 
θ = empirical temperature 

π = entropy production 
Φ = entropy flux vector 
λγ = lagrange multiplier corresponding to the  

balance of mass 
λv = lagrange multiplier corresponding to the  

balance of linear momentum 
λν = lagrange multiplier corresponding to the  

balance of equilibrated force 
λe = lagrange multiplier corresponding to the  

balance of internal energy 
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