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Abstract: Escherichia coli (E. coli) K12 was sequenced in 1997. The 4,639,221-base pair DNA 
sequence consists of 4288 annotated protein-coding genes, 38 percent of which have no attrib-
uted function. One of the major problems in predicting prokaryotic promoters is locating the 
spacers between the -35 box and -10 box and between the -10 box and transcription start site. In 
this paper, we use the adopted expectation maximization (EM) algorithm to accurately find the 
localizations of the promoter regions. A brand new purine-pyrimidine encoding method is pro-
posed to reduce the dimensions of the training data. The heavy demand on systems for both 
computation and memory space can then be avoided through the choice of coding factor. The 
most representative features are used for training learning vector quantization networks. The 
simulation results of the proposed coding approach reveal that the precision of promoter predic-
tion using the proposed approach is approximately the same as the precision using the traditional 
encoding method. 
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1. Introduction 
 

E. coli  has been studied for over one hun-
dred years since its successful isolation in 
1885. Being the model microorganism, E. coli 
has become a ‘living platform’ for many bio-
logical and chemistry experiments, such as 
vectors transcription, plasmid cloning, medi-
cal drug design, etc. But many unsolved prob-
lems still exist for the organism, i.e., how and 

and when the E. coli genes decide to express 
the given functionalities and where and what 
subparts in the genome respond to these 
regulating tasks.  

With the progress of molecular biology and 
modern DNA sequencing techniques, more 
than 194 organisms have been sequenced and 
annotated [1]. The first substrain of E. coli, 
K12, was sequenced in 1997. The 4,639,221 
base pair (bp) DNA sequence consists of 4288 
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annotated protein-coding genes, 38 percent of 
which have no attributed function [2]. Pro-
moters, being transcriptional signals and lying 
in the RNA polymerase contact region, regu-
late gene expressions. In the annotated data, 
many promoter regions have not yet been de-
termined. Studies of four additional sequenc-
ing tasks for E. coli strains (and substrains) 
have been completed most recently. But many 
vague promoter regions still need to be ex-
plored.  

Characterization and recognition of pro-
moter regions are important research topics 
and have been studied by many researchers. 
The E. coli promoter is located immediately 
before the E. coli gene. Thus, successfully 
locating the E. coli promoter leads to identi-
fying the E. coli gene. The uncertain charac-
teristics of the E. coli promoters contribute to 
the difficulty of recognizing and predicting 
promoters [3].  

Each E. coli promoter contains two binding 
sites to which the E. coli RNA polymerase, a 
kind of protein, binds. The two binding sites 
are the minus35 (35 nucleotides upstream of 
the transcriptional start site) region and the 
minus10 (10 nucleotides upstream of the 
transcriptional start site) region. (The tran-
scriptional start site is the first nucleotide of a 
codon where the transcription begins; it 
serves as a reference point.) Both of the two 
binding regions are hexamer boxes. The con-
sensus sequences, that is, the prototype se-
quences composed of the most frequently oc-
curring nucleotides at each position, the mi-
nus 35 binding site and the minus 10 binding 
site, are TTGACA and TATAAT, respec-
tively. However, few existing E. coli promot-
ers exactly contain these two consensus se-
quences. 

Many researchers have used artificial intel-
ligence approaches to improve the learning 
abilities for generalization purposes [4-7]. The 
unique computing architectures that neural 
networks potentially provide have attracted 
interest from researchers across different dis-
ciplines. As a technique for computational 

analysis, neural network technology is very 
well suited for the analysis of molecular se-
quence data [8]. The perceptron algorithm 
was revised for bio-sequence analysis in an 
attempt to distinguish DNA/RNA ribosomal 
binding sites from non-binding sites [9]. The 
backpropagation algorithm also has been 
successfully used to perform a variety of in-
put-output mapping tasks for recognition, 
generalization, and classification [10], as well 
as many molecular sequence analysis prob-
lems. Most early sequence analysis studies 
involved the use of perceptron or backpropa-
gation networks for protein structure predic-
tion or DNA sequence discrimination [8]. As 
this field continues to develop, researchers 
have broadened the choices of neural network 
architectures and have learned paradigms to 
solve a wider range of problems. 

With the progress of modern sequencing 
technologies, more and more sequencing 
tasks can be finished. Thus, more and more 
annotation data need to be experimentally 
verified and computationally predicted. We 
also found that almost all related studies take 
no more than 500 promoter patterns to train 
their prediction systems. In [11], we chose 
three new compilations of E. coli K12 pro-
moter prediction researches as our positive 
training data sets. These three training sets 
were 362, 441, and 421 positive patterns with 
65, 80, and over 300 bps long, respectively. 
But a major problem still existed: most of 
these patterns did not indicate where the pro-
moter regions were. In addition, the computa-
tional process was extremely long. To over-
come these problems, we adopted the expec-
tation maximization (EM) algorithm to locate 
and learn the distribution of these positive 
promoter regions. Then we applied our new 
encoding method, the purine-pyrimidine ap-
proach, to reduce the input dimensions. Pre-
liminary analysis has shown that our encoding 
method is lightly better than other coding ap-
proaches. All these coded patterns are fed into 
the neural networks to verify the precision of 
predictions.  
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This paper is organized as follows. Section 
2 discusses the biological data of E. coli and 
the characteristics of prokaryotic promoters. 
In Section 3, we describe the spacer locating 
EM algorithm and the prediction of EM ex-
tracted sequence via different neural networks. 
Section 4 describes the prediction of our 
purine-pyrimidine encoded sequence. The 
benefits of our brand new encoding method 
and the comparison between traditional cod-
ing approach and our approach are also pre-
sented. The conclusion and plans for future 
works are provided in the last section, Section 
5. 

 
2. Characteristics of prokaryotic promot-

ers 
 

Prokaryotic promoters appear to be less 
complex (the size and number of elements are 
recognizable by sigma factors) than their eu-
karyotic counterparts. There are some simi-
larities, though. For example, both are recog-
nized by other factors before RNA poly-
merase binding. 

Prokaryotic promoters vary in their affini-
ties for RNA polymerase, a factor very im-
portant with regards to controlling the fre-
quency of transcription and, therefore, the ex-
tent of gene expression. Unregulated tran-
scription initiation at many prokaryotic pro-
moters has been found to require only an 
RNA polymerase holoenzyme, which consists 
of four core subunits with a dissociable sigma  
factor. Multiple sigma factors have been iden-
tified, and each sigma factor programs the 
core enzyme for transcription from a different 
class of promoters.  

Prokaryotic promoters direct not only the 
site of transcription initiation but also the rate 
of transcription. Earlier studies [12, 13] have 
established that promoter strength, as defined 
by the degree in which transcripts of the cor-
responding genes are produced, is primarily 
determined by two factors: the binding affin-
ity to RNA polymerase and the rate of isom-
erization from ‘closed promoter complexes’ 

(DNA remains duplex) to ‘open promoter 
complexes’ (DNA opened by ‘melting’).  

There are four notable features in most E. 
coli promoters: the transcriptional start site, 
the -10 hexamer, the -35 hexamer, and the dis-
tance between the -10 and -35 sequences (see 
Figure 1). The transcriptional start site has 
been found to be purine in more than 90% of 
characterized promoters [14]. It is common 
for the transcription start site to be the central 
base within the sequence CAT, but the con-
servation of this triplet is not great enough to 
regard it as an obligatory signal. Just up-
stream of the start site, a six base pair (bp) 
region is recognizable in most promoters. The 
center of the hexamer is often close to 10 bp 
upstream of the TSS. The distance in known 
promoters varies from 18 to 9 from the tran-
scriptional start site. In some other literature, 
this range varies from 11 to 3 [3]. Named for 
its location, the hexamer is often called -10 
box. Its consensus is TATAAT and can be 
summarized in the form T80A95T45A60A50T96, 
where the subscripts denote the percentage of 
occurrence of the most frequently found base1. 
The canonical -35 (TTGACA) and –10 
hexamers (TATAAT) are located at positions 
15 to 21 and 39 to 44, respectively. The pro-
moter data was obtained from [14], and the 
informational analysis used is a program 
called sequence logo [15]. 

 
 

 
Figure 1. Typical prokaryotic promoter 

 
 
The other conserved hexamer is around ~35 

bp upstream of the start site. The consensus 
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for -35 has been universally accepted as 
TTGACA [14]. In more detailed form, the 
conservation is T82T84G78A65C54A45 (Figure 
1). The distance separating the -35 and -10 
sites has been found to be between 16 and 18 
bp in 90% of the promoters. With very un-
usual exceptions, it may be as short as 15 bp 
or as wide as 21 bp. The distance may be 
critical in holding the two sites at the appro-
priate distance for the geometry of a RNA 
polymerase. An ideal E. coli promoter may 
consist of the -35 hexamer separated by 17 bp 
from the -10 hexamer, with the -10 hexamer 
lying about 7 bp upstream of the start site. 
The -35 region is said to provide the signal for 
recognition by a RNA polymerase, while the 
-10 sequence allows the complex to convert 
from a 'closed' to an 'open' form [13]. 

Other researchers have established another 
important sequence element in some E. coli 
promoters in addition to the four mentioned 
[16, 17]. The seven E. coli rrn genes, which 
encode ribosomal RNA, are unusually strong, 
accounting for more than 60% of the total 
RNA system in rapidly growing cells. The 
exceptional strength of the rrn promoter has 
been attributed to an AT-rich sequence of ~20 
bp located immediately upstream of the -35 
region. This region with the AT-rich motif has 
been termed the upstream element or the UP 
element [17].  

The authors used two pieces of evidence to 
establish that the UP element is recognized by 
a RNA polymerase. First, the UP element was 
found to function in vitro in a transcription 
system containing only purified RNA poly-
merase and the promoter DNA sequences. 
The second evidence was in DNAase I foot-
printing experiments, where a RNA poly-
merase was found to protect the UP element, 
yielding a ~20 bp extended footprint [18]. The 
UP element is believed to be functional as the 
face of the helix phasing is maintained with 
respect to the transcriptional start site. The 
functional nature of the UP elements when 
kept in phase with the helix was confirmed 
when mutations that change the spacer length 

in promoters altered the level of transcription 
in vitro [17]. 

 
3. Promoter prediction of extracted se-

quence  
 

The data set of positive promoters used 
in this section is taken from the compilation 
result in [19]. The negative data set is ran-
domly generated, with 60% AT composition, 
that is, 60% of the nucleotides of each pattern 
are adenine (A) or thymine (T). For cross 
validation reasons, all duplicates of the posi-
tive patterns were removed. Then we fed both 
positive and negative training examples into 
the adopted EM algorithm and extracted the 
features while the convergence condition was 
achieved. A purine-pyrimidine encoding 
method was developed to encode the training 
patterns. Then the encoded training patterns 
were used to train the learning vector quanti-
zation networks. 
 
3.1. The spacers locating via EM algorithm 
 

The EM algorithm [20] is a general method 
for finding the maximum-likelihood estimate 
of the parameters of an underlying distribu-
tion from a given data set when the data is 
incomplete or has missing values. There are 
two main applications of the EM algorithm. 
The algorithm can be used when the data has 
missing values due to problems with or limi-
tations of the observation process. The algo-
rithm can also be used when optimizing the 
likelihood function is analytically intractable 
but when the likelihood function can be sim-
plified by assuming the existence of and val-
ues for additional but missing (or hidden) pa-
rameters. The latter application is more com-
monly used for computational pattern recog-
nition. 

Let T represent the set of training E. coli 
promoters, that is, T contains all positive 
training sequences. Let K denote the cardinal-
ity of T. For a promoter sequence Si∈T, the 
length of the spacer between the minus 10 re-
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gion and the transcriptional start site, denoted 
by sp10, and the length of the spacer between 
the minus 35 region and the minus 10 region, 
denoted by sp35, are unobserved, though Si is 
observed. We refer to the positive training 
sequences as “observed” data since they are 
given. These observed data are incomplete 
because the lengths of the two spacers are not 
given. (These lengths are referred to as “un-
observed” or “missing” data.)  
In general, sp10 varies from 3 to 11 and sp35 
varies from 15 to 21. For each Si, the missing 
data sp10 and sp35 are represented by a vec-
tor ( )63,1,  ,, iii zzz L= , where 
 
 

( )
10 35

, ,

1,  if ,  and 
0,  otherwisei f m n

m sp n sp
z

= =⎧
= ⎨
⎩

   

 
 
where 157*)3(),( −+−= nmnmf  is used 
for indicating the spacers instance. Each 
binding site consists of six bases. Assume that 
the nucleotides at the two binding sites of a 
promoter sequence are independent. 
Let ,6,,1),(,10 L=jxP j  denote the probability 
of x, x∈D={A, C, G, T}, occurring at position 
j in the minus10 region, and let P10 de-

note ),,( 6,101,10 PP L . Also, let ,6,,1),(,35 L=jxP j  
denote the probability of x, x ∈D, occurring at 
position j in the minus35 region, and let P35 
denote ),,( 6,351,35 PP L . Thus, P10, j and P35, j are 
in the multinomial distribution. For each E. 
coli promoter sequence, if we know the 
lengths of the two spacers, we could easily 
calculate the model parameter θ.  

The EM algorithm proceeds iteratively un-
til convergence occurs. Every iteration con-
sists of two steps: 1) an expectation step (E 
step) and 2) a maximization step (M step). 
The E step calculates the sum of the log of the 
prior probability of θ, Prθ, and the expected 
complete-data log likelihood, where the ex-
pectation is for the distribution of the missing 
data given the observed data and current es-
timates of θ. Thus, the E step calculates 

 

,
log ( , ) logTZ T

E P T Z Pr
θ

θ θ+  

 
Assume that all Si∈T, 1≦i≦K, are inde-

pendent, and )()( ZPZP =θ , that is, the 
probability distribution of unobserved data is 
independent of θ. Then 
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Let jiS , denote the nucleotide at position j of 
the promoter sequence Si. Define  
 

,
, ,

1,  if 
0,  otherwise

i j
i j x
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I

=⎧
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For each Si, given tθ  and 1),(, =nmfiz , the 
likelihood of Si is 
 
 

 

(14) 

(12) 

(13) 

(15) 
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From Baye’s law, we have 
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Leaving out the terms not involvingθ, we get the log of the prior of θ, Prθ as follows:
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Then substituting Eq. (16) and Eq. (17) into Eq. (14), we have
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Let θ0 denote the value of θ at the begin-
ning of the first iteration. θ was initialized to a 
random value so that the E step can proceed. 
In every iteration, we use the current esti-
mateθ t to calculate the sum of the log of the 
prior probability of θ and the expected com-
plete data log likelihood. The M step maxi-
mizes Eq. (19) with respect to θ. According to 
the information theory [21], 

10,1 10,1( ) log ( )T

x A
f x P x

=∑  
is maximized when )(1,10 xP equals )(1,10 xf , 
where )(1,10 xf is a constant. Thus, the MLE of 
θ includes samples ,, ,35,10 jj ff and 6,,1, L=jfs . 
That is, 
 

10,
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1
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1
, ( , )

( ) ( ),   
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j

j

t
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j

t
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+
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+
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The new value of θ can be used in the next 

iteration. The process iterates to convergence. 
Given the model parameters calculated from 
the positive training sequences (i.e., the pro-
moter sequences in the training dataset T), we 
can determine the locations of the two puta-
tive binding sites of any DNA sequence Si, 
where Si could be a positive or negative train-
ing sequence or an unlabeled test sequence, 
by choosing the two spacer lengths sp10 and 
sp35 that are calculated by  

{ }θ)1,(max ),(,2115,113 =≤≤≤≤ nmfiinm zSP . 
This EM algorithm (see Figure 3) would be 

used for the related compilations of the E. coli 
promoter prediction. The extracted dataset 
consists of 35 bps DNA sequences (i.e., 17 
bps in -35 region, 11 bps in -10 region, and 7 
bps in +1 region) and 2 spacers (spacer 35 and 
spacer 10). We first apply the conventional 
encoding method to the DNA alphabet {A, C, 
G, T} as a 4-bit pattern of {1000, 0100, 0010, 
0001}. If we assume that the extracted DNA 
patterns are k bps long, the encoded training 
data via orthogonal codes would have 4k di-

mensions each. Since the actual length of an E. 
coli promoter is still unknown to date, the 
value of k should always be set to a number 
that is larger than 33, the maximum length 
appearing in a sequenced annotation data file. 
It is an extremely large dimension for neural 
network computing. 
 
3.2. The purine-pyrimidine encoding 

method 
 
In order to reduce input dimensions, we 

propose a purine-pyrimidine encoding method. 
That is, more precisely speaking, any bit of 
extracted patterns is considered to belong to 
purine or pyrimidine. Then we look up a pre-
defined codebook for the patterns to find the 
corresponding codes. Before this is done, the 
codebook should be first designed. Given a k 
bps long DNA pattern, the coding range r 
must be a factor of k and must satisfy the con-
straint kr <<1 . Another little trick in 
choosing the pattern length k is that k should 
not be a prime number. 

The dimension of training data pairs can 
then be reduced from 4k (orthogonal encoding) 
to k/r (our approach). For example, assume 
that the coding range r in our approach is 2. 
Table 1 shows the predefined purine/pyramid 
ine codebook for r=2. Figure 4 shows the 
coded difference between these two methods. 
The DNA pattern for this example is the con-
sensus sequence, TATAAT, of E. coli -10 
box. 
 

Table 1. Pseudo codebook for r=2 

Patterns Purine  
(A/G) 

Pyrimidine 
(C/T) 

Purine (A/G) 1 2 
Pyrimidine 
(C/T) 3 4 

 

(21) 
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Input: the positive training data set T, the negative training data set G,  
and the test data set Q of DNA sequences. 
Output:  the position weight matrices P10, P35,  
 and the putative sp10, sp35 of each DNA sequences. 
 
Initialize probability distribution 0

10P , 0
35P , and ( )( )10 35

0
, ,i f sp spP z ; 

Do{ 
 //the expectation step 
 For each patterns iS T∈  
  For each possible value of sp10 and sp35 
   Calculate , ( , )( 1, )

t

i i f m nP S z θ= according to Eq. (16); 
  For each possible value of sp10 and sp35 

   Calculate , ( , )( 1 , )i f m n iP z S θ= according to Eq. (17); 
 Calculate 10, 35,, ,j jf f and sf  according to Eq. (20); 
  
 //the maximization step 
 Calculate 1

10
tP + , 1

35
tP + , and ( )( )10 35

1
, ,

t
i f sp spP z+  according to Eq. (21); 

} until the change of 1
10
tP + , 1

35
tP + , and ( )( )10 35

1
, ,

t
i f sp spP z+ ≤ a predefined threshold. 

 
Figure 3. The EM algorithm for E. coli spacers locating 

 
 

In Figure 4, the sample sequence, TATAAT, 
is in the second row and is surrounded by 
square boxes. The numbers in the boxes to 
which the arrows point indicate encoding re-
sults. The first row shows the coded result for 
the orthogonal method. Since one DNA base 
used four bits for coding, the orthogonal 
method needs 4*6=24 bits, i.e., 24 dimensions. 
The other rows show our purine-pyrimidine 
approach. For r=2 and r=3, our encoding 
method just produced 3-dimension and 
2-dimension coded data, respectively. Ac-
cording to the predefined codebook, Table 1, 
we can encode TA (T for pyrimidine and A for 
purine) into the real number 3 and encode AT 
into 2. When k increases, the reduction of 
coded dimensions is more remarkable.  

 
 

Orthogonal coded

DNA Sequence, =6

Our method, =2

Our method, =3

 
Figure 4. The process of encoding methods: see 

the context for details. 
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3.3 The learning vector quantization net-
works 

 
A LVQ network [22] has a first competitive 

layer and a second linear layer. The linear 
layer transforms the competitive layer's 
classes into target classifications defined by 
the user. We refer to the classes learned by the 
competitive layer as subclasses and the 
classes of the linear layer as target classes. 
Both the competitive and linear layers have 
one neuron per (sub or target) class. Thus, the 
competitive layer can learn up to S1 sub-
classes. These, in turn, are combined by the 
linear layer to form S2 target classes. (S1 is 
always larger than S2.) For example, suppose 
neurons 1, 2, and 3 in the competitive layer all 
learn subclasses of the input space that be-
longs to the linear layer target class No. 2. 
Then competitive neurons 1, 2, and 3, will 
have linking weight2, 1 weights of 1.0 to neu-
ron n2 in the linear layer, and weights of 0 to 
all other linear neurons. Thus, the linear neu-
ron produces a 1 if any of the three competi-
tive neurons (1, 2, and 3) wins the competi-
tion and outputs a 1. This is how the sub-
classes of the competitive layer are combined 
into target classes in the linear layer.  

The steps of LVQ1 algorithm are 
Step 1. Initialize all weight vectors ( )0jw , 

learning rate parameter ( )0µ , and set 0k = . 
Step 2. Check the stopping condition. If false, 

continue; else if true, quit. 
Step 3. For each training vector ix  perform 

steps 4 and 5: 
Step 4. Determine the weight vector index 

( )j q=  such that  

( ) 2

2min i j
j

x w k
∀

− . 

Step 5. Update the appropriate weight vector 
( )qw k  as follows: 

If 
q iw xC C=  then 

( ) ( ) ( ) ( )1q q i qw k w k k x w kµ ⎡ ⎤+ = + −⎣ ⎦  

If 
q iw xC C≠  then 

( ) ( ) ( ) ( )1q q i qw k w k k x w kµ ⎡ ⎤+ = − −⎣ ⎦  
Step 6. Set 1k k← + , and reduce the learn-

ing rate parameter, then go to step 2. 
 
4. Simulation results and discussions 
 

The training data set [19] for this experi-
ment consisted of 378 positive promoter pat-
terns and 4500 negative randomly produced 
promoter patterns. The testing data set con-
sisted of 50 positive and 500 negative pro-
moter patterns. All the random negative pat-
terns were excluded from the positive ones. 
The putative spacers for both the positive and 
negative patterns were caught though the EM 
algorithm. We extracted 35 bps from the 
training patterns, i.e., 17 bps for the -35 box, 
11 bps for the -10 box, and 7 base pairs for 
the TSS. Finally, patterns to be learned by the 
neural networks were produced by the encod-
ing methods. 

As mentioned in a previous section, the 
length k of the extracted DNA sequence is 35 
bps. Between the two choices (5 and 7), we 
chose r=5. Table 2 shows the experimental 
results of the purine-pyrimidine coded data 
set for the four different training methods. 
The four different training methods consisted 
of the LVQ network, the standard backpropa-
gation (BP), the conjugate gradient (CG), and 
the Levenberg-Marquardt (LM) learning al-
gorithm. According to Table 2, we found that 
the LVQ network learning has the best preci-
sion and specificity. 
 
 
Table 2. Simulation results for the 9-dimension 

data set. 
Methods BP LM CG LVQ 
Precision 
(%) 

90.41 88.91 88.55 90.78 
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We also applied the traditional encoding 
method to the same problem. The DNA al-
phabet {A, C, G, T} was encoded as a 4-bit 
pattern of {1000, 0100, 0010, 0001}. Assume 
the (extracted) DNA patterns are k bps. The 
encoded training data via conventional en-
coding method would have 4k dimensions 
each. Since the actual length of E. coli pro-
moter is still unknown to date, the value of k 
should always be set to a number that is larger 
than 33, the maximum length appearing in a 
sequenced annotation data file. Applying the 
traditional encoding method, we obtained 
150-dimension data set that was used. The 
number of hidden nodes for these neural net-
works used was set to 20. As shown in Table 
3, we found that the precision of the 
150-dimension encoding method is similar to 
the 9-dimension encoding method. 
 
 
Table 3. Simulation results for the 150-dimension 

data set 
Methods BP LM CG LVQ 

Precision 
(%) 

90.55 90.36 87.27 90.91 

 
 
5. Conclusions and future works 
 

When the transcription starting sites are 
given or known, our adopted EM algorithm 
and encoding method can precisely recognize 
and predict the RNA polymerase binding sites, 
that is, the minus 35 (35 nucleotides upstream 
of the transcriptional start site) box and minus 
10 (10 nucleotides upstream of the transcrip-
tional start site) box. Then the promoter re-
gion and putative sequences can be predicted.  

Through the feature extraction EM algo-
rithm, we can precisely locate the minus 35 
and minus 10 boxes for the E. coli promoter 
prediction. Then we propose a brand new en-
coding method. Based on two classes of DNA 
sequences, purine and pyrimidine, we effi-

ciently reduce the input dimensions for the 
training and learning tasks in large scale. The 
benefit of this purine-pyrimidine coding ap-
proach is that demand for memory space and 
computational is decreased. The simulation 
results also prove that our new approach can 
achieve results nearly equal to that of the tra-
ditional orthogonal coding method for lower 
dimension coded data.  

Reviewing the past literatures, we found 
that almost all related studies take no more 
than 500 promoter patterns to train their pre-
diction systems. We chose the three new 
compilations of E. coli K12 promoter predic-
tion researches as our positive training data 
sets. These three training sets were 362, 441, 
and 421 positive patterns with 65, 80, and 
over 300 bps, respectively. Most of these pat-
terns do not indicate where the promoter re-
gions are. We believe that our spacers locating 
algorithm is very suitable for these kinds of 
data. 

In the future, based on the ongoing se-
quencing and annotating of E. coli genome 
sequence, there are another four structural 
parts of the DNA sequence that could be use-
ful in the promoter prediction problem, i.e., 
RBS (ribosome binding sites), starting and 
ending of ORF (open reading frames), and 
transcription terminator detection (stem-loop). 
After finishing all of these sub-problems, we 
believe that the goal of perfect E. coli pro-
moter prediction can be achieved. We would 
then like to expand our scheme to all other 
microorganisms.  
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