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1. Introduction 
 

A lot of literature has been published on the 
topic of multifingered robot grippers.  Most 
of the work is concentrated on the modeling 
of the object-gripper system interaction, and 
then the development of algorithms for gen-
erating a secure grasp (see e.g. the excellent 
survey done by Bicchi [1]).  The main three 
problems in grasping and manipulation are 
form and force closure, force feasibility and 
force optimization [2].  These three prob-
lems have been extensively studied by many 
researchers; most of them solved the problem 
using linearized friction law.   

Number of previous works did not take into 
account the limits introduced by the joints 
actuators.  However, since the problem is 
highly nonlinear from its nature, using 
nonlinear formulation is expected to guaran-

tee stable prehensionwith less effort. In this 
direction, Al-Fahed Nuseirat and Stavroulakis 
[3] suggested a nonlinear complementarity 
approach (NCP).  Han et al. [2] presented a 
linear matrix inequality (LMI) approach.  
Bicchi [4] proposed an iterative solution of 
nonlinear ordinary differential equations to 
solve the problem.  The desired goal is to 
achieve a stable and firm grip of the grasped 
object as well as to study the grippers’ poten-
tial in performing dexterous and fine manipu-
lations tasks.  Hence, the issue of optimizing 
the grasping forces has been of great impor-
tance.  Many applications in robotics require 
a stable grip before any further operations of 
the robot can be done.  The fingers forces 
have to be exactly balanced against any ex-
ternal wrench.   

The normal forces have to be within fric-
tion cone also.  This type of problem may be 
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considered as constraint optimization problem.  
If the friction cone was approximated by a 
polyhedron then the problem can be formu-
lated as Linear Complementarity Problem 
(LCP).  The yielded LCP could be solved 
using direct algorithms such as Lemke's algo-
rithm [5] or it could be solved using Neural 
Network based methods [6].   

This, of course, would be on the expense of 
accuracy and optimality of solutions [3].  
The NCP approach, on the other hand, pro-
vides a numerically solvable set of equations 
that lead to better results than that of Linear 
Complementarity Problem (LCP) [3].  
However, all these analytical formulation 
methods and the numerical methods associ-
ated with them have certain degree of accu-
racy and are affected by the high nonlinearity 
of the constraints.  In assembly task applica-
tions accuracy in grasping forces are highly 
required.      

The need arises for techniques that can gen-
erate this type of solutions even on the ex-
pense of extra CPU time.  This expense is of 
no importance if the application of the grasp-
ing forces was offline, i.e. the solution is not 
usually required right online for a given 
grasping task.  Moreover, the availability of 
fast digital computers has diminished the 
problem of long execution time that usually 
accompanies EP based techniques.  The 
main objective of this work is to use Evolu-
tionary Programming (EP) to solve a nonlin-
ear gripper problem.   

The obtained results show that the norm of 
the grasp forces was better than that of the 
NCP approach.  The EP technique consid-
ered here is based on algorithms proposed by 
Fogel [7].  The mechanics of real life genet-
ics, such as selection and mutation are simu-
lated in EP.  The survivility-for-the-fittest is 
applied on a population of initially randomly 
generated solutions.  The EP has the ability 
to be interfaced with many applications in op-
timization and machine learning.  The 
nonlinearity of the solutions it offers made EP 
applicable in many real life applications.  

The stochastic nature of this technique makes 
it capable to escape local minima and keep its 
search toward global solutions.   

While the nonlinearity constraints “shut 
down” Linear Programming methods and 
forces users to “linearize” their problem, this 
nonlinearity is the major motivation toward 
using techniques such as EP.  The EP has the 
ability to handle such constraints easily.  
This is due to the richness of solutions EP of-
fers and to the high flexibility it accommo-
dates when dealing with stiff or vague situa-
tions.  One may note here that the proposed 
approach may apply to determine force dis-
tribution in biped locomotion systems as well 
as in cooperating manipulators. 

It should be kept in mind that the geometric 
nonlinearity comes from the unknown kine-
matics boundary condition; that is, the finger 
which will be in contact with the object (or 
the contact region on the object surface) is not 
known a priori, while the material nonlinear-
ity comes from the friction condition.  The 
inequality restriction on the normal contact 
forces is introduced by the fact that the finger 
and the object can only push on each other 
and not pull.  These kinds of problems are 
known as unilateral contact problems.  Uni-
lateral contact problems with friction have 
been studied by many researchers [8], [9], 
[10].  They lead to quasivariational inequal-
ity problems or to nonlinear complementarity 
problems. 

Secure grasping of an object by a multifin-
gered robot gripper (both the so-called “form 
closure” and “force closure” notions) has 
been investigated by many researchers [11], 
[12], [13], [14].  It should be noted that form 
closure of objects with rotational symmetry 
can not be achieved when friction is negligi-
ble.  All these works consider a predefined 
contact points. Ponce and Faverjon [15] used 
the polytope projection method to determine 
the regions of contact points that yield secure 
grasp.  In reference [16] a rule-based method 
that determined the optimum grip points is 
proposed. 
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The problem of frictional gripper with elas-
tic fingers has been investigated with classical 
methods by Ngyuen [17] and Cutkosky [18] 
and by Neural Network based methods [19].  
The unilateral contact method has been used 
in reference [11].  In this reference the grip-
per problem is formulated in compact form as 
a Linear Complementarity Problem(LCP), 
where the fingers are assumed to be flexible, 
and a piecewise linear approximation of the 
friction cone has been used. 
 
2. The problem statement 
 

The system under consideration is de-
scribed in reference to coordinate system Op 
attached to the palm Figure 1.  Friction is 
assumed to exist between the fingers and the 
body.  A unilateral contact with elastic fin-
gers is also assumed.  The equations that 
govern the Gripper-Object system and the 
constrained cost function under scope are 
shown in the following subsections. 

 
 

  
Figure 1. An object in Multifingered robot gripper 
 
 
2.1. The equilibrium equations 
 

For the object of Figure 1 all external 
forces and the contact forces should be in 
equilibrium.  The equilibrium equations of 
the system can be written in the following 

form: 
 

Gr = P,                           (1) 
 
where r = {r1, r2, …, rn}T is the vector of the 
grasping forces, ri = {rni, rti1, rti2}T where rni is 
the normal component of the contact forces 
and rti are the frictional component (tangential) 
of the grasping forces, and G∈Rm×3n is the 
equilibrium matrix, and P∈Rm is the vector of 
the external forces applied on the object.  
The superscript T denotes transpose of matrix 
or vector.  It should be noted that we choose 
to neglect kinematical conditions here al-
though we assume that the unilateral contact 
conditions are true.      

The goal of our work is mostly to find 
global optimum values of fingers forces. For 
further analysis regarding the kinematical 
conditions please see AL-Fahed Nuseirat and 
Stavroulakis [3].  The grasp forces also are 
subject to constraints introduced by fingers 
kinematics and design characteristics.  These 
constraints are defined as follows: 

 
Jh

Tr ≤ τmax 
Jh

Tr ≥ τmin                                (2)  
Here 
 

Jh = diag. [HJ1, HJ2, …, HJn]  
where τmax and τmin denote the vectors of the 
maximum and minimum torques available for 
the joints of the fingers, Jh is a 3n × nk global 
Jacobian matrix, and k is the number of joints 
in each finger.  Moreover constraint matrices 
H (with dimension equal to 3 × 6) has the fol-
lowing form  
 

H = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000100
000010
000001

 

 
Rewriting Equations 2 in compact form, we 
have 
 
JTr ≤ τ,                             (3) 
 
where 
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J = ⎥
⎦

⎤
⎢
⎣

⎡

h

h
- J
J  

τ = ⎥
⎦

⎤
⎢
⎣

⎡

min

max
-τ
τ  

 
2.2. The orthotropic friction law and the 

nonlinear optimization problem 
 

As a result of the friction of forces applied 
on the rigid body surface, tangential force 
components exist.  These components are 
assumed to satisfy a static (or holonomic ver-
sion of) Coulomb's law. For generality, the 
following orthotropic friction law is consid-
ered.  Let the principal orthotropic axes on 
the tangent plane at the i-th contact point be 
denoted by 1 and 2 and let rti1, rti2 be the com-
ponents of the friction forces along these axes.  
The corresponding friction coefficients are 
denoted by µi1 and µi2.  The requirement that 
the i-th contact force must lie within the fric-
tion cone [8], [20] reads: 
 

γi = |rni|2 - 
⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2i

2ti

2

1i

1ti rr
µµ

,     γi ≥ 0,    

i = 1, 2, …, n                        (4) 
 
where |*| denotes the norm in R3, µ is the fric-
tion coefficient and γi is the friction 
cone(domain).  If strict inequality holds in 
the previous equation there is no slip.  Oth-
erwise there exists a non-negative parameter 
λi [8] such that the slipping values are given 
by 
 

yti1 = - λi 2
1i

1tir
µ

 and yti2 = - λi 2
2i

2tir
µ

        (5) 

The isotropic friction law is a particular 
case of the above relation, and it is achieved 
when µi1 = µi2 = µi. The friction law can be 
written in compact form as follows: 
 
B(r) r ≤ 0                          (6) 

 
where 
 
B(r) = diag.[B(r1), B(r2), …, B(rn)] 

B(ri) = ⎥
⎦

⎤
⎢
⎣

⎡
− 2

2i

2ti
2
1i

1ti
ni

rrr
µµ

 

 
As a result of the previously described con-

straints, the optimal fingers forces can be ob-
tained by solving the following nonlinear pro-
gramming problem  
 

minimize 
2
1  rTr                     (7) 

subject to  
G r  = P 
J r ≤ τ 
B(r) r ≤ 0 
N r ≤ 0 

 
where N = diag [N1, N2, …, Nn] and  

Ni = [-1  0   0] for i = 1,2, …, n. 
 
3. Employing the EP to solve the gripper 

nonlinear optimization problem 
 

The EP requires an energy function to be 
considered as the objective function.  The 
inequality constraints in 7 can be transformed 
to equality by adding nonnegative vectors of 
slack variables y = [y1

2, y2
2, …, y2nk

2]T, z = [z1
2, 

z2
2, …, zn

2]T, and u = [u1
2, u2

2, …, un
2]T, as 

 

minimize 
2
1  rTr 

subject to  
G r  = P 
J r + y = τ 
B(r) r + z = 0 

N r + u = 0              (8) 
This nonlinear problem can be converted to 

the objective function (penalty function) be-
low: 
 
E(r) = k1||r||2 + k2 ||Gr - P||2 + k3 ||Jr + y - τ||2 + 

k4 ||B (r) r + z||2 + k5 ||Nr + u||2         (9) 
 
where k1, k2, k3, k4, and k5 are weighting con-
stants. 

The EP works on a population of strings 
where each string consists of sequence of ele-
ments of real values that are initially gener-
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ated from uniform random variables generator.  
Each element in the string represents a normal 
force value applied by the fingertip.  Conse-
quently, the length of the string is equal to the 
length of the normal forces vector rni (i = 1, 
2, …, n).  The EP starts with fixed popula-
tion of strings.   

However, our EP uses an expanding popu-
lation size strategy.  This is closer to what 
happens in real life.  When the population 
size reaches the maximum allowed limit, half 
of the members of the population are elimi-
nated.  The eliminated members are mainly 
the worst elements according to the objective 
function measure.  Our EP also, has an adap-
tive operator for mutation. Mutation is in-
versely proportional to the fitness of the 
string.  

Fitness of the string is inversely propor-
tional to the value of the objective function.  
The mutation is taken from a normal distribu-
tion random variable whose deviation is also 
inversely proportional to the fitness of the 
string being mutated.  The equations below 
show how fitness is calculated for every string 
in the population, and how the mutation ap-
plied on a string is also calculated: 

Fitness(string j) = 1 - 
population)}(Max{

)(

nj

nj

rE
rE (10) 

  
where Max{E(rnj)} population means maximum 
E(rnj) in current population.  The mutation 
added on string associated with rnj (jth normal 
force) is given by: 
 
Mutation(string j) = N(O, CA(strings))   (11) 
where N denotes the normal distribution func-
tion, O means zero mean, C is a weighting 
constant, and A(strings) is the standard devia-
tion of normal distribution N 
 

A(strings)= ∑
=

Pop

 Pop -Mm 

mj

M
string )Fitness(

 
 

where Fitness(string j)m is the average fitness 
of strings of generation m, m is generation 
index, Pop is the current generation index, 

and M is backward steps in generation index.  
The flowchart for the proposed EP algorithm 
is shown in Figure 2. 
 
4. Numerical examples and discussions 
 

Numerical examples that illustrate the ap-
plication of EP in finding minimal fingers 
forces grip are shown in this section.  The 
examples cover both the isotropic friction and 
the orthotropic friction cases.  The 
three-fingered grasping problem in reference 
[3] is used to demonstrate the effectiveness of 
the proposed method.  The configuration of 
the example is shown in Figure 3.  The 
points of contact with reference to the object 
coordinate system are 
 
r1 = (0.0, 0.75, 0.75), r2 = (0.75, 0.0, 0.75), r3 = 

(0.75, 0.75, 0.0) 
 
and the normals to the associated contact sur-
faces are 
 
n1 = (1.0, 0.0, 0.0), n2 = (0.0, 1.0, 0.0), n3 = (0.0, 

0.0, 1.0) 
 

The externally applied force to the object is 
assumed to be the object weight acting oppo-
site tothe direction of the z-axis and is of 
magnitude 5.  The center of mass is located 
at points rc= (0.5, 0.5, 0.5).  The friction co-
efficients are µ1 = µ2 =0.6. In Table 1 the con-
tact forces and tangential friction forces 
components are shown.  The norm of the 
normal forces obtained from EP method was 
3.9639 while in reference [3] the obtained 
norm using NCP (Nonlinear Complementarity 
Problem) approach was 4.0494.  The same 
example was solved using EP approach, but 
this time with orthotropic friction coefficients 
µ1 = (0.5, 0.6, 0.5), µ2 = (0.6, 0.5, 0.5).  The 
obtained norm of the normal forces was 
4.0489 while under the same conditions the 
obtained norm using NCP approach was 
4.1122 [3]. 
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Figure 2. The flowchart of the EP used 
 

 
 

  
Figure 3. Configuration of the first example 
 

Table 1. Normal contact and friction forces for the 
example of Figure 3 using EP 

  
Finger Contact 

force 
Tangential  
component 

Friction 
forces 

1 1.0496 1 -0.0958
  2 0.6262 
2 1.0597 1 -0.0958
  2 0.6161 
3 3.6577 1 -0.9538
  2 -0.9639

 
As a second example a cube grasped by 

four fingers [12] was solved using EP ap-
proach and LCP(Linear Complementarity 
Problem) approach (for details about this ap-
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proach see Al-Fahed and Panagiotopoulos 
[11]).  The configuration of this example is 
depicted in Figure 4.  The used friction coef-
ficients were µ1 = µ2 =0.6.  The points of 
contact with reference to the object coordinate 
system are 
 
r1 = (2.0, 0.0, 0.0), r2 = (0.0, 1.5, 0.0), 
r3 = (0.0, 0.0, 2.0), r4 = (1.2, -2.0, 0.0) 
 
and the normals to the associated contact sur-
faces are 
 
n1 = (-1.0, 0.0, 0.0), n2 = (0.0, -1.0, 0.0), 
n3 = (0.0, 0.0, -1.0), n4 = (0.0, 1.0, 0.0) 
 

With external forces P = (-0.2, -1.0, -2.0, 
-0.2, -0.3, -0.2)T.  In Tables 2 and 3, the con-
tact forces, tangential friction forces compo-
nents, obtained using LCP and EP approaches 
are shown, respectively.  The norm of nor-
mal forces, for both the LCP and the EP ap-
proaches was 1.7072 and 1.6208.  The same 
simulations for both cubes were repeated, but 
this time with orthotropic conditions.   

For the example of Figure 3 these condi-
tions were µ1 = (0.5, 0.6, 0.5), µ2 = (0.6, 0.5, 
0.5).  Table 4 shows the forces values ob-
tained using EP approach.  Tables 5 shows 
the results for the same example using LCP 
method.  The obtained norms of the normal 
contact forces from both methods were 
4.0265 and 4.0489 respectively.     

The orthotropic conditions used for the 
example of Figure 4 were µ1 = (0.5, 0.8, 0.5, 
0.8), µ2  = (0.8, 0.5, 0.8, 0.5).  Tables 6 and 7 
show forces values for both approaches LCP 
and EP.  The norms of the normal forces 
were 1.7918 and 1.7146 respectively. 
 
5. Conclusions and discussions 
 

The ultimate goal of this work is to present 
the capabilities of evolutionary based methods 
in finding most ultimate solutions for the 
gripper problem.  Although the NCP far out-
performs the other LCP (Linear Complemen-
tarity Problem) formulation methods [11], the 
EP showed superiority over the NCP in both 

isotropic and orthotropic cases. 
 
 

  
Figure 4. Configuration of the second example 
 
 
Table 2. Normal contact and friction forces for the 

example of Figure 4 using LCP method 
 
Finger Contact 

force 
Tangential 
component 

Friction 
forces 

1 0.1741 1 0.0 
  2 0.0 
2 0.9251 1 -0.2000 
  2 -0.5128 
3 1.4124 1 -0.1949 
  2 -0.2098 
4 0.1349 1 -0.0310 
  2 0.0748 

 
 
Table 3. Normal contact and friction forces for the 

example of Figure 4 using EP method 
 
Finger Contact 

force 
Tangential 
component 

Friction 
forces 

1 0.1350 1 -0.0368 
  2 -0.0751 
2 0.9267 1 -0.2098 
  2 -0.5142 
3 1.3141 1 -0.2825 
  2 -0.1892 
4 0.1526 1 0.0076 
  2 0.0965 



R. Abu-Zitar and A. M. Al-Fahed Nuseirat 
 

218  Int. J. Appl. Sci. Eng., 2004. 2, 3 
 

Table 4. Normal contact and friction forces for the 
example of Figure 3 with orthotropic con-
ditions using EP method 

 
Finger Contact 

force 
Tangential 
component 

Friction 
forces 

1 1.0899 1 -0.0570 
  2 0.6371 
2 1.0931 1 -0.0570 
  2 0.6340 
3 3.7189 1 -1.0329 
  2 -1.0360 

  
 
Table 5. Normal contact and friction forces for the 

example of Figure 3 with orthotropic con-
ditions using LCP method 

 
Finger Contact 

force 
Tangential 
component 

Friction 
forces 

1 0.9583 1 0.0 
  2 0.7083 
2 1.1400 1 0.0 
  2 0.5266 
3 3.7651 1 -0.9583 
  2 -1.1400 

 
It is worth mentioning that the EP and NCP 

methods are nonlinear techniques that do not 
depend on re-defining the problem as a linear 
approximation and then finding the solutions.   

Previous work [3], showed that linearizing 
the constraints may result in solutions that are 
quite far from the actual optimal solutions.  
Many applications are very sensitive to the 
forces applied by the fingers on the rigid body 
surface.  In these applications, 5 % variation 
or even less than that affects the balance of 
the grasped rigid body.   

The flexibility of the EP and its ability to 
"dig" deep into the search space of the forces 
enables it to come up with near optimum so-
lutions.  The continuous evolution of the 
strings pool that is always updated by muta-
tion and reproduction operators is the main 
reason for the richness of solutions.  The 
NCP is solved with PATH algorithm which is 

a deterministic nonlinear optimization algo-
rithm [21].  Deterministic techniques take 
one direction to an optimal solution.  Some-
times, due to the numerical nature of the algo-
rithm and the shape of the search space, the 
numerical algorithms settle in a region that is 
not the most optimal.  The deterministic op-
erators of that algorithm can not allow it to 
skip that region.    

The Tables from 1 - 7 show solid evidence 
of better solutions generated by EP.  We 
have to admit, however, that EP is much more 
computationally costly than the PATH algo-
rithm when solving the NCP.  There is no 
need to present figures to demonstrate that 
since the PATH algorithm is clearly much less 
costly.  This is a general problem with all 
evolutionary based methods.    

Fortunately, many gripper applications are 
off-line applications.  That is, the minimal 
gripper fingers forces are calculated only one 
time and then used the rest of the time.  If 
the external force varies from time to time, 
then we can use the EP to find some minimal 
gripper fingers forces that achieve the balance 
momentarily, and then continue running the 
EP until most minimum force is found.  The 
most minimum (optimum) forces are theo-
retically detected by calculating the standard 
deviation of the last 5 minimal gripper forces 
generated by EP.  If the standard deviation 
was equal or close to zero, EP quits, and 
string with highest fitness in the population 
gives the most minimum forces. 

Observing the figures in the Tables 1 - 7, 
we find that the minimal forces in the case of 
isotropic friction are less than those for 
orthotropic friction.  This is due to the fact 
that the average of friction coefficients values 
are less in the case of orthotropic than those 
used with isotropic case.    

Higher friction coefficients imply less fin-
gers forces are required to secure the grip.  
In all cases, it was faster and easier to gener-
ate minimal values for grips when higher 
values of friction coefficients were used.  In 
the case with the cube of the first example it 
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is shown that three fingers are enough to 
grasp the cube, and for both the isotropic and 
orthotropic cases the EP provided less mini-
mal values for the normal contact forces by 
around 2.5 %.  In the case of second exam-
ple of the cube with four fingers and for both 
isotropic and orthotropic cases, figures in the 
tables show that EP provided solutions with 
minimal normal contact forces with around 5 
% less than those provided by NCP algorithm.   

As we mentioned earlier, these savings in 
minimal forces, although relatively small, can 
be very useful from engineering point of view 
especially if the number of fingers used and 
the values of forces were large.  This, con-
sequently, means more savings in energy and 
better chance in protecting the grasped body 
from any possible damage.  Figure 5 shows 
the process of evolving solutions by EP.  To 
study this problem we picked the orthotropic 
case of the second example.    

The upper graph in the Figure shows at 
each point a minimal norm of total forces 
(normal and tangential) used by the gripper to 
grasp the object.    

The lower graph shows at each point a 
minimal norm of only normal forces used by 
the gripper to grasp the object.  Each point in 
both graphs is a possible solution.  However, 
the last point in each graph represents the 
most minimum solution.     

In general, solutions generated by EP tend 
to converge faster at the beginning toward the 
most minimal one.  As number of iterations 
increases, EP starts to move slower toward the 
most minimal point until it tends to settle.  
There, EP hardly moves anywhere else.  It is 
clear from the graphs also that there is con-
stant difference in value between the norm of 
total forces and the norm of normal forces.   

Solutions at earlier stages have the same 
difference between total and normal forces 
compared to solutions at final stages.  This 
emphasizes that this difference depends on the 
properties of the grasped body itself and not 
merely on the values of generated forces 
themselves. 

A. Analysis and proof that objective func-
tion of EP has optimal solution 

 
This appendix is concerned with the solu-

tion of the minimization problem stated by 
Equations 8.    

The lagrangian function for this problem 
can be constructed as 
 

L(r, y, z, u, λ, η, γ, ρ) =  
2
1 rT r + λT (Gr - P) 

+  
η T (Jr + y - τ) + γ T (B(r) r + z) + ρT (Nr + u)  

(12) 
 
where λ, η, γ, and ρ are vectors of Lagrangian 
multipliers. 

According to classical optimization theory 
[22], [23], the stationary points of the La-
grangian function can be found by solving the 
following Euations: 

r
L
∂
∂ = r + GT λ + JT η + (

r∂
∂ (B (r) r)) T γ + 

NTρ =0 (13) 

λ∂
∂L

 = Gr - P = 0 (14) 
 

η∂
∂L

 = Jr + y - τ = 0 (15) 
 

γ∂
∂L

 = B(r) r + z = 0 (16) 
 

y
L
∂
∂

 = 2x = 0   (17) 
 

z
L
∂
∂

 = 2v = 0 (18) 
 

u
L
∂
∂

 = 2w = 0  (19) 
 
where x = [η1 y1, η2 y2, …, η2nk y2nk]T,  v = 
[γ1 z1, γ2 z2, …, γ2nk z2nk]T, and w = [ρ1 u1, ρ2 
u2, …, ρ2nk u2nk]T. 
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Equations 14 - 19 are the necessary condi-
tions that ensure the relative minimum of our 
problem.  This relative minimum is global 
minimum since the cost function is convex 
(quadratic energy function).  Hence, Equa-
tions 8 have a minimal solution, and that so-
lution is global optimum. 

 
 
 

  
Figure 5. Minimal grasp forces for orthotropic 

case of second example 
 

 

 

Table 6. Normal contact and friction forces for the 
example of Figure 4 under orthotropic 
conditions using LCP method 

 
Finger Contact 

force 
Tangential 
component 

Friction 
forces 

1 0.1572 1 0.0 
  2 0.0 
2 0.9416 1 -0.1760 
  2 -0.4350 
3 1.5120 1 -0.1818 
  2 -0.1732 
4 0.1148 1 -0.0369 
  2 0.0530 

 
 
 
 

Table 7. Normal contact and friction forces for the 
example of Figure 4 under orthotropic 
conditions using EP method 

 
Finger Contact 

force 
Tangential 
component 

Friction 
forces 

1 0.0697  1 -0.0043 
  2 -0.0414 
2 0.8744 1 -0.1296 
  2 -0.4628 
3 1.4699 1 -0.2064 
  2 -0.2212 
4 0.0999 1 -0.0535 
  2 0.0259 

 
 
References 
 
[ 1] Bicchi, A. 2000. Hands for Dexterous 

Manipulation and Robust Grasping: A 
Difficult Road Toward Simplicity. IEEE 
Trans., on Robotics and Automation, 16, 
6: 652-662. 

[ 2] Han, L., J. C. Trinkle, and Z. X. Li. 2000. 
Grasp Analysis as Linear Matrix Ine-
quality Problems. IEEE Trans., on Ro-
botics and Automation, 16, 6: 663-674. 

[ 3] Al-Fahed Nuseirat, A. M. and G. E. 
Stavroulakis. 2000. A Complementarity 
Problem Formulation of the Frictional 
Grasping Problem. Computer Methods in 
Applied Mechanics and Engineering, 
190: 941-952. 

[ 4] Bicchi, A. 1995. On the Closure Proper-
ties of Robotic Grasping. International 
Journal of Robotics Research, 14, 4: 
319-334. 

[ 5] Al-Fahed, A. M., G. E. Stavroulakis, and 
P. D. Panagiotopoulos. 1992. A Linear 
Complementarity Approach to the Fric-
tionless Gripper Problem. International 
Journal of Robotics Research, 11, 2: 
112-122. 

[ 6] Abu-Zitar, R. and A. M. Al-Fahed 
Nuseirat. 2000. A Neural Network Ap-
proach to the Frictionless Gripper Prob-



An Evolutionary Based Method for Solving the Nonlinear Gripper Problem 
 

Int. J. Appl. Sci. Eng., 2004. 2, 3  221 
 

lem. Journal of Intelligent Robot Systems, 
29: 27 - 45. 

[ 7] Fogel, D. B. 1991. “System Identification 
through Simulated Evolution: A Machine 
Learning Approach to Modelling”. (MA: 
Ginn Press. Needham). 

[ 8] Panagiotopoulos, P. D. 1985. Inequality 
Pro- blem in Mechanics and Applica-
tions. Convex and Nonconvex Energy 
Functions, (Birkhäuser, Boston--Basel). 

[ 9] Oden, J. T. and J. A. C. Martins. 1985. 
Models and Computational Methods for 
Dynamics Friction Phenomena. Com-
puter Methods in Applied Mechanics, 50: 
67-76. 

[10] Kwak, B. M. and S. S. Lee. 1991. A 
Complementary Problem Formulation of 
Three Dimensional Frictional Contact. 
ASME Journal of Applied Mechanics, 58, 
137: 134-140. 

[11] Al-Fahed, A. M. and P. D. Panagio-
topoulos. 1992. Fictional Multifingered 
Robot Gripper: New Type of Implemen-
tation. Computer and Structures, 45, 4: 
555-562.  

[12] Liu, Y. -H. 1999. ualitative Test and 
Force Optimization of 3-D Frictional 
Form-Closure Grasps Using Linear Pro-
gramming. IEEE Transactions on Ro-
botics and Automation, 15, 1: 163-173. 

[13] Markenscoff, X. L. Ni, and Ch. H. Pa-
padimitriou. 1990. The Geometry of 
Form Closure. International Journal of 
Robotics Research, 9, 1: 61-74. 

[14] Salisbury, J. K. and B. Roth. 1983. Ki-
nematic and Force Analysis of Articu-
lated Mechanical Hands. Journal of 
Mechanisms Transmission and Automa- 
tion in Design, 105: 35-41. 

[15] Ponce, J. and B. Faverjon. 1995. On 
Computing Three-Finger Force-Closure 
of Polygonal Objects. IEEE Transactions 
on Robot Automat, 11, 6: 868 - 881. 

[16] Abu-Zitar, R. and A. M. Al-Fahed 
Nuseirat. 2001. A Theoretical Approach 
of an Intelligent Robot Gripper to Grasp 
Polygon Shaped Objects. Journal of In-
telligent Robot Systems, 31: 397 - 422. 

[17] Nguyen, V -D. 1989. Constricting Stable 
Grasps. IEEE Robotics and Automation 
Conference, III: 1368-1373. 

[18] Cutkosky, M. R. 1989. Computing and 
Controlling the Compliance of a Robotic 
Hand, IEEE Transactions on Robotics 
and Automation, 5, 2: 151-165. 

[19] Al-Fahed Nuseirat, A. M. and R. 
Abu-Zitar, 2001. Neural Network Ap-
proach to Firm Grip in the Presence of 
Small Slips, Journal of Intelligent Robot 
Systems, 18, 6: 305-315. 

[20] Michalowski, R. and Z. Mróz. 1978. 
Associated and non--associated sliding 
rules in contact problems, Archives of 
Mechanics, 30, 3: 259-276. 

[21] Ferris, M. C. M. Mensier, and J. J. More. 
1997. “NEOS and CONDOR: Solving 
Optimization Problems over the Inter-
net”, Mathematical Technical Report, 06 
- 08, Department of Computer Science, 
University of Wisconsin Revised. 

[22] Luenberger, D. G. 1984. Linear and 
Nonlinear Programming Reading, MA: 
Addison-Wesley. 

[23] Murty, K. 1988. Linear Complementarity: 
Linear and Nonlinear Programming,  
Heldermann Verlag, Berli. 

 

 




