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1. Introduction 
 

Limit cycles of plane autonomous differen-
tial systems appeared in the very famous pa-
per “ Mémoire sur les courbes définies par 
une é quation diff é rentielle” of Poincar é 
(1881, 1886). In the 1930s, van der Pol and 
Andronov showed that the closed orbit in the 
phase plane of a self-sustained oscillation oc-
curring in a vacuum tube circuit was a limit 
cycle as considered by Poincaré. After that, 
the existence, nonexistence, uniqueness and 
other properties of limit cycles have been 
studied extensively by mathematicians and 
scientists (see, for example, Ye et al. [17]). 

The van der Pol equation 
2

2
2 ( 1) 0d x dxx x

dt dt
ε+ − + =  (1) 

can be generalized to the Liénard equation 

2

2 ( ) ( ) 0.d x dxf x g x
dt dt

+ + =  (2) 

Let 
0 0

( ) ( ) , ( ) ( ) .
x x

G x g x dx F x f x dx= =∫ ∫   

By the Liénard transformation, the equation 
is equivalent to the following systems: 

 

( ), ( )dx dyy F x g x
dt dt

= − = −  (3) 

or 

( ), ( ),dx dyy F x g x
dt dt

= − − =  (4) 

 
(see, for example, Arrowsmith and Place [1], 
or Ye et al. [17]).   

The existence and uniqueness of limit 
cycles of the Liénard equation have been 
studied by many authors.  There are, for 
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example, Liénard [11], Dragiliëv [5], Filippov 
[6], Sanone [14], Levinson and Smith [10], 
Rytchkov [13], Zhang [19,20], and Zhon [21].  
The Liénard systems (3) and (4) can be gen-
eralized to the following nonlinear oscillating 
systems: 

( ) ( ), ( )dx dyh y F x g x
dt dt

= − = −  (5) 

and 

( ) ( ), ( ).dx dyh y F x g x
dt dt

= − − =  (6) 

 
Notice that, in general, the systems (5) and 

(6) are not equivalent to each other if ( )h y is 
not odd.   

Zhang [19] obtained conditions for the 
uniqueness of limit cycles in the system (6) by 
the method of comparison.  Later, Cherkas 
and Zhilevich [2] relaxed her conditions.  

Zhang’s theorem has been widely employed 
in the study of quadratic differential systems 
and ecological systems (see, for example, Ye 
et al. (1986), Zhang, et al. (1985), Kuang and 
Freedman (1988), Huang and Merrill (1989), 
Zhuo, et al. (1999), Liu, et al. (2000), Zheng, 
et al. (2001), Wo, et al. (2003), Dou, et al. 
(2003), Yan, et al. (2004), and Zhu (2004). 

Since the existence of limit cycles in the 
system (6) has not been studied in Zhang 
[19,20], and Cherkas and Zhilevich [2], every 
time the theorem is used, the existence has to 
be discussed separately.    

In this paper, we shall prove six theorems 
for the existence of limit cycles in the oscil-
lating system (6), and discuss some new con-
ditions that guarantee the uniqueness of limit 
cycles as well.  Our results are different from 
those obtained by Zhang [19,20] and Cherkas 
and Zhilevich [2].  For example, the condi-
tion that '( )

( ) 0
( )

d F x
dx g x

≥  is no longer needed. 

Several examples are given to illustrate that 
our results can be easily employed in practice.  

The general nonlinear oscillating systems 

are now often used in the studies of quadratic 
differential equations and ecological systems 
(see, Ye et al. [17], Huang [7], Kuang and 
Freedman [9], Huang and Merrill [8], Zhuo et 
al. [23], Liu et al. [12], Zheng et al. [18], Wo 
et al. [15], Dou et al. [4], Yan et al. [16], and 
Zhu [22]).  However, in most of the recent 
papers [4,12,15,16,18,22,23], the authors just 
deal with a particular system itself without a 
general consideration of the theory of differ-
ential equations.  So many similar proofs are 
repeating again and again for some particular 
systems.  The system studied in this paper is 
quite general in mathematics, and many pre-
vious results can be easily derived by our 
theorems as special cases.  And, of course, 
by using these theorems, one can produce new 
results in many different areas in addition to 
systems in the physical oscillations.   

In our discussion, we assume that all the 
function in (6) are continuous and satisfy the 
uniqueness condition of solutions for 
x < +∞  and y < +∞ . 

We also assume that: 
 

(A1) h (0) = 0, h(y) is increasing, 
( )h ±∞ = +∞ ; and y < +∞  when 0x ≠ , 

( ) 0xF x <  for x  sufficiently small.  
 
(A2) ±∞→xlim ( ) .sgn)()( +∞=+ xxFxG  
 
(A3) a). F(x) is bounded below for 0x >  if  

+∞→xlim +∞<)(xF ; 
  

b). F(x) is bounded below for 0x < if 
−∞>−∞→ )(lim xFx . 

 
Notice that, in this paper, lim x a→ stands for 

the upper limit as x →±∞ , while lim x→±∞ , 
the lower limit as x →±∞ . 
 
2. Existence of limit cycles 
 

In the following discussion, let  
0 0 0 0:{ ( ), ( ) ( ) , ( ) }x x t y x t x t x y t yΓ = = = =  

be the trajectory of the system (6) passing 
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0 0( , )x y  at 0t t= .  We first prove  
 

LEMMA 1. If (A1) is satisfied, then  
 

lim ( ) lim ( ) ,t ty t x t→+∞ →+∞= +∞⇒ = +∞   (i) 
 

lim ( ) lim ( ) .t ty t x t→+∞ →+∞= −∞⇒ = −∞   (ii) 
 

PROOF: Assume that (i) is not true, then 
there is a solution for which  

 

,)(lim +∞=+∞→ tyt  but lim ( ) .t x t→+∞ < +∞   (7) 
 

Thus there exists an 0a >  such that 
atx ≤)(  for all 0tt > . 

 
Let  

0 0max ( ) ,x aM g x≤ ≤=  and 

0 0max ( ) ,x aF F x≤ ≤=   

and 1h−  be the inverse function of h. 
 
Since ( )y t  is increasing on the right half 

plane, we can choose t1 and t2, such that 
 

1
1 1 0( ) 0, ( ) (2 ),x t y t h F−> =  

1 0
2 2 0

0

( ) 0, ( ) (2 ) M ax t y t h F
F

−> > + . 

Consider the integral along the trajectory 
Γ ,  we have  

 
2

1

( )

2 1 ( )

( )( ) ( )
( ) ( )

x t

x t

g xy t y t dx
h y F x

= +
− −∫

2

1

( )1
0 ( )

( )
(2 )

( ) ( )
x t

x t

g x
h F dx

h y F x
−≤ +

−∫  (8) 

1 0
0

0

(2 ) .M ah F
F

−≤ +  

 
This is a designed contradiction to 

1 0
2 0

0

( ) (2 ) M ay t h F
F

−> + . Hence, (i) of Lemma 

1 is valid. Similarly, we can prove (ii) of 
Lemma 1. 

 

LEMMA 2. If (A1), (A2) are satisfied, and  
if (A3 – a), then 
 

)(lim txt +∞→ lim ( )t y t→+∞= +∞⇒ = −∞ ; 
 
if (A3 – b ), then  
 

)(lim txt +∞→ lim ( )t y t→+∞= −∞⇒ = +∞ . 
 

PROOF: we only prove (iii). Assume that 
there is a solution for which 

 

)(lim txt +∞→ = ∞+  but lim ( ) ,t y t→+∞ > −∞  (9) 
 

Then, we can find a constant 0b <  such 
that ( ) max{ ( ), }y t h b b= for all 0t t≥ .  If 

lim ( ) ,x F x→+∞ = +∞  then there exists an 

1 0x x>  such that 1( ) ( ).F x h b> −  The con-
tinuity of ( )F x implies that there exists 
an 0ε > such that ( ) ( )F x h b> − for 

1 1( , ).x x xε ε∈ − +  
Thus,  

( ) ( ) 0,
dx

h y F x
dt

= − − <   

which means that Γ can not cross the line 

1x x ε= +  if it enters the strip 1x x−  <ε . 
But it is impossible because of the hy-

pothesis that lim ( )t x t→+∞  = +∞ . Hence, (9) 
is incorrect.   

 
If lim ( )t F t→+∞ < +∞ , by 3( ), ( )A a F x− is 

bounded below, and then there exists an 0f   

(> 0) such that 1
0( ) ( )F x h f−<  for all 0xx> .  

The curve ( ) ( ) 0h y F x− − =  passes through 
the origin, and ( )x t increases monotonically 
above the curve.  By the phase portrait 
analysis, the trajectory Γ either revolves 
around the origin or keeps traveling above 
with ( )x t  increasing.     

In both cases, we can find a piece of trajec-
tory such that 1 0( ) ( , .)x t c c x c const= > =  

 



Xuncheng Huang 
 

298  Int. J. Appl. Sci. Eng., 2004. 2, 3 

1 2( ( )) ( ( )) 0, ( ),h y t F x t t t t− − ≥ ≤ ≤  (10) 
 
where 2( )x t  is so big that  
 

2

1

( ) 1 2
0( )

( ) ( ( ) ( ))
x t

x t
g x dx h b h f−> − +∫ . (11) 

 
Now, the integral along Γ  from t1 to t2 

leads to 
 

2

1

( )

2 1 ( )

( )( ) ( )
( ) ( )

x t

x t

g xy t y t dx
h y F x

= +
− −∫  

2

1

( )

1( )
0

( )( )
( ) ( )

x t

x t

g xh b dx
h b h f−> +

− +∫  (12) 

1
0( )h f−> . 

 
Since 1 1

0( ) ( ( ))h f h F x− −>  for 0x x> , then 
1

2 2( ) ( ( ( ))),y t h F x t−> −  which contradicts to 
(10).  Therefore, (iii) is valid.  

Similarly, we can prove (iv).  From Lem-
mas 1 and 2, one can see that every trajectory 
of the system (6) revolves around the origin. 

Thus, we have  
 
LEMMA 3.  If (A1), (A2) and (A3-a) or  

(A3-b) are satisfied, then that one of ( )x t  and 
( )y t is bounded implies the trajectory Γ is 

bounded. 
 

Now, we are in the position to prove the 
existence theorems. 

 
THEOTEM 4.  If ( A1 ), ( A2 ), and (A3 – a) 

are satisfied, and if there exists ( ),M F x> −  
( 0)x >  such that 

 

(i)   
0

( )
( )

g x dx
M F x

µ
+∞

≤ < +∞
+∫ , 

(ii)   ( )h y y≥  for My ≥ ; 
 
then the system (6) has limit cycles. 

PROOF: Consider the auxiliary system 
 

( ) ( ), ( )dx dyh y F x g x
dt dt

= + = −  (13) 

 
and its trajectory 

0 0

:{ ( ), ( ) (0) 0, (0)

, , 0}.

x x t y y t x y

y y M C Cµ

−Γ = = =

= = + + >
 

We prove that  
 
lim ( )xτ τ−+∞ = +∞ . (14) 

  
By (ii), when y M C≥ + , 
 

( ) ( ) ( 0)h y F x C x+ ≥ ≥ . (15) 
 

Clearly, when τ  has a small increase from 
0, ( )x τ  increase and ( )y τ  decrease.  We 
claim that, 

 
( ) , 0y M Cτ τ≥ + ∀ > . (16) 

 
 
 

  
Figure 1. + −Γ = Γ ∩Γ  and −Γ  is bounded 

above in y 
   

Assume that (16) is not true. Then there 
exists 'τ  such that ( ')y τ M C< + .  By (i), 
and ( ) ( ) 0h y F x+ ≥  for y M≥ , 
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( ')

0

( )( ')
( ) ( )

x g xy dx
h y F x

τ
τ −

=
+∫  

0

( )
( )

g xM C dx
M F x

µ
+∞

≥ + + −
+∫  (17) 

M C≥ + . 
 

This contradiction shows that (16) is valid. 
Hence, (15) and then (14) are true.  Since 

−Γ  is the negative semi-trajectory of τ  of 
(6), −Γ  is bounded above in y.  That is, 

0( )y yτ ≤  whenever ( )y τ −∈Γ  (see Figure 
1). 

 
Let +Γ  be the positive semi-trajectory of 

Γ . Then ( )y t +∈Γ  increases only when 
( ) 0x t > .  Since +Γ  does not intersect with 
−Γ , so ( )y t  has a upper bound.  By Lemma 

3, +Γ  is bounded.  The origin (0, 0) is the 
only equilibrium of (6 ) and it is unstable.  
So the ω -limit set of +Γ  is a limit cycle 
(see Cronin [3]).  Similarly, we can prove  

 
THEORIM 5.  If 1 2(A ), (A ) and (A3 - b) 

are satisfied, and if there exists ( ),M F X>  
( 0)x >  such that 
 

(i)   
0

( )
( )

g x dx
M F x

µ
−∞

≤ < +∞
−∫ ; 

 
(ii)   yyh ≤)(  for My −≤ . 
 
then the system (6) has limit cycles.   
 

Let us come back to the proof of Theorem 4.  
The conditions (i) and (ii) ensure that the tra-
jectory −Γ  of the system (15) approaches to 
the positive infinity.  Then +Γ  can not cross 
the y-axis  from left to right above 0y . 

Therefore the outer boundary of the Ben-
dixson region is granted.  Actually, these 
conditions can be relaxed. 

 
THEOREM 6.  If (A1), (A2) and (A3 - a), 

and if there exists M such that 

 ( ), ( 0),M F x x> − >   and 

   
0

( )
( )

g x dx
M F x

+∞
< +∞

+∫ ;  

then the system ( 6 ) has limit cycles.   
PROOF: Since the origin (0,0)  is the only 

equilibrium that is unstable, we just need to 
prove that ( 0)tΓ >  is bounded.  By 
Lemma 3, it is equivalent to show that ( )y t  
has an upper bound.  Otherwise, suppose 
lim ( )t y t→+∞ = +∞ .  

Since ( )y t only increases when 0x > , 
there exist 0', ''t t t>  such that ( ')y t  is suf-
ficiently larger that ( )h y M>  when y 
> ( ')y t , and     

0

( )( '') ( ') ,
( )

g xy t y t dx
M F x

+∞
> +

+∫  

for ( ) 0, ' ''x t t t t> ≤ ≤  

  Because y(t) increases while x(t) de-
creases for [ ]', '' ,t t t∈  

 
( '')

( ')

( )( '') ( ')
( ) ( )

x t

x t

g xy t y t dx
h y F x

= +
− −∫  

( ')

( '')

( )( ')
( )

x t

x t

g xy t dx
M F x

≤ +
+∫

 
0

( )( ') .
( )

g xy t dx
M F x

+∞
≤ +

+∫  

 

The designed contradiction shows that 
( ) ( 0)y t t >  has an upper bound. This com-

pletes the proof of Theorem 6. 
Similarly, we have  
 
THEOREM 7.  If (A1), (A2) and (A3 - b), 

and if there exists M such that ( )M F x> , 

( 0)x < , and 
0

( )
( )

g x dx
M F x

−∞
< +∞

−∫ , then 

the system (6 ) has limit cycles.  
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THEOREM 8.  If (A1), and (i), (ii) in 
Theorem 4 are satisfied, and if  
(iii)  there exists 1 0x <  such that  

1( ) ( );F x h M C µ− ≥ + +   
(iv)  lim ( ) , ( )x F x F x→−∞ = +∞  is bounded be-
low for x > 0, then the system ( 6 ) has limit 
cycles. 

PROOF: Consider the positive and negative 

semi-trajectories and+ −Γ Γ  in the proof of 

Theorem 4 (see Fig. 1 ).   By (A1), (i), (ii) 
and F(x) is bounded below for 0,x >  

( )x t −∈Γ goes to +∞  as t →−∞ .    
That is, −Γ  has the same property as the 

one in the proof of Theorem 4.  Thus, if we 
can show that +Γ comes back to the positive 
y-axis, the proof is done.  As shown in Fig-
ure 1 the curve ( )h y− ( ) 0F x− =  and the 
y-axis divide the xy-plane into four zones:  

 

Zone : {( , ) 0, ( ) ( ) 0}I x y x h y F x> − − < , 

Zone : {( , ) 0, ( ) ( ) 0}II x y x h y F x< − − < , 

Zone :{( , ) 0, ( ) ( ) 0}III x y x h y F x< − − > , 

Zone :{( , ) 0, ( ) ( ) 0}IV x y x h y F x> − − > . 
 

When t increases, +Γ goes to Zone II in 
which both ( ) and ( )x t y t  decrease. 
 Let the line x = x1 intersect the curve 

( ) ( ) 0h y F x− − =  at 1 1( , )x y .  By (iii),  

1 1( ) ( ) ( )h y F x h M C µ= − ≥ + + . 
Therefore, y1 > y0 and +Γ  must cross the 

curve ( ) ( ) 0h y F x− − =  into Zone III.  In 
Zone III, ( )x t  increases and ( )y t  decreases, 
by the facts that ( )x t  is bounded in Zone III. 
(0,0) is unstable and 

 
( )

0 (0)
( ) ( ) ( ( )) , ( )

x t

x
y t y t g x t dt y t= + ∫   

can neither approach to −∞ nor to (0,0) . 
It must cross the negative y-axis into Zone 

IV.  The condition (iv) guarantees that 
+Γ enters Zone I, and finally comes back to 

the positive y-axis since it cannot touch −Γ . 
 
Similarly, we have  
THEOREM 9.  If (A1) and (i), (ii) in 

Theorem 5 are satisfied, and if  
 
(iii) there exists x2 > 0 such that  

2( ) ( ( )),F x h M C µ− ≤ − + +  

(iv)  lim ( ) ( )x F x F x→−∞ = −∞ is bounded 
     above, 
  
(v)  for all x < 0;then the system ( 6 ) has  

limit cycles. 
 
3. Uniqueness of limit cycles 
 

The proof of the uniqueness theorem of the 
limit cycles needs the following modified as-
sumption: 

 
(A1) '  (0) 0, ( )h h y=  is increasing, 

( ) ;h ±∞ = +∞  ( ) 0xg x > when 
0≠x ; and there exist 0a b< < , N  

sufficiently large, such that x F( x ) < 0 
for 0),,( ≠∈ xbax , and ( ) 0,xF x <  
F(x) is increasing for 

( , ) and ( , )x N a x b N∈ − ∈ .   
 
 Obviously,  (A1) ' ⊃ (A1). That is, if (A1) '    
is satisfied then so is (A1).  For  conveience,  
we use the notation ( A1 ) instead of (A) '  in 
the following discussion. 

 
Let  

0 0
( ) ( ) , ( ) ( ) ,

and
( ) ( ).

x y
G x g x dx H y h y dy

G x H yλ

= =

= +

∫ ∫
 

 
THEOREM 10. If one of the following condi-
tions is satisfied: 
 
(i) ( ) ( )G b G a= ; 
 
(ii) ( ) ( )G b G a>  and there exist ' ( ,0),x a∈  
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' 0y <  such that  
( ') ( '), ( ') ( );h y F x H y G b≥ − ≥  

 
(iii) ( ) ( )G b G a<  and there exist '' (0, ),x b∈      

'' 0y >  such that 
( '') ( ''), ( '') ( );h y F x H y G a≤ − ≥  

 
(iv) there exist ' ( ,0), ' 0x a y∈ < such that 

( ') ( '), ( ') ( );h y F x H y G b≥ − ≥ and 
'' (0, ), '' 0x b y∈ > such that 
( '') ( ''), ( '') ( );h y F x H y G a≤ − ≥   

 
then in the system (6) there is at most one 
limit cycle. 
 
PROOF: Let 1 min{ : ( , ) },x x x y= ∈Γ and 

max{ : ( , ) }rx x x y= ∈Γ , and Γ  a limit cycle 
of (6).  We first show that  
 
CLAIM A. 

1 rx a b x< < < , (18) 
 
that is, all the limit cycles contain the line 
segment [a, b] on x-axis. 

If not, assume that  
 
CASE 1. 1 .ra x x b< < <  
Then differentiating λ along the system (6) 

results in  
 

dyyhdxxGd )()(' +=λ = ( )F x dy− 0≥ , 
since ( ) 0, 0 for ( , ),F x dy x a b> < ∈ and 

( ) 0, 0 for (0, )F x dy x b< > ∈ . 
 

Notice that the equality is valid only when 
0≠x , we have 

 

0.dλ
Γ

>∫  (19) 

 
This is impossible because Γ is a close 

curve.   
 
CASE 2.  1 .rx a x b< < <    
In that case Γ crosses the positive 

x-axis,say, at ( ,0), (0 ),p pP x x b< < and the 

ray ,x a=  0y <  at ' ''( , ), ( 0).p pP a y y <   
 

Since 
'

0,
p

p
dλ >∫  ( ') ( );P Pλ λ<  that is  

'( ) ( ) ( ) ( )p pG a H y G x G b+ < < .        (20) 

By the fact that '( ) 0.pH y >  (20) is im-
possible under the conditions (i) and (iii).  
We also can prove that Case 2 in not true un-
der the trajectory −Γ  passing the point B(b, 
0).   

When t decreases, −Γ crosses the negative 
y-axis at ''(0, )BB y . 

 

Since 0d
BB

λ <
′

. ( ') ( ),B Bλ λ<  then  

'( ) ( )BH y G b<       (21) 
 
Moreover, consider the trajectory +Γ pass-

ing the point ( ', ')C x y  (see Figure 2). When 
t increases, +Γ crosses the negative y-axis at 

''(0, )CC y .   
 

  

Figure 2. +Γ can not cross 'BB  
 

 
Since y is decreasing when '0, '.Cx y y< <   

From (ii) or (iv) and (21 ), 
 



Xuncheng Huang 
 

302  Int. J. Appl. Sci. Eng., 2004. 2, 3 

' '( ) ( ') ( ) ( )C BH y H y G b H y> ≥ > ,  

which implies that ' 'C By y< . 
 

Because of the uniqueness of solutions, 
+Γ can not cross 'BB   and it must intersect 

with the line x = b as well.  This designed 
contradiction completes the proof of Case 2. 

 
CASE 3. rxbxa <<< 1 . 

In the case that Γ crosses the negative x-axis, 
say, at ( ,0), 0,Q QQ x a x< <  and the ray 

 , 0x b y= >  at ' ''( , ), 0.Q QQ b y y >  Since 
 

'
0

QQ
dλ < , ( ') ( )Q Qλ λ< , and conse-

quently, 
 

'( ) ( ) ( ) ( ).Q QG b H y G x G a+ < <  (22) 
 

Since '( ) 0QH y > , (22) is a contradiction to 
the conditions (i) and (ii).  Now we consider 
the trajectory −Γ passing ( ,0)A a . When t 
decreases, −Γ crosses the positive y-axis at 

''(0, )AA y .  Also, 0
AA

dλ <  implies that 
 

( ') ( )A Aλ λ< .  Hence  
 

'( ) ( ).AH y G a<  (23) 
 

The trajectory +Γ passing ( '', '')D x y will 
intersect with y-axis at ''(0, ).DD y   Since y is 
increasing when 0x > , ' ''Dy y> .  There-
fore, by the conditions (iii) or (iv), and (23), 
 

' '( ) ( '') ( ) ( )D AH y H y G a H y> ≥ > . (24) 
 

Thus ' 'D Ay y> .  The uniqueness of solu-

tions implies that +Γ can not cross 'AA  and 
hence intersect with the line x a= .  Conse-
quently, Γ intersects with x a=  as well. 
This contradiction completes the proof of 
Case 3, and hence of Claim A.   

We are now in a position to prove that the 

limit cycle is unique.  If not, suppose there 
are two limit cycles Γ and 'Γ  and 'Γ ⊂ Γ  
(see Figure 3).  Let us compute the integrals 

dλΓ∫  and 'dλΓ∫ . 
As shown in Figure 3,  

 
EF FG GH HEΓ = ∪ ∪ ∪ , and  

' " " " ' ' ' ' "

" " " ' ' ' ' "

E F F F F G G G

G H H H H E E E

Γ = ∪ ∪ ∪ ∪

∪ ∪ ∪
 

 
 

  
Figure 3. 'd dλ λ>∫ ∫Γ Γ . 

 
 
Since 'Γ⊂Γ , for the same y, let  

 

1 2( , ) , ( , ) ',x y x y∈Γ ∈Γ   we have 

1 2x x< . (25) 
 

By the fact that ( ) 0, 0F x dy> < , and 
( )F x  is decreasing for ),,( aNx −∈  and 

(25), 

" " " "
( )

E F E F
d F x dyλ = −∫ ∫   

( )
EF

F x dy> −∫     (26) 

Γ Γ’ 
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.
EF

dλ= ∫   

Similarly,  

" "
.

G H GH
d dλ λ>∫ ∫  (27) 

 
Also, since ( ) ( ) 0g x F x < for 0,x ≠  

( , ), 0, ( ) ( ) 0,x a b dx h y F x∈ < − − <  and the 
fact that ( )h y  is increasing and for the same 
x, the y coordinate in 'Γ  is bigger than the 
one in Γ . 

 

' ' ' '

( ) ( )
( ) ( )
( ) ( )

( ) ( )

.

H E H E

HE

HE

F x g xd dx
h y F x
F x g x dx

h y F x

d

λ

λ

−
=

− −
−

>
− −

=

∫ ∫

∫

∫

       (28)

  
Similarly,  

' 'F G FG
d dλ λ>∫ ∫ .  (29) 

 
Considering the fact that integrals of λd  

along with ' '', '' ', ' "E E F F G G , and ' "H H  
are all positive, we have 

 

'
d dλ λ

Γ Γ
>∫ ∫ . (30) 

 
This is impossible because both 

'
dλ

Γ∫  

and dλ
Γ∫  are zeroes.  This proves that 

there is at most one limit cycle in the system 
(6) if one of the conditions of Theorem 4 is 
satisfied.  By the fact that (0, 0) is an unsta-
ble equilibrium, the limit cycle is stable if it 
exists.  The proof of Theorem 10 is com-
plete. 

When ( )h y y= , the system (6) is reduced 
to the Liénard system (3) or (4).  The above 
results can be summarized as  

 
THEOREM 11.  If 

 
(i) ( ) 0, ( 0)xg x x> ≠ ; and there exist a < 0 < 

b, N  sufficiently large, such that  
0)( <xxF  for ( , ), 0x a b x∈ ≠ , and 

( ) 0, ( )xF x F x<  is increasing for  
),( aNx −∈  and );,( Nbx∈  

 
(ii) one of the following holds 
1). ( )lim ( ) ( )sgnx G x F x x→±∞ + = ;+∞  

( )F x  is bounded below for x > 0 if 
( )lim ( ) ( )sgnx G x F x x→+∞ + < +∞ ; and  

there exists M > -F(x), (x > 0 ) such that 

0

( )
( )

g x dx
M F x

+∞
< +∞

+∫ ; 
 

2). ( )lim ( ) ( )sgn ;x G x F x x→±∞ + = +∞  
 ( )F x  is bounder above for x < 0 if 
 ( )lim ( ) ( )sgn ;x G x F x x→+∞ + > −∞  and 
 there exists ( ),M F x>  ( 0)x > such that  

0

( )
( )

g x dx
M F x

−∞
< +∞

−∫ ; 
 
3). lim ( )x F x→+∞ = +∞ ; there exist 

( )M F x> − , ( 0)x > , such that 

0

( )
( )

g x dx
M F x

µ
+∞

< < +∞
+∫  and 1 0x <  

such that 1( ) ( ), 0;F x M C Cµ≤ − + + >   
 

4). lim ( )x F x→−∞ = −∞ ; there exist 
( )M F x> , (x < 0), such that 

0

( )
( )

g x dx
M F x

µ
−∞

< < +∞
−∫  

   and 2 0x > such that  

2( ) , 0F x M C Cµ≥ + + > ; 
 

(ii) one of the following holds 
1). ( ) ( )G b G a= ; 
2). ( ) ( )G b G a> and there exists 

' ( ,0)x a∈  such that )(2)'( bGxF ≥ ; 
3). ( ) ( )G b G a< and there exists  

'' ( , )x o b∈ such that ( '') 2 ( )F x G a≤ − ; 
4). there exists )0,(' ax∈  and 
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'' ( , )x o b∈ such that ( ') 2 ( )F x G b≥  and 

( '') 2 ( )F x G a≤ − ; 
then the system (3) has a unique limit cycle. 
 
4. Examples 
 

Let us use some examples to illustrate our 
results. 

 
EXAMPLE 1. Consider the system 
 

( )

2

dx y F x
dt
dy x
dt

= − −

=
 (31) 

where  
 

2

4

( 1) 0,
( )

( 1) 0.

x x if x
F x

x x if x

⎧ − ≥⎪= ⎨ + <⎪⎩

 

 
It is not difficult to see that the conditions 

(i), (ii)–1) (M = 1), and (iii)–1) (a = – 1, b = 1) 
in Theorem 11 are satisfied, and hence there is 
a unique limit cycle in (31). 

However, 
 

3 2'( ) 5 2 ,
( ) 2

F x x x
g x

= +  if x < 0. (32) 

 
Therefore '( )

( )
F x
g x

 is decreasing if  8
15

x− <  

0< , and hence Zhang’s theorem [19], [20] 
and Cherkas and Zhilevich’s theorem [2] are 
not applicable in the system (31). 

 
EXAMPLE 2. 
 

2

2

4

3 1( )( 1)
1 3
2 .

1

dx y x x x
dy y
dy x
dt x

= − − + −
+

=
+

 (33) 

 
The system (33) has a unique limit cycle 

because the conditions of Theorem 6, and (ii) 
of Theorem 10, with 

 1 1, ' , ' 1
3 4

a x b y= − = − = =                 

are satisfied.  But ( ) ,
2

G π
±∞ = < +∞  and 

hence Zhang’s theorem [19], [20] and Cherkas 
and Zhilevich’s theorem [2] can not be em-
ployed either. 
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