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Abstract: Adaptive equalizers are used in digital communication system receivers to mitigate
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channel equalization. The LS-SVM involves equality instead of inequality constraints and works
with a least squares cost function. Since the complexity and computational time of a LS-SVM
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1. Introduction

In digital communication systems, nonlin-
ear distortion is a major factor that limits the
performance of a communication system.
Channel inter-symbol interference (ISI), addi-
tive white Gaussian noise (AWGN) [1-2] and
effects of time-varying channels [3] can se-
verely corrupt transmitted symbols. Never-
theless, adaptive equalizers can be used in
digital communication system receivers to
mitigate the effects of non-ideal channel
characteristics and to obtain reliable data
transmission. The process of equalization is
well-known for being able to reconstruct
transmitted symbols based on observations of

the corrupted channel. Equalization is treated
as a natural inverse filter, and the equalizer
forms an approximation of the inverse of the
distorting channel. Due to noise enhancement,
accurate approximation and better equaliza-
tion performance can not be achieved.

Among all the different techniques, the
methods that are based on multilayer percep-
tron (MLP) and wavelet neural networks
(WNNs) have become popular research topics
in recent years [4-5]. Gibson et al. [6] pro-
posed an adaptive equalizer based on MLPs.
The MLP structure is less sensitive to learning
gain variation and capable of converging to a
lower mean square error. Despite providing
considerable performance improvements,
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MLP equalizers are still problematic because
of their convergence performance and com-
plex structure.

Wavelet neural networks (WNNs) origi-
nates from wavelet decomposition in signal
processing [7-8]. WNNs combine the capabil-
ity of artificial neural networks to learn from
processes with the capability of wavelet de-
composition. Wavelets are a class of basic
elements with oscillations of effectively finite
duration that makes them look like “little 
waves.” The self-similar, multiple resolution
nature of wavelets offers a natural framework.
The main characteristics of WNNs are their
capability of incorporating the time-frequency
localization properties of wavelets and with
the learning abilities of general neural net-
works; hence, a WNN is usually applied to
the identification and control of dynamic sys-
tems and complex nonlinear system model-
ing.

Support vector machines (SVM) [9] and
kernel methods [10-12] have become more
and more spectacular. The SVM has good
performance and is used widely in various
applications, such as image recognition [15],
DNA data analysis [16], classification [17],
and control problems [18]. In the SVM, the
inputs are non-linearly mapped onto a very
high dimension feature space. In the feature
space, a linear decision surface is constructed,
and a special property of the decision surface
ensures high generalization ability of the
learning machine. The SVM typically follows
from the solution to a quadratic programming
(QP) problem.

In this paper, we adopt least squares sup-
port vector machines (LS-SVM) for adaptive
communication channel equalization. The
LS-SVM involves equality instead of inequal-
ity constraints and works with a least squares
cost function [11]. It is more suitable for
adaptive communication and signal process-
ing applications because a solution to the al-
gorithm can be obtained by solving a set of
linear equations instead of solving a QP prob-
lem. For this reason, the LS-SVM can be im-

plemented by daptive on–line algorithms.
This paper is organized as follows. Sections

2 and 3 describe the structure and functional-
ity of SVM and LS-SVM. The simulation re-
sults are presented in Section 4. We will apply
the LS-SVM equalizer to time-invariant and
time-varying channel problems. Comparisons
of the LS-SVM, Bayesian, MLP, and WNN
equalizers are shown in this section. Finally,
the conclusion is presented in Section 5.

2. Support vector machines

In this section, we briefly introduce the
standard SVM for binary classification prob-
lems. The structure of the standard SVM is
shown in Figure 1.

Figure 1. The architecture of the standard SVM
model

Support vector machines (SVM) have been
successfully applied in classification and
function estimation problems [12] after their
introduction by Vapnik within the context of
statistical learning theory and structural risk
minimization [14]. Vapnik constructed the
standard SVM to separate training data into
two classes. The goal of the SVM is to find
the hyper-plane that maximizes the minimum
distance between any data point.

The purpose for training a SVM is to find
the classifier bxxf )( so that we can
use the classifier to classify data. The training
set l

iii yx 1,  , where n
ix  is the input and

 1,1iy is the output, indicates the class.
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SVM formulations start from the assumption
that the linear separable case is
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where )( denotes a mapping of the input onto
a so-called higher dimensional feature space.

In this space, a linear decision surface is
constructed with special properties that ensure
high generalization ability of the network. Its
diagram is shown in Fig. 2. By use of a
nonlinear kernel function, it is possible to
compute a separating hyper-plane with a
maximum margin in a feature space.

Figure 2. Space translation using a nonlinear ker-
nel function

We need to find, among all hyper-planes
separating the data, an existing maximum

margin
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is transformed into a quadratic programming
problem
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where C is the trade-off parameter between
the error and margin.

The quadratic programming problem can
be solved by using Lagrangian multipliters

i . The solution satisfies the Ka-

rush-Kuhn-Tucker (KKT) conditions. The 

can be recovered by using 



l

i
iii xy

1

)( ,

where ix are non-zero values and i are
support vectors (SV).

The decision boundary is determined only
by the SV. Let )1(, , ..., sjt j  be the indices
of the s support vectors. Then we can rewrite
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The quadratic programming problem is
solved by considering the dual problem
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with the kernel trick (Mercer Theorem):
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T
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Several types of kernels, such as linear,
polynomial, splines, RBF, and MLP, can be
used within the SVM. This finally results in
the following:
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3. Least squares support vector machines

The standard SVM is solved using quad-
ratic programming methods. However, these
methods are often time consuming and are
difficult to implement adaptively. Least
squares support vector machines (LS-SVM) is
capable of solving both classification and re-
gression problems and is receiving more and
more attention because it has some properties
that are related to the implementation and the
computational method. For example, training
requires solving a set of linear equations in-
stead of solving the quadratic programming
problem involved in the original SVM. The
original SVM formulation of Vapnik [9] is
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modified by considering equality constraints
within a form of ridge regression rather than
by considering inequality constraints.

The solution follows from solving a set of
linear equations instead of a quadratic pro-
gramming problem. In LS-SVMs, an equality
constraint-based formulation is made within
the context of ridge regression as follows:
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One defines the Lagrangian
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with Lagrangian multipliers i . The
conditions for optimality are given by
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By eliminating ,e , one obtains the KKT
system
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where C is a positive constant, b is the bias,
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After application of the Mercer condition,
the final result is the same as Equation (7).

Because LS-SVM does not incorporate the
support vector selection method, the resulting
network size is usually much larger than the
original SVM. To solve this problem, a prun-
ing method can be used to achieve sparseness
in LS-SVM [19]. The pruning technique re-
duces the complexity of the network by
eliminating as much hidden neurons as possi-
ble.

4. Experimental results

In this section, we will demonstrate the va-
lidity of the LS-SVM in a communication
system. In the experiment, we used a Pen-
tium4 1.5GHz CPU, 512MB of main memory,
and the Matlab 6.1 simulation software.

High speed communication channels are
often impaired by channel Inter-symbol In-
terference (ISI), Additive White Gaussian
Noise (AWGN) and effects of time-varying
channels. A discrete time model of a digital
communication system is shown in Fig.3. A
random sequence ix was passed through a
dispersive channel of finite impulse response
(FIR) to produce a sequence of outputs '

iy .
Two kinds of channels, time-invariant and
time-varying, were used in our experiment.
Additive noise in the system, represented by

ie , was then added to each '
iy to produce an

observation sequence iy .
The problem to be considered was how to

utilize the information represented by the ob-
served channel outputs 11 ,,,  miii yyy  to
produce an estimate of the input symbol dix  .
A device which performs this function is
known as an equalizer. The symbols m and d
are known as the order and the delay of the
equalizer, respectively. In our experiment, the
equalizer order was chosen to be m=2 and
delay of the equalizer was chosen to be d=0.
Throughout the experiment, the input samples
were chosen from {-1,1} with equal probabil-
ity and were assumed to be independent of
one another.
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The equalizer performance is described by
the probability of misclassification with re-
spect to the signal-to-noise ratio (SNR). When
an independent identically distributed (i.i.d.)
sequence is assumed, the SNR can be defined
as

2

2

10log10
e

sSNR



 (13)

where 2
s represents the signal power and 2

e

is the variance of the Gaussian noise.

Figure 3. Discrete-time model of a data transmis-
sion system

4.1. Bayesian equalizer

The Bayesian decision theory provides the
optimal solution to the general decision prob-
lem. Therefore, the optimal sym-
bol-by-symbol equalizer can be formed from
the Bayesian probability theory and is termed
a Bayesian or a maximum posteriori probabil-
ity (MAP) equalizer.

This minimum error probability decision
can be rewritten as
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where
e denotes the standard deviation (std)

of the Gaussian additive noise e(k). For
equiprobable symbols, the coefficients

2 2(2 )
m
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and can be removed. This gives rise to the

following simpler form of the optimal deci-
sion function:
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where 
iy and 

iy refer to the channel states
which are the +1 and –1 signal states, which
have estimates of the noise-free received sig-
nal vector.

Therefore, based on the above function, we
can decide on the optimal decision boundary.
From this point of view, the equalizer can be
viewed as a classifier, and the problem can be
considered as a classification problem.

4.2. The time-invariant channel problem

Let the channel transfer function be

)1(2)(1)(
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where a1=0.5 and a2=1. Then the output
channel signal is

3

'
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All the combinations of x(n) and the de-
sired channel states are listed in Table 1.

To see the actual bit error rate (BER), a re-
alization of 610 points of sequence y(n) were
used to test the BER of the LS-SVM equalizer.
The resulting BER curve of the LS-SVM
equalizer under different SNRs is shown in
Fig. 4. When the level of the noise was 10db,
1000 samples of y(n) were used for training,
as shown in Figure 5.

We tested the performance of the Bayesian,
LS-SVM, multilayer perceptron (MLP), and
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wavelet neural network (WNN) equalizers.
The Bayesian equalizer was the most optimal
method for communication channel equaliza
tion. Computer simulation results showed that
the bit error rate of the LS-SVM equalizer
was close to the optimal equalizer and better
than the MLP and WNN equalizers.

Figure 4. Comparison of bit-error-rate curves for
the Bayesian, LS-SVM, MLP, and WNN
equalizers in a time-invariant channel

Figure 5. Time-invariant channel, data clusters
from LS-SVM, SNR=10db,1000 sam-
ples of y(n), and decision boundary

Table 1. Input and desired channel states for
m=2 and d=0

4.3. The time-varying channel problem

Let the nonlinear time-invariant channel
transfer function be as given by Eq. (16)
where 1a =0.5 and 2a =1. Since we assume
the channel is time-varying, 1a and 2a are
two time-varying coefficients. These
time-varying coefficients were generated by
passing white Gaussian noise through a But-
terworth low pass filter (LPF). The example
was centered at 1a =0.5 and 2a =1, and the
input for the Butterworth filter was a white
Gaussian sequence with standard deviation
(std). Applying the function provided by
Matlab, we can generate a second-order low
pass digital Butterworth filter with cutoff fre-
quency =0.1. Adjusting the time-varying
coefficients, we plotted the coefficients and
the corresponding channel states, as shown in
Figs. 6(a) and 6(b), respectively. The resulting
BER curves of the Bayesian, LS-SVM, MLP,
and WNN equalizers under different SNRs
are shown in Figure 7. Our method obtained a
better BER curve.

According to the experimental results, we
see that the classification rate of the LS-SVM
equalizer is better than that of some of the

NO x(n) x(n-1) x(n-2) y’(n) y‘(n-1)

1 1 1 1 1.8375 1.8375

2 1 1 -1 1.8375 -0.5125

3 1 -1 1 -0.5125 0.5125

4 1 -1 -1 -0.5125 -1.8375

5 -1 1 1 0.5125 1.8375

6 -1 1 -1 0.5125 -0.5125

7 -1 -1 1 -1.8375 0.5125

8 -1 -1 -1 -1.8375 -1.8375
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(a) (b)

(c) (d)

Figure 6. (a) An example of a time-invariant channel; (b) channel states (noise free) of the time-invariant
channel; (c) an example of a time-varying channel with =0.1; and (d) channel states (noise
free) of the time-varying channel

Figure 7: Comparisons of bit-error-rate curves for
the Bayesian, LS-SVM, MLP and WNN
equalizers in a time-varying channel
with = 0.1

other existing models for channel equalization
problems. Table 2 shows the hardware com-
putation time for training and testing when the
channel’s SNR was 10db. The training time
for the Bayesian equalizer was zero because it
did not need to be trained. The WNN with the
simultaneous Perturbation method [20] was
adopted to solve the channel equalization
problem and converged after 2000 iterations.
The MLP also used the traditional
back-propagation algorithm, and its conver-
gence happened after 1000 iterations.

We can see that the training and testing
times for the LS-SVM equalizer are faster
than those for the WNN and MLP equalizers.
For this reason, the LS-SVM equalizer is
more suitable for adaptive communication
channel equalization.
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Table 2. The hardware computation times for various equalizers

Model
Process

Bayesian
(sec)

LS-SVM
(sec)

WNN
(sec)

MLP
(sec)

Training time
(Time varying

channel)
- 15.36 5045 2011

Testing time
(Time varying

channel)
511.24 398.45 660.48 543.8

Training time
(Time invariant

channel)
- 14.97 4583 1997

Testing time
(Time invariant

channel)
505.99 399.31 602.42 560

5. Conclusion

In this paper, we adopted least squares
support vector machines (LS-SVM) for adap-
tive communication channel equalization. The
LS-SVM equalizer has the advantage of being
able to be implemented with relatively low
complexity and good performance. We ap-
plied the LS-SVM equalizer to the
time-invariant and time-varying channel
problems. Simulation results showed that the
bit error rate of the LS-SVM equalizer is
close to the Bayesian equalizer and better than
the MLP and WNN equalizers.
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