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Abstract: A three dimensional continuous fermentation model with variable yields is proposed
in this paper. The properties of the equilibrium points, the global stability, the existence of limit
cycles and the Hopf bifurcation in the two dimensional stable manifold of one microorganism
while the other is going to vanish in the competition are investigated by qualitative analysis of
differential equations.
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1. Introduction

The continuous fermentation model is an
interesting example of an open system with
purely exploitative competition. It consists of
three vessels. The first contains the nutrient
which is pumped at a constant rate into the
second vessel which is called the culture ves-
sel. This vessel is charged with microorgan-
isms which compete, in a purely exploitative
manner, for the nutrient. The contents of the
second vessel is pumped, at a constant rate,
into the third or overflow vessel. It is assumed
that the culture vessel is well stirred, and the
temperature, pH, etc., are kept constants and
the turnover of the vessel is sufficiently fast,
that no well growth occurs and that there is no
buildup metabolic products.

In ecology the continuous fermentation
model serves to model a simple lake but in
chemical engineering it is a laboratory model
of a bio-reactor to manufacture products with
genetically altered organisms. In waste water
treatment it is often the starting point for con-

struction of models (Schuler and Kargi [10]),
and it is also useful in the study of the mam-
malian large intestine (see Freter [11]). The
basic analysis of the chemostat can be found
in the book of Smith and Waltman [1].

Most of the models in continuous fermen-
tation assumes that the yield coefficient is a
constant [1, 5-7]. But the accumulation of
experimental data suggests that a constant
yield fails to explain the observed oscillatory
behavior in the vessel (see Dorofeev, et al. [2,
7]). Crooke [3, 4] suggested a linear function
for the yield coefficient and declared a limit
cycle may exist in his model. Huang(1990[8],
[15, 16]), and Pilyugin and Waltman (2003[7]
) constructed the model with a general vari-
able yield, and studied the limit cycles and the
Hopf bifurcation for the model. However, all
these models considered only one microor-
ganism in the system. In Liu and Zheng [12],
a three dimensional chemostat with two mi-
croorganisms was studied. In the model the
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functional reaction functions were in the
Monod type, and one of the yield coefficients
was assumed a particular function of the con-
centration of nutrient and the other still con-
stant. The properties of the equilibrium points,
the existence of limit cycles were discussed
there [12].

In this paper, we study a three dimensional
continuous fermentation model of which both
the yield coefficients are functions of the nu-
trient. The model is useful in modeling the
case when the microorganism is very sensitive
to the nutrient. We are going to analyze the
equilibrium points, global stability, the exis-
tence of limit cycles and the Hopf bifurcation
in the two dimensional stable manifold of one
microorganism when the other is going to
vanish in the competition. The model and our
main theorems are in the next section.

2. The model and main theorems

At time t , let )(tS denote the concentra-
tion of nutrient in the vessel, )(tx and )(ty
the concentration of the two microorganisms.
The model takes the form
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where, 0S is the input concentration of nutri-
ent, Q is the washout rate, im , the maximal
growth rates, ik , the Michaelis-Menton con-

stants, and ,2,1, ii the yield coefficients,

which are all positive. L is the intrinsic
consumption rate for the first microorganism,

which is also positive. This is usually called
the Monod model or the model with Micha-
elis Menten dynamics.

System (1) with the yield coefficients
., 2

2
1 constBSA   was discussed in

[12]. Here we investigate system (1) with
,3

1 BSA 4
2 DSC  . The relation-

ships of the microorganisms and the nutrient
in this model are different from all the previ-
ous models in the literature, which certainly is
interesting in dealing with the nonlinear os-
cillatory phenomena in the continuous fer-
mentation. In [18], a two predator-one prey
ecosystem was studied using the above
chemostat setting, which is similar to system
(1) with our assumptions. And in [7], Pilyugin
and Waltman even provided a numeric exam-
ple with the yields of the first microorganism

,501 3
1 S and the second 1202  ,

and obtained multiple limit cycles in com-
puter simulating (see Figure 1).

Figure 1. More limit cycles of the chemostat with a
cubic yield 3

1 501 S and a con-
stant yield 1202  .

It is easy to note that the above numerical
example is a special case of our system when
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120,50,1  CBA and 0D . Thus, a
further mathematical analysis of such model
with cubic and/or quadratic yields is of course
necessary.

Performing the standard scaling for the
continuous fermentation, let
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and then drop the bars and replace  with t ,
system (1) becomes
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The parameters have been scaled by the
operating environment of the continuous fer-
mentation, which are determined by 0S and
Q . The variables are non-dimensional and the
discussion is in
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Note that if 11  , the first microorganism
in the chemostat goes to vanish, and so does
the second one if 12  . Thus, in order to
avoid the microorganisms vanishing, we need
to make certain arrangement between the
growth rates im , the Menton constants ik ,
and the organism parameter L before the
experiment or bio-reactor starts. We now as-
sume that

2,1,10  ii (which imply 1 1,m L 

2 1m  ).
Let
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Theorem 1. System (2) has three equilibrium
points in 3

R :
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in which 0E is unstable (saddle); 1E is

asymptotically stable if 1R
B
A
 and 21  ,

unstable if either inequality is reversed; 2E is

asymptotically stable if 2R
D
C

 and

21
  ; unstable if either inequality is re-

versed.
Proof. We only prove the cases for 1E and

2E . From the Jacobians of system (2) at 1E
and 2 ,E the corresponding characteristic
equations takes the form
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  ,0)( 2  iii crbrar 2,1i (6)
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When 0, 11  bR
B
A

, the roots of

011
2  crbr have negative real parts.

The stability of 1E is determined by the sign
of 1a . Thus 1E is unstable if 12  , sta-
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The proof of Theorem 1 is completed.

Theorem 2. (i) If 21  , and 1R
B
A
 , the

equilibrium point 1E is globally asymptoti-
cally stable in 3

R ; (ii) if 21  , and

2R
D
C

 , the equilibrium point 2E is glob-

ally asymptotically stable, too.
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set of (2).
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Since both x and y are bounded and all the

parameters are positive, 0
0


Mdt

dM if l is

sufficiently larger. That is, any trajectory in
3
R will cross 0 lyxSM into

 . Moreover, because both 0,0  yx
are the solutions of Eq. (2),  is a posi-
tively invariant set of Eq. (2). In other words,
any trajectory initiating in 3

R will go to 
when t . Therefore, both 1E and

2E are globally asymptotically stable. We
complete the proof of Theorem 2.

Regarding the behavior of the trajectories
near the equilibrium points, we have the fol-
lowing results.

For 2E , in the solution plane of 0x ,
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system (2) is reduced to
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We would like to point out that (9) is a special
case of the following system (Huang[8])
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The following theorem is proved in [8].

Theorem A. Assume .1)1( g If 0p
then *)*,( yx is stable; if 0p , it is unsta-
ble and there exists at least one limit cycle in
(10) surrounding the equilibrium *)*,( yx .
Then, we have
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For 1E , we study the phase portrait in the
solution plane 0y . In this case (2) is re-
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Calculating p as in Eq. (11) and 1R as in

Eq. (4) will result the following theorem.

Theorem 4. Assume   1111  Lkm . If

1R
B
A
 , then *)*,(2 xSN is stable; if

1R
B
A
 , then 2N is unstable and there exists

at least one limit cycle in Eq. (12) surround-
ing *)*,(2 xSN .

Note that if 2N is stable, it is also globally
stable.
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Theorem 5. System (12) undergoes a Hopf

bifurcation at 1R
B
A
 .

Proof. Let *)*,( xSJ be the Jacobian of Eq.
(12) at 2N . The corresponding characteristic
equation is
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The sign of the real parts of the roots for Eq.
(14) has been changed from positive to nega-
tive. That means the phase structure of

 **,2 xSN changes from unstable to stable
at 2R as  increases. Thus, Eq. (12) un-

dergoes a Hope bifurcation at 1R
B
A
 by the

definition [13].
Similarly, for the equilibrium point

)))(1(,( 4
2

4
0222  DSCM  , we can prove

the bifurcation theorem for system (9).

Theorem 5. In system (9), a Hopf bifurcation

occurs at 2R
D
C

 .

Finally, we would like to use the following
remark to conclude our article.
Remark 3. It is interesting to note that the

structure of the solutions of system (1) with
the yields mn DSCBSA  21 ,  has
quite similar property. A further study will be
very necessary and useful in the study of the
continuous fermentation.
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