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1. Introduction

Over the past several years there has been a
marked increase in the application of coherent
signal and image processing. Coherent proc-
essing requires an accurate estimate of the
phase [1, 2]. Examples where coherent proc-
essing is required include synthetic aperture
radar (SAR) [3, 4, 5, 6, 7], synthetic aperture
sonar, adaptive beam-forming, acoustic im-
aging, projection and diffraction tomography,
adaptive optics, inverse synthetic aperture ra-
dar (ISAR) [8], magnetic resonance imaging
(MRI), field mapping, echo planar imaging [9,
10, 11, 12], chemical shift mapping [13, 14,
15] velocity measurements [16, 17], and oth-
ers.

Unfortunately, one is only able to measure
a wrapped version of the phase not the true

phase. The measured phase ( )n at instant n
is actually obtained from the true phase,

( )T n by a modulo operation as follows:
( ) ( ) modulo 2Tn n   . This wrapping

leads to artificial phase jumps being intro-
duced near boundaries.

In many applications, the true phase relates
to some physical quantity such as surface
topography in interferometry [18, 19, 20], the
degree of magnetic field inhomogeneity in the
water/fat separation problem in MRI [14],
The measured nonlinear phase does provide
useful information. The phase, however, must
be unwrapped before further use. The phase
unwrapping problem is then to obtain an es-
timate for the true phase from the measured
wrapped phase. Thus, the wrapped value must
be unwrapped through some method to esti-
mate true phase which is the quantity relating
to the physical property of interest.

Many attempts were done to correct this



Kattoush Abbas

136 Int. J. Appl. Sci. Eng., 2005. 3, 2

problem [19, 21, 22] however the problem in
general is not solved. Basically all the exist-
ing phase unwrapping techniques start from
the fact that it is possible to estimate the
neighboring pixel differences of the un-
wrapped phase when these differences are less
than π. From these, the unwrapped phase can
be reconstructed up to an additive constant.
The methods differ in the way they overcome
the difficulty posed by the fact that this hy-
pothesis may be somewhere false, which
cause the estimated unwrapped phase differ-
ences to be inconsistent, that is their "integral"
depends on the integration path.

Existing unwrapping techniques can be
categorized according to their: Dimensional-
ity (1D, 2D, 3D, etc.); applications (SAR,
general optical interferometry, MR angiogra-
phy, MR chemical shift mapping or field
mapping); and approach (fitting function, cost
function optimization, filtering, region grow-
ing/ merging).

Methods based on fitting function (usually
truncated Taylor series [23, 24] or polynomi-
als [9, 13, 25] can be easily generalized to
work with data of any dimension. However, in
these methods functions can not vary too rap-
idly. This is undesirable for mapping applica-
tions where there are small, rapidly changing
regions.

Branch cuts methods [20, 26] unwrap by
integrating the estimated neighboring pixel
differences of the unwrapped phase along
paths avoiding the regions where these esti-
mated differences are inconsistent. The prob-
lem of building cuts delimiting these regions
is very difficult and the resulting phase un-
wrapping algorithm is very expensive com-
putationally.

In least squares methods [27, 28, 29], un-
wrapping is achieved by minimizing the mean
square deviation between the estimated and
the unknown neighboring pixel differences of
the unwrapped phase. Least squares methods
are very efficient computationally when they
make use of fast Fourier transform techniques
[30, 31]. But the resulting unwrapping is not

very accurate, because least squares proce-
dures tend to spread the errors that are instead
concentrated on a limited set of points. To
overcome this problem a weighting of the
wrapped phase can be useful. However, the
weighted least squares algorithms proposed [6,
30] are iterative and not as efficient as the
unweighted ones. Moreover, the accuracy of
the results depends on the weighting mask
used.

In this paper a new method for phase un-
wrapping is proposed. Instead of using
modulo 2 operation for removing artifi-
cial phase jumps in phase characteristics, a
recurrent formula is used to calculate the
phase.

Calculation is started by calculating the
phase of first point, and then the phase dif-
ference between the neighboring points is
calculated and added to the previous phase
until the phase at the desired point is calcu-
lated. Finally, tests of proposed method are
presented. The results are really satisfactory:
they demonstrate the consistency and effi-
ciency of the method, which seems to be ac-
curate. Comparative tests with modulo 2
operation are presented too.

2. Problem formulation

The transfer function of any linear system
could be defined as:

H(ω)= R(ω)+ jI(ω)= A(ω)ejΦ(ω) (1)

Where

2 2( ) ( ) ( )A R I    (2)

1( ) ( )
( ) ta n (3 )

( ) ( )
I I

arc tg
R R

 


 
   

     
    (3)

xarctgy  is the inverse function of
ztan for values of z on the interval

22   z as shown in Figure 1. The
function is monotonic increasing in the defi-
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nition interval and has a value 0y at
0x and it has odd symmetry.

For many systems the phase characteristic is

defined outside the definition interval of the
arctg-function, which means that when calcu-
lating the phase characteristic using the
arctg-function many artificial phase jumps
being introduced near boundaries in the phase
characteristic. For example all-pass filter has
transfer function given by:

 ( ) cos sin (4)jH A e A j     (4)

where andA are constants.
For this example the mathematical expression
for phase is known. In many cases the signal
or the transfer function are given experimen-
tally as a sequence of discrete values and the
phase is calculated using Equation (3). It
cannot be sure that the jumps in the phase
characteristic calculated are natural in char-
acteristic or they are inserted in it due to tan-
gent inverse function. The phase and group
delay correction depends on the calculation
and does not depend on the algorithm used to
calculate tangent inverse function.

Figure 1. Plots of arctg-function

So the phase characteristic of this filter is
given by:
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The actual phase of this filter is   but
the phase characteristic calculated using
Equation (3) is not the same outside the val-
ues interval as shown in Figure 2.

Figure 2. All-Pass fiter phase characteristic

3. The proposed algorithm

The tangent of the difference of two angels
is given by:
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But the tangent of angles of complex numbers
are given by:
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where 1, kk AA 
are the values of the com-

plex function at points: k, and (k –1) respec-
tively.
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By denoting:
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The tangent of the difference of two angels
is given by:

 1t a n ( 9 )
1k k
x y

x y
  


 

 (9)

And the phase difference between any
neighboring points is given by:

 1
(10)

1k k k
x y

arctg
x y

  


 
       (10)

Because arctg is determined in inter-
val  2,2  and the actual phase differ-
ence can be in the interval

 20  k the actual phase difference
must be determined from the knowledge of
the values of the complex number to deter-
mine the quadrant in which the phase differ-
ence lies so that the following cases can be
realized:

i. 1xy .
In this case k within interval

 2 and 1k

x y
a r c t g

x y
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 
    
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1k
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iv. and1 yxxy 

In this case 2/  k

v. and1 yxxy 

In this case 2/  k

To overcome the problem of phase discon-
tinuity the following algorithm is proposed:

Suppose that the phase characteristic of a
complex array Z, with N points to be calculate
-d, then the algorithm works as follows:
(a) With assumption that the phase at the first

point 2/0   , the initial phase of
the first point in the array Z is calculated
as:
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The phase at the second point in the array Z

is calculated as 101  

(b) The phase difference between any point k
and the previous point (k-1) is calculated

as 1 kkk 

(c) With condition that 2  k the

phase difference k can be calculated
as:

 1 1k k k

x y
arctg

xy
  

 
      

(d) The phase at any point k in the array Z is
calculated using the following recurrent
equation:

1 0
1

(11)
k

k k k i
i

    


    
(11)

A flow chart for the proposed algorithm is
shown in Figure 3.

4. Examples

The first example will consider the calcu-
lation of a phase characteristic of an all-pass
filter. Results of running a program that real-
izes this algorithm is provided in Figure 4. It
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can be seen that the algorithm completely
fixes the problem of phase jumps.

The second example consider a prototype
low-pass fourth-order Butterworth filter with
cut-off frequency of 1rad/sec. The transfer
function of this filter is given by:

1613.2414.3613.2

1
)(

234 


ssss
sK

The resultant graphics of phase characteris-
tic achieved by running the proposed algo-
rithm are plotted in Figure 5. From the plots
of the phase characteristic it can be seen how
the algorithm corrected the unnatural jumps
and built a natural phase characteristic for the
forth order filter.

5. Discussion

The UNWRAP-function algorithm re-
moves phase discontinuities in array by add-
ing or subtracting an appropriate multiple of
2 to each element. The function algorithm

recognizes a phase discontinuity, or phase
jump, whenever a given input element, iu

differs from the preceding element by an ab-
solute amount greater than the absolute value
of the specified tolerance parameter, ( ).
To eliminate the jumps in the input, the un-
wrap adds k2 to all elements following a
jump (including the discontinuous element
itself). The value of k is initialized to 0, and
is then incremented by 1 for each successive
negative
jump   ( );1 1abs u u abs u ui i i i     

, and

decremented by 1 for each successive positive
jump   .);( 11   iiii uuabsuuabs 
One possible realization of UN-
WRAP-function flowchart is shown in Figure
6.

To compare the results of the proposed al-
gorithm with the results of MATLAB func-
tion UNWRAP we shall consider a 25-Th or-
der low-pass FIR filter design using the win-
dow method. The phase characteristic of this
filter is plotted in Figure 7. From which it is

seen the correctness of the proposed algo-
rithm and how it calculates the phase per-
fectly. The phase characteristic calculated by
UNWRAP still has discontinuity.
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Figure 3. Flowchart of the proposed algorithm
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Figure 4. Phase characteristic of All-Pass filter

Figure 5. Phase characteristic of analog 4-though
order LPF

To compare the computational benefits of
the proposed algorithm with that of MAT-
LAB function UNWRAP we repeated phase
characteristic calculations of the upper 25-Th
order low-pass FIR filter several times vary-
ing the number of points in the complex array.
And each time we calculated the relative CPU
time units used by proposed algorithm and by
UNWRAP function. The relative CPU time
units were calculated using MATLAB func-
tion CPUTIME. In Figure 8 is shown the de-
pendence of the relative CPU time units used

by both algorithms on the number of points to
be calculated. From Figure 8 we can see that
the time needed for UNWRAP function in-
creases very fast by increasing the number of
points, the relation very similar to quadratic
relation. While the relation for the proposed
algorithm is similar to linear relation. Which
means that proposed algorithm is more effi-
cient than UNWRAP function especially for
large arrays of complex numbers.

Figure 9 depicts the dependence of relative
CPU time units saved by using proposed al-
gorithm on the size of complex array for
which the phase to be calculated. It shows that
CPU time saved increases by quadratic law as
the size of complex array increases.
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Figure 6: UNWRAP Algorithm Flowchart
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To check the behavior of proposed algo-
rithm on natural jumps, we inserted a natural
jump of / 2 in part of all-pass filter complex
transfer function array (range of frequency
0.4 0.9  as shown in Figure 10) and
then built the phase characteristic of the array
using both proposed algorithm and MATLAB
function UNWRAP. From Figure 10 it can be
seen that proposed algorithm built phase
characteristic with correct phase jumps as in-
serted in the array.

Comparing proposed algorithm with UN-
WRAP algorithm, the following advantages
of proposed algorithm may be stated;
It builds the phase characteristic directly

from the data and not like MATLAB func-

tion UNWRAP which tries to detect branch
cut crossings after implementing arctangent
function which leads to eliminating natural
jumps in some cases which is not accept-
able.

The proposed algorithm always distin-
guishes between natural jumps and an arti-
fact of the arctangent function inside angle.
The proposed algorithm can not be fooled by
sparse, rapidly changing phase values as
MATLAB functions UNWRAP.
The proposed algorithm is more computa-
tional efficient than MATLAB functions
UNWRAP especially for large complex ar-
rays.
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6. Conclusions

A new accurate and efficient method for
phase unwrapping is proposed. The method is
based on recurrent calculation and summation
of phase difference between neighboring
points. This method is easy, requires mini-
mum computation and no basic limitations on
its application. The tests performed demon-
strate the validity of this approach. Also the
algorithm was tested with functions that have
real jumps in phase and the resulting phase
characteristics of these functions were calcu-
lated and plotted correctly.
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