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Abstract: A new version differential quadrature method is proposed to obtain the vibration
characteristics of rectangular plates resting on elastic foundations and carrying any number of
sprung masses. The accuracy of the technique is demonstrated by comparing the calculated re-
sults with the published data. The non-uniform grid spacing is used in this work. The results also
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1. Introduction

Vibration is the most important modes of
failure in plates it plays a crucial role in engi-
neering. Leissa [1,2] derived exact solutions
for the free vibration and buckling problems
of the rectangular plates. Boay [3] analyzed
the natural frequencies of plates with and
without a concentrated mass using the
Rayleigh-energy method. Avalos et al. [4]
dealt with the solution of vibration by a sim-
ply mounted concentred mass using the
well-known normal mode. Xiang et al. [5]
used the Ritz method combined with a varia-
tion to solve vibration of rectangular mindlin
plates resting on elastic edge supports. Laura
and Grossi [6, 7] calculated the fundamental
frequency coefficient for a rectangular plate
with edges elastically restrained against both
translation and rotation using polynomial co-
ordinate functions and the Rayleigh-Ritz’s 

method. Wu and Luo [8] solved the problem
of the natural frequencies and the correspond-
ing mode shapes of a uniform rectangular flat
plate carrying any number of point masses and
translational springs using the analytical
-and-numerical-combined method. Nicholson
and Bergman [9] used the Green’s function 
express the natural modes for the damped
plate-oscillator systems. Gorman [10] solved
the free vibration problem of shear deform-
able plates resting on uniform elastic founda-
tions using the modified Superpo-
sion-Galerkin method. This work focuses on
the application of differential quadrature
method to the vibration of plates resting on
the elastic foundations and carrying any num-
ber of sprung masses. In the following section
an overview of differential quadrature method
to preset the computation of its weighting co-
efficients offered and discussed the selection
problem. The integrity and computational ef-
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ficiency of the method will be demonstrated
through a series of case studies. Very few pa-
pers in the literature have presented the vibra-
tion analysis of rectangular plates resting on
elastic foundations and carrying any number
of sprung masses using the differential quad-
rature method.

2. Basic equation

The strain energy of the rectangular plate
resting on the elastic foundation and carrying
any number of sprung masses is given by
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where kg is the foundation stiffness . The
kinetic energy of the rectangular plates resting
on the elastic foundation and carrying any
number of sprung masses is given by
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where s is the total number of sprung masses
attached to the rectangular plate, w is the
deflection of the rectangular plate, Mi is the
mass of the ith oscillator, ki is the spring con-
stant of the ith oscillator, zi is the sprung mass
location of the ith oscillator, xi is the location
of sprung mass of the ith oscillator in the di-
rection of x-axis, yi is the location of sprung
mass of the ith oscillator in the direction of
y-axis, t is the time, D=Eh3/(12(1-v2)) is the
flexural rigidity, E is Young’s modulus, is
the density of the plate material, and h is the
rectangular plate thickness. With considering
the internal and external damping effects in
the rectangular plate, the virtual work W in

the plate can be derived as
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where C0 and C1 are the external and the
internal damping coefficients of the rectangu-
lar plate, respectively. Substituting Equations
(1), (2), and (3) into Hamilton equation
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This leads to the equations of motion of the
rectangular plate on the elastic foundation
with any number of sprung masses as
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for i=1,2,…, s (6)

At a simply supported boundary, the trans-
verse deflection of the rectangular plate can be
expressed as

 0, , 0w y t  ,  , , 0w a y t  ,  ,0, 0w x t  ,
 , , 0w x b t  (7)
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The condition of zero normal moment can
be reduced to
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Substituting    , , , tw x y t W x y e and
t

i iz Z e into Equations (5) and (6), Equa-
tions (5) and (6) can be written as
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3. Method of solution

With the increasing use of new fast and af-
fordable computers, along with the availabil-
ity of various numerical methods, the solu-
tions of several complicated engineering
problems have now become efficiently
achievable. The finite differences method,
Rayleigh-Ritz method, the finite element
method, Fourier series method and the
boundary element method have been used ex-
tensively for solving linear and nonlinear dif-
ferential equations, and consequently there are

several commercially developed software
packages. The development of new techniques
from the standpoint of computational effi-
ciency and numerical accuracy is of primal
interest. Since it has been developed, several
researchers have applied successfully the dif-
ferential quadrature method to solve a variety
of problems in different fields of science and
engineering [11-17]. The partial differential
equation can be reduced to a set of algebraic
equations using the differential quadrature
method. The differential quadrature method
uses the basis of the Gauss method in deriving
the derivative of a function. It follows that the
partial derivative of a function with respect to
a space variable can be approximated by a
weighted linear combination of function val-
ues at some intermediate points in that variety.
A differential quadrature approximation at the
ith discrete point on a grid in the direction of
x-axis is given by
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A differential quadrature approximation at the
thi discrete point on a grid in the direction of

y-axis may be written as
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where m
ijA and m

ijB are the weighting co-
efficients. The test function can be written as

  1 1,f x y x y  

for 1,2,..., xN and 1, 2,..., yN (13)

Substituting Equation (13) to Equations (11)
and (12), Equations (11) and (12) are com-
puted by
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The mth order derivates may be obtained using
the following equations
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where ( )mBij is the mth order weighting coef-

ficient matrix in the direction of y -axis. The
above relation gives the higher order weight-
ing coefficient matrix based on the first-order
derivative weighting coefficients. The above
relations are not restricted to the choice of
sampling points. It is emphasized that the
number of the test functions must be greater
than the highest order of derivative in the
governing equations. The selection of loca-
tions of the sampling points is important in
ensuring the accuracy of the solution of dif-
ferential equations. A more accurate solution
could be obtained by choosing a set of un-
equally spaced sampling points for a domain
separate into by Nx and Ny points. A simple
and good choice can be the roots of shifted
Chebyshev and Legendre points. The inner
points are
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in the direction of y-axis. a is the length of
the plate in the direction of x-axis and b is
the length of the plate in the direction of
y-axis. Substituting Equations (14) and (15) to
Equations (9) and (10), leads to
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The transverse deflection of the plate at a
simply supported boundary can be written as

1 0jW  for 1, 2,..., yj N ,

0
xN jW  for 1, 2,..., yj N ,

1 0iW  for 1,2,..., xi N ,
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0
yiNW  for 1,2,..., xi N (22)

The condition of zero normal moment can be
reduced to the following discrete forms.
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4. Numerical results

Figure 1 shows the eigenvalue of the plates
that are supported, as all of edges are simply
supported with various values of a/b. The data
used in this analysis are as follows:

0.005h m , 0.3 ,
239.25 /h kg m  ,

11 22.051 10 /E N m  ,

 3 2 3/ 12 1 2.3478 10D Eh       N m ,

1 0.0C  , 0 0.0C  , 2355PM hab kg  ,

/ 0.0i pM M  ,
2 25.8695 10Pk D a   /N m ,

/ 0.0i pk k  , and / 0.0g pk k  .

The dimensionless natural frequency is de-
fined as  2 /a h D  The numerical

results in figure 1 are cited from reference [1].
The results reveal that natural frequencies 
increase as the values of a/b increase. It can be
seen that the numerical results agree well with
the data from theory [1]. The comparisons and
numerical examples show the effectiveness of

the differential quadrature method. The dif-
ferential quadrature method can serve as a
useful tool to obtain dynamic behavior of the
rectangular plates. Figure 2 plots the eigen-
value of the plates that are supported, as all of
edges are simply supported with the roots of
shifted Chebyshev and Legendre points. The
geometrical and material data used in this
analysis are as follows:

1.0a m , 1.0b m , 1 0.5x m , 1 0.5y m ,

0.005h m , 0.3 ,
239.25 /h kg m  ,

11 22.051 10 /E N m  ,

 3 2 3/ 12 1 2.3478 10D Eh       N m ,

1 0.0C  , 0 0.0C  , 2355PM hab kg  ,

1 / 0.001pM M  ,
2 25.8695 10Pk D a   /N m ,

and 1 / 100.0pk k  .

Analysis of the numerical results reveals that
natural frequencies  increase as foundation
stiffnesses increase. The results show that
foundation stiffnesses have larger influences
on the first, second and third natural frequen-
cies than the other natural frequencies.

5. Conclusions

The differential quadrature method is
shown an efficient way of obtaining accurate
solutions to the problem of rectangular plates
resting on elastic foundations and carrying
any number of sprung masses. The contrast
and numerical results solved using shift Che-
byshev and Legendre points show the effec-
tiveness of the differential quadrature method.
The excellent agreements are found between
the proposed scheme and known solutions
published in the literature.
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Figure 1. The first six natural frequencies of the
plates for various values of a/b.

Figure 2. The first six natural frequencies of the
plates for various foundation stiff-
nesses.
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