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Abstract: In order to investigate the feasibility of deducing a simulated transfer function based
on the Rayleigh wave form in an Impact-Echo signal, the analytical solution for the normal sur-
face displacement due to a heaviside force at the half-space was reviewed and used to compute
the surface displacement responses resulted from various types of impulse forces. Based on a
series of numerical studies on the characteristics of Rayleigh wave form in the surface displace-
ment responses, this paper presents the idea of using an equivalent impact force to derive an in-
tentionally scaled transfer function. The pseudo force can be obtained from using Rayleigh wave
form as a pseudo force or by generating an equivalent half-sine impact force accordingly. The
effect of using such pseudo and equivalent force functions was discussed in details. In the pro-
posed method, the force amplitude was first estimated from an amplitude curve established from
numerical simulations using half-sine force functions. The recovery of a simulated transfer func-
tion was next achieved via the use of an estimated force amplitude and a selected force function.
The proposed procedure also results in steady thickness amplitudes when measurements on two
concrete plates were taken for various impacts associated with different steel balls and different
impact locations. The success in recovering constant thickness amplitudes for plate-like struc-
tural members proved that the derivation of simulated transfer function is a useful tool in ex-
tending the Impact-Echo test. The quantitative evaluation of the interfacial property of the sub-
strate layer will also benefit from this simulated transfer function.
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1. Introduction

The use of an impact-type force as the en-
ergy source of stress waves has been adopted
in many NDT methods, such as the
well-known Impact-Echo method, Sonic
Echo/Impulse Response method, and Spectral
Analysis of Surface Waves (SASW) method.
Some of these NDT methods consist of

analysis procedures in the frequency domain,
and thus, either the frequency amplitude
spectrum or the transfer function is computed
for the recorded responses.
For methods involving analysis of amplitude

spectra, for example Impact-Echo method, the
frequency of the dominant peak shown in an
amplitude spectrum normally provides the
thickness information of the specimen. Thus,
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in an Impact-Echo analysis, it is often called
thickness frequency. Since the amplitude
changes with magnitude and duration of the
impact, the amplitude itself fails to provide
further information, namely the characteristics
of the interface. Clearly, amplitudes recorded
in different tests cannot be compared with
each other unless the force functions are given.
In order to distinguish between various re-
flected interfaces, it is necessary to normalize
frequency spectra by an equivalent force
function so that the thickness amplitude asso-
ciated with a free surface at bottom remains
constant for a given specimen.
When a concrete plate is placed on a mate-

rial of smaller acoustic impedance such as soil,
epoxy, and wood, the thickness frequency of
the plate is the same as the one reflected free
on bottom surface. However, the amplitude
should be lower since stress waves are also
propagated into the substrate layer. Accord-
ingly, the material property under the concrete
plate could be quantitatively evaluated from
the thickness amplitude. Furthermore, the
debonded or partially debonded condition
between concrete and substrate material might
also be identified. In other words, transfer
functions are preferable when dealing with
the identification of substrate layers.
In a traditional Impact-Echo test, the force

function is not recorded. In order to recover
the force function due to an impact-type force,
we first review the explicit solution by
Pekeris [1]. His solution for the surface re-
sponses due to a concentrated force applying
on the surface of a semi-infinite medium is
derived based on a fixed Poisson’s ratio of 
0.25. We will extend the solution formulation
for the normal response to account for an ar-
bitrary Poisson’s ratio. Next, we will summa-
rize the fundamental characteristics of normal
surface responses obtained numerically for
various types of force functions and for mate-
rials with different Poisson’s ratios. A proce-
dure to reproduce a simulated transfer func-
tion, proven to be beneficiary to the Im-
pact-Echo analysis, will be proposed in the

end.

2. Theoretical background

Regarding the impact response on a
semi-infinite medium, the analytical solution
can normally be derived in time domain
through the convolution of force functions
with the Green function or in frequency do-
main by inversely transforming the product
between frequency contents of the force func-
tions and the transfer function. However,
when the response due to heaviside step func-
tion is given, an alternative approach is to
numerically evaluate solutions by the method
of superposition. Procedures using the inte-
gral transform technique to derive the ana-
lytical solution of the surface response due to
heaviside step force were first proposed by
Pekeris [1] and can be found in several text-
books, such as Achenbach [2] and Graff [3]. It
is shown in Equation (1) the solution form of
the problem. The normal surface displacement
is expressed as the function of a dimen-
sionless time parameter, , the relative ratio of
the elapsed time to the arrival time of shear
wave. The time history of responses can be
obtained by numerically computing the two
integral terms.
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with the ratio of shear wave velocity to
longitudinal wave velocity, R(y) the charac-
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teristic Equation of the Rayleigh wave and the
symbol P representing the principal-value of
the integral.
Pekeris [1] shows that, by change of vari-

ables, the integral solutions in Equation (1)

can be further reduced to an algebraic form of
simpler rational functions. The result is the
solution for the special case = 0.25 and is
given as Equation (2).
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with
r is radial distance
is Lame's elastic constant = G (shear
modulus)
Z is the amplitude of the Heaviside step force
t is time
is mass density
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Although Equation (1) can be numerically
evaluated without difficulty, an explicit type
solution like Equation (2) is more straight

forward and may be able to provide a quanti-
tative reference for the Rayleigh wave
(R-wave) responses. In Equation (2), the solu-
tion is separated into four parts by being
equal to 1/ 3 , 1 and . These three values of
 stand for the first arrivals of P-wave,
S-wave, and R-wave, respectively. It is inter-
esting to note that the solution exhibits a sin-
gular point at = .which results in the
R-wave dominated phenomenon. As a result,
the R-wave portion of the surface response is
of particular importance in problems associ-
ated with surface responses.
Following the solution procedure proposed
by Pekeris and keeping Poisson’s ratio, , as a
variable in the derivation, a general solution
valid for all Poisson’s ratios can be obtained 
in Pekeris’ original format as follows.
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in which a, b and c are the three roots of y2 in
Equation (4).
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with y = Cs/CR and  = Cs/Cp =

(1 2 ) 2(1 )   . Cp, Cs and CR are the
wave velocities of the P-wave, S-wave and
R-wave, respectively. Equation (4) is the
characteristic Equation of the Rayleigh sur-
face wave with a and c being denoted the
smallest and largest of the three roots of R(y2)
= 0. In addition, A0 is the steady-state dis-
placement due to heaviside step force and can
be defined as a nominal amplitude factor to
quantify displacement amplitude caused by
impulse-type forces.
Equation (4) indicates that when  ≤ 0.263, 

we have a < b < σ2 < 1 < c with a, b, and c all
real numbers. On the other hand, when >
0.263, a and b become a pair of conjugate
complex numbers and we have Re(a) = Re(b)
< σ2 < 1 < c. The remaining three coefficients
in the numerators, A , B , and C , are func-
tions of a, b, c, and σ2 as shown in Equation
(5).
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When the Poisson’s ratio is 0.25, the three

roots of Equation (4) are a= 1
4 , b= 3- 3

4 ,

c= 3 3
4
 and the constant σ2 equals 1/3. Sub-

stitution of these values into Equation (5)

gives A = 2
3 , B = 2 3 3 5

3
 , C = 2 3 3 5

3
 ,

and A0= 3
8 r
 . Thus, Equation (3) is reduced to

Equation (2). Figure 1 concludes the dimen-
sionless displacement responses associated
with five Poisson’s ratios, 0.1, 0.18, 0.25, 0.33,
and 0.4 .

Figuer 1. Vertical displacement at free surface according to Equation (3)
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For a given force-time function, f(t), the
corresponding vertical displacement at the
free surface W(t) can be computed by em-
ploying the method of superposition as shown
in Wu et al. [4]. In their work, the force-time
function is first discretized into n segments
and expressed as the summation of n+1
heaviside functions, H(t), as shown in Equa-
tion (6).
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Then the surface response with respect to
any arbitrary force–time function can be
evaluated from summing up contributions
from all heaviside functions as Equation (7).
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where w( ) is shown in Equation (3) and the
dimensionless time variable = tCs/r.

3. Numerical simulations of impact re-
sponses

In the following, the characteristics of im-
pacted surface responses due to different im-
pact force functions are discussed. Figure 2
shows the typical surface response due to an
impact force, in which At and Apeak denote the
amplitudes associated with the trough prior to
the R-wave arrival and the compressive (posi-
tive) peak of the R-wave signal, respectively.
To estimate the duration of the impact, two
durations d and 0 are defined in which the
former represents the elapsed time between
trough and ending of the R-wave signal, and
the latter stands for the duration of the entire
compressive response between two zero
crossings.

Figure 2. A typical surface displacement response due to an impact force

Figure 3 shows the surface responses corre-
sponding to various types of impact forces in
which impact durations for all forces are the
same, D = 2. In Figure 3(a), responses due to
a half-sine function, a triangle function, and
an impulse function obtained from matching

the shape of the force function with that of an
arbitrarily selected impact created by hitting a
concrete surface with a PCB 086C03 hammer.
It is clear that the trough-to-ending duration,
d, associated with the half-sine and the trian-
gle functions equal to the impact duration D
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since the arrival and ending time of the im-
pact forces can be easily recognized by the
abrupt changes of curves. On the other hand,
a more realistic force function, denoted as
“hammer” inthe Figure, leads to a smoother
trough in the response curve and thus rela-
tively smaller values for d. The reason why
response curves show abrupt changes at
trough and ending points is that the slopes at

the beginning and the ending of the force
functions are not continuous. In Figure 3(c),
responses curves due to half-sine-squared and
half-sin1.5 are compared with that of half-sine.
Because the slopes at the starting and ending
points of the sin2 and sin1.5 functions are con-
tinuous, their corresponding response curves
appear to have smoother troughs as that
shown in the realistic case.

(a) surface responses w.r.t. impact forces in (b) (b) force functions

(c) surface responses w.r.t. impact forces in (d) (d) half-sine-powered force func-
tions

Figure 3. Surface responses due to various types of force functions for D = 2 and = 0.18

The trough-to-ending duration, d, the com-
pressive duration, 0, the peak amplitude,
Apeak, and the trough amplitude, At, associated
with various force functions are summarized
in Table 1. It can be seen from Table 1 that the
realistic case is close to and falls between the
half-sine-squared and half-sin1.5 cases. As far
as the amplitudes Apeak and At are concerned,

the half-sine-squared force function seems an
appropriate approximation for the realistic
impulse that we arbitrarily selected for this
work. Therefore, the half-sine-squared func-
tion is also selected to illustrate the variation
of duration differences with the size of impact
duration D, as shown in Table 2.
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Table 1. Comparisons between responses due to various force functions (D = 2, = 0.18)

Force function d 0 Apeak At At / Apeak

Triangle 2 1.841 1.159 -0.159 0.137

Half-sine 2 1.848 1.046 -0.247 0.236

Half-sin1.5 1.939 1.766 1.066 -0.112 0.105

Half-sine-squared 1.864 1.692 1.084 -0.084 0.078

Realistic(hammer) 1.918 1.732 1.083 -0.063 0.058

Table 2. Variation of various ratios with impact duration D (half-sine-squared force, = 0.18)

Impact duration d / D 0 / D 0 / d At / Apeak

D = 10 0.984 0.965 0.98 0.004

D = 5 0.961 0.931 0.969 0.015

D = 2 0.932 0.846 0.908 0.078

D = 1 0.899 0.764 0.850 0.203

D = 0.5 0.879 0.703 0.800 0.372

D = 0.2 0.878 0.673 0.767 0.532

D = 0.1 0.878 0.673 0.767 0.560

To establish the relations between impact
duration D and response amplitudes Apeak and
At, responses due to half-sine-squared impacts
of different durations are plotted in Figure 4.
From Figure 4(a), it can be observed that as
impact duration increases, the peak amplitude
Apeak approaches A0, while the trough ampli-
tude At becomes less significant. For example,
the ratios of At to Apeak are 0.203, 0.372 and
0.532 for impact duration D equal to 1, 0.5
and 0.2, respectively. To have a better presen-
tation of the trend of response curves, Figure
4(b) shows the variation of amplitudes with
horizontal axis in logarithmic scale. The lim-
iting amplitude ratio (At / Apeak) for very small
impact duration is about 0.56 as D being
smaller than 0.14. Table 2 lists the duration
ratios and amplitude ratios for different values
of impact duration D. It is interesting to note
that the duration ratios appear to be fixed as

the force duration becomes smaller, for in-
stance when dimensionless duration D is as
small as 0.2 or less. On the other hand, when
dimensionless duration D is large, the trough
amplitude At is negligible and impact duration
D can be roughly approximated by d or 0.
Table 3 lists the (At / Apeak) amplitude ratios

associated with different values of D for
various force functions. It is apparent that all
force functions show similar trends regarding
the variation of the (At / Apeak) ratio versus
impact durations. In all cases, the ratios asso-
ciated with D = 0.1 already equal to the lim-
iting values obtained using very small D. The
realistic force function recovered from the
PCB hammer gives ratios lower than those
obtained from the three half-sine-powered
functions. Generally speaking, the ratios by
the half-sine-squared function agree with the
realistic ones for large values of D. For
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smaller values of D, results by the realistic
force appear to be about 70% to 80% of those

by the half-sine-squared force.

Figire 4. Surface responses due to half-sine-squared forces with = 0.18

Table 3. Variation of amplitude ratios (At / Apeak) with impact duration D (= 0.18)

At / Apeak sin sin1.5 hammer sin2

D = 10 0.050 0.010 0.005 0.004

D = 5 0.010 0.029 0.015 0.015

D = 2 0.236 0.105 0.059 0.078

D = 1 0.416 0.234 0.141 0.203

D = 0.5 0.615 0.405 0.261 0.372

D = 0.2 0.803 0.579 0.400 0.532

D = 0.1 0.864 0.620 0.440 0.560

From Figure 4(b), as impact duration D in-
creases, the peak amplitude Apeak shows a de-
creasing trend for small values of D and ap-
proaches a constant, A0, for larger values of
D. To have a better idea on how peak ampli-
tude varies with impact duration, it is shown
in Figure 5 the (Apeak / A0) versus (D) curves
with half-sine force function for various
Poisson’s ratios. Since Figure 5 is plotted us-
ing logarithmic scales, the negative slope of
minus one-half within very small values of D

represents that peak amplitude Apeak attenu-
ates with r-0.5. On the other hand, the peak
amplitude Apeak equals A0 and thus attenuates
with r-1 for the region of larger D. As shown
in Figure 5, curves associated with different

values of Poisson’s ratios result in almost par-
allel lines of similar slopes for smaller D and
converge to a single curve for larger D. To
investigate the differences among (Apeak / A0)
versus (D) curves of different force functions,
Figure 6 shows the corresponding curves of
four kinds of force functions for a given
Poisson’s ratio = 0.18. It is shown in Figure
6 that three half-sine related curves exhibit
similar trends. In addition, higher-powered
sine functions appear to cause larger peak
amplitudes. The triangle force function gives
the highest values among all for D larger than
0.5 but leads to results close to those of
half-sine1.5 for region of very small D.
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Figure 5. Amplitude ratios for half-sine curve with
different Poisson’s ratios

Figure 6. Amplitude ratios for different force func-
tions with Poisson’s ratio = 0.18

4. Recovery of impact force functions

To reasonably recover the force function of a
specific surface response, one has to identify
first the amplitude and the duration of the
impact force. In the following, we propose a
simple procedure using amplitude curves such
as those shown in Figure 6 to estimate the
force amplitude. Alternatively, the impact
force can be simulated as an equivalent force
using a relatively simple function, i.e. a
half-sine function, or using a portion of the
surface signal. The first approach requires an
appropriate duration for the simulated force

while the latter method utilizes the compres-
sive portion of the surface response as the
force function, in which the force duration is
0. Regarding the determination of the dura-
tion of an equivalent half-sine force, the rela-
tion between an appropriate value and the du-
ration parameters d and 0 is studied. It is
found that such an equivalent half-sine force
can reproduce similar frequency contents as
those of the original impact functions and can
thus provide an alternative way to compute
the transfer function associated with a specific
impact-echo response. Details on the deter-
minations of force amplitude and equivalent
duration of the impact are discussed as fol-
lows.

Determination of force amplitude

A realistic impact may be simulated using
half-sine functions with power orders between
1.5 and 2, such as the example illustrated in
Table 1. In all cases, the duration parameter 0

is always smaller than D and the value of d

is ranged between 0 and D. Using d or 0 to
represent the impact duration would un-
der-estimate the real impact duration, D. As a
result, when using a smaller D to establish
the response amplitude Apeak from the
half-sine1.5 and half-sine-squared curves,
higher estimates can be anticipated since Apeak

decreases with D as shown in Figure 6. On
the other hand, the half-sine curve gives
somehow lower values than the two higher
order half-sine-powered curves. Without pre-
cise computations, using half-sine curves to
establish Apeak may roughly balance the
over-estimate caused by the designated
smaller value for D. The variations of the two
response durations with impact duration D

are shown in Table 4. The corresponding pre-
dictions of amplitude ratios from the “lower” 
half-sine curve are shown in Table 5. To have
a better look at the trends of the amplitude
predictions, Figure 7 shows the predicted am-
plitude ratios with markers for each impact
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force. According to results associated with
these three cases of impact forces, it is found
that the lower ratios associated with d are
very close to the half-sin1.5 curve. While the
higher ratios with respect to 0 seem basically
follow the trend of the hammer curve but
keep increasing as decreases and finally de-
viate from the trend. As a result, extracting
amplitude ratios from the half-sine curve with
durations of d may provide lower bound val-
ues regardless of the types of force functions.
On the other hand, the predicted values using
0 are higher than the true solutions, espe-
cially for smaller impact durations. However,
as long as impact duration D is larger than 1,

the amplitude ratios predicted by half-sine
agree well with the real values for all three
force functions. Owing to the fact that the use
of smaller response durations d and 0 would
compensate the under-estimated ratios ob-
tained from the half-sine curve, such curve
may be used to provide estimates within rea-
sonable ranges for the amplitude ratio (Apeak /
A0) associated with various types of force
functions.
To simplify the recovery of amplitude ratio

(Apeak / A0), the half-sine amplitude curve for
= 0.18 can be approximated by three simple
functions as shown in Equation (8) [5].

(a) predicted amplitudes w.r.t.
0 of half-sin2

(b) predicted amplitudes w.r.t.
0 of half-sin1.5

(c) predicted amplitudes w.r.t.
0 of realistic hammer record

Figure 7. Predictions of amplitude ratios using half-sine curve with 0 and d

Table 4. Variations of 0 and d with D for half-sin2, half-sine1.5 and hammer forces (= 0.18)

sin2 sin1.5 hammer

0/D d/D 0/D d/D 0/D d/D

D = 10 0.965 0.984 0.965 0.990 0.973 0.992

D = 5 0.931 0.961 0.940 0.983 0.945 0.983

D = 2 0.846 0.932 0.863 0.961 0.867 0.959

D = 1 0.764 0.899 0.807 0.948 0.763 0.926

D = 0.5 0.703 0.880 0.739 0.932 0.666 0.889

D = 0.2 0.673 0.878 0.697 0.932 0.614 0.878

D = 0.1 0.673 0.878 0.697 0.932 0.614 0.878
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Table 5. Equivalent values of (Apeak / A0) obtained from half-sine curve with D replaced by 0 and d (=
0.18, values associated with 0 and d listed in Table 4)

Apeak / A0 Original values Estimates by half-sine

sin2 sin1.5 hammer 0 of sin2 d of sin2 0 of sin1.5 d of sin1.5 0 of
hammer

d of
hammer

D = 10 1.004 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.002

D = 5 1.015 1.011 1.012 1.009 1.008 1.009 1.008 1.008 1.008

D = 2 1.084 1.066 1.083 1.064 1.053 1.061 1.050 1.061 1.050

D = 1 1.256 1.213 1.278 1.254 1.195 1.233 1.177 1.254 1.186

D = 0.5 1.626 1.549 1.694 1.714 1.546 1.674 1.507 1.76 1.538

D = 0.2 2.505 2.392 2.646 2.744 2.408 2.692 2.338 2.871 2.408

D = 0.1 3.539 3.363 3.713 3.859 3.386 3.793 3.288 4.037 3.386

1
2

1.7

for 0.4

1 0.12 for 0.4 2.5

1 for 2.5

Y X X

Y X X

Y X





 

   

 

(8)

in which D /X c , peak 0/Y A A , and c is
defined in Equation (4).

Determination of impact duration D

As shown in Table 4, the ratios of response
durations (0 and d) to impact duration D for
different force functions are similar, but their

differences become more significant as D de-
creases. Figure 8 shows the variations of re-
sponse durations for different force functions.
It is clear that, when the anticipated value of
D is larger than 2, using response durations d

and 0 to predict original impact duration D
seems possible since differences between
curves are minor. However, for cases of small
D, reliable predictions become relatively dif-
ficult since precise relations between the re-
sponse durations and D cannot be determined
without prior knowledge of the force function.

Figure 8. Variations of response durations 0 and d with impact duration D
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Determination of frequency contents of
impact force

In the previous two sections, we illustrate
that the predictions for the amplitude and du-
ration of an impact force can be carried out
through their relations with the response dura-
tions d and 0. Nevertheless, it is quite clear
that one can not possibly recover the exact
time history of force function from the estab-
lished Figures and Tables. When dealing with
frequency spectra, the most significant char-
acteristics of the force function is its fre-
quency contents. Thus, two simple ap-
proaches will be introduced to reproduce rea-
sonable frequency contents for arbitrary force
functions.
From the time history of a recorded surface

response, the most straight-forward way to
obtain a force function similar to the real one
is to use the compressive response with dura-
tion of 0 as a “Pseudo” force function. As an
example, the comparison is made between
frequency spectrum of the original half-sine
force function and that of the pseudo force for
the case of D equal 2, as shown in Figure 9.
For this specific case of D, the pseudo force
spectrum agrees well with the real force spec-
trum since 0 is close to D. As 0 becomes
much smaller than D, it can be expected that
the difference between the two spectra would
be more significant. In addition, the first zero
of the frequency spectrum for the half-sine
force is at frequency 1.5/D.

(a) frequency spectra (b) force-time function

Figure 9. Frequency spectra associated with half-sine force for D = 2

Similar behavior can be observed from re-
sponses due to other force functions, as
shown in Figure 10. When comparing be-
tween the real spectra (dashed curves) shown
in Figures 9 and 10, it is clear that the ordi-
nate of the half-sine curve at zero frequency is
the highest and the frequency of the first
near-zero amplitude for the other curves ex-
tend to frequencies higher than 1.5/D. Owing
to their smaller durations, the pseudo curves
(solid curves) are always smoother than the
real curves (dashed curves), in which the
formers have lower ordinates at zero fre-
quency and also higher frequencies for the

first zero or near-zero amplitude. Such effects
may be compensated one way or another by
changing the force function to a half-sine
function since the half-sine function results in
relatively steepening effect among the various
force functions. This means that, when re-
placing the real forces with the half-sine force
and a duration smaller than D, the equivalent
spectrum may be similar to the real one. In
Figure 10, the marked curves represent the
equivalent spectra computed by a half-sine
function with duration 0. Except for the tri-
angle force, the equivalent spectra appear
better than or at least as good as the pseudo
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ones in matching the real spectra. The
trough-to-ending duration d is always larger
than the compressive duration 0 and thus the
equivalent spectrum using duration of d

would be steeper than the 0 one. In several
cases, the equivalent half-sine 0 spectra agree
well with the real ones in Figure 10. Since, for
cases where 0 almost equals to D, the over-

estimate by the half-sine force cannot be bal-
anced. The equivalent half-sine 0 spectra be-
come much steeper than the real spectra for
cases of very large values of D. As a result,
the use of an equivalent half-sine spectrum
with a duration of 0 can potentially provide
good approximations for the real spectrum,
providing the value of D is relatively large.

(a) frequency spectra (b) force-time function

Figure 10. Frequency spectra associated with various force functions for D = 2
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The spectra associated with a small impact
duration is shown in Figure 11, in which the
half-sine-squared force has an impact duration
D equals 0.2. The differences among d, 0

and D are more significant for smaller values
of D, as mentioned in the pervious section. It
can be seen that both the pseudo spectrum
computed directly from the compressive re-
sponse of duration 0 and the equivalent
half-sine spectrum with 0 become much less
steeper than the real spectrum. The equivalent
half-sine spectrum obtained with duration d

appears to be steeper than the real spectra. As
can be expected, both equivalent spectra are
steeper than the pseudo spectrum. A smoother
curve has smaller amplitude within the lower
frequency region and larger amplitude within
the higher frequency region. When the fre-
quency associated with the point of intersec-

tion between a smoother curve and a steeped
curve is defined as “trend-reverse” frequency, 
the trend-reverse frequency seems to be about
half of the frequency of the first near-zero
amplitude, in the range between 0.75/D and
1/D. Apparently, the equivalent half-sine
spectra with d and 0 may serve as the upper
and lower bounds of the real spectrum. An-
other example is shown in Figure 12, where
the equivalent half-sine spectra for the
half-sin1.5 force is plotted for D = 0.2. The 0

curve approaches closely to the lowered
pseudo spectrum while the d curve appears to
be still higher than the real spectrum. As D

decreases the half-sine 0 curve moves to-
wards the pseudo spectrum, and the half-sine
d curve is steeper than but approaches
downward to the real spectrum.

(a) frequency spectra (marker represents half-sine 0) (b) force-time function

(c) frequency spectra (marker represents half-sine d)

Figure 11. Frequency spectra associated with half-sine-squared force for D = 0.2
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Based on the above findings, we can con-
clude that, when D is large, the real spectrum
would fall between the equivalent half-sine
spectrum of 0 and the pseudo spectrum de-
fined by the compressive duration 0. The
former could be steeper while the latter is
slightly smoother than the real spectrum. On
the other hand, for very small D, the equiva-
lent spectrum of d seems to be the closest one
of all to the real spectrum. For moderate val-
ues of D, the real spectrum obviously locates
somewhere between the two equivalent

half-sine spectra. To illustrate this point, we
arbitrarily assume that the duration used in
computing the equivalent half-sine spectrum
linearly varies with the amplitude ratio
(At/Apeak). The amplitude ratio is within zero
and the maximum ratio listed in the bottom
row of Table 3. The equivalent half-sine spec-
trum with a duration linearly interpolated
between 0 and d is shown in Figure 12(d).
As can be expected, this equivalent spectrum
is somewhat better than the half-sine d curve
in matching the real spectrum.

(a) frequency spectra (marker represents half-sine 0) (b) force-time function

(c) frequency spectra (marker represents half-sine d) (d) interpolated curve

Figure 12. Frequency spectra associated with half-sin1.5 force for D = 0.2

The second example of such interpolated
spectrum where a moderate D of 1 is selected
is shown in Figure 13. From Table 3, we rec-
ognize that (At/Apeak) ratio is 0.234 and the
extreme ratios associated with = 0 and =
d are 0 and 0.62, respectively. From Table 5,
the corresponding values for 0/D and d/D
are 0.807 and 0.948. The equivalent duration
can be obtained from interpolating 0.234 be-
tween 0 and 0.62. Thus the resulting duration

equals to = 0.86D. Again, it is obvious that
the interpolated spectrum agrees well with the
real spectrum.
For practical Impact-Echo tests on concrete

surface, the dimensionless impact duration 
for the near-source receiver (typically a radial
distance of 3-cm) is normally higher than 2
and seldom less than 1. Thus, the only pa-
rameter we need to normalize an Impact-Echo
spectrum is simply the compressive duration
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0. Neither d nor the interpolation process is
required in recovering a simulated transfer

function associated with an impact test.

(a) frequency spectra (marker represents half-sine 0) (b) force-time function

(c) frequency spectra (marker represents half-sine d) (d) interpolated curve

Figure 13. Frequency spectra associated with half-sin1.5 force for D = 1

Computation of simulated transfer func-
tion

Consider two normalized functions fu(t) and
Wu(t) with their maximum amplitudes equal
to a unit amplitude. The force and response
functions are expressed as f(t)=Zfu(t) and W(t)
= ZApeakWu(t), respectively. Since the ampli-
tude of the equivalent force function is equal

to that of W(t), that is ZApeak or ZYA0, the
equivalent force function can be expressed as
fe(t) = ZApeakfue(t). fue(t) is a pseudo force
function, such as the half-sine function or the
compressive response corresponding to Wu(t),
of unit amplitude. The transfer function can
then be expressed in terms of the Fourier
transform pairs of fu(t) and Wu(t) as

peak u u u
peak peak 0

u u ue e

ZA W ( ) W ( ) W ( )W( ) W( )
A A =YA

f ( ) Zf ( ) f ( ) f ( ) f ( )

f f ff f
f f f f f

  

   
     (9)

with

e peak ue peak uf ( ) ZA f ( ) ZA f ( )f f f 
  

Equation (9) indicates that the ordinate of
transfer function is of the order of A0 and thus
depends on radial distance r, shear modulus G,
and Poisson’s ratio . Test data of approxi-

mately the same mass density and Poisson’s
ratio, as in the case for concrete specimens,
can be compared based on the following con-
ditions. Assume that r = 0.03m and Cp = 4000
m/s. A relatively long impact duration is also
assumed such that Y = 1. The default transfer
function can then be expressed as
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u u
0 0

u u

W ( ) W ( )W( )
=A ( , ) =A (0.03,4000)
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f ff
r C

f f f

    
    
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with an ordinate constant A0(0.03, 4000). A0

is inversely proportional to r and the square of
Cs (also Cp) as shown in Equations (2) and (3).
A scaled transfer function can be obtained as

0 u u
0

0 u u e

A ( , ) W ( ) W ( ) W( )W( )
A ( , ) Y

A (0.03,4000)f ( ) f ( ) f ( ) f ( )
p

p default n n
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f f f f
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where
2

4000 0.03
Yn

p

F
C r

            

Accordingly, we define a simulated transfer
function which is computed from the surface
response function W(t), the equivalent force
function fe(t), and a scale constant Fn.
The frequency counterpart of the equivalent

force function fe(t) can be obtained via com-
puter programs using FFT algorithm. How-
ever, the amplitude of the Fourier transform
for a unit half-sine function with duration tD

can be explicitly expressed as,

2 2( ) 2cos( )
(1 4 )

D
D

D

t
f t f

t f






F (12)

with f representing the sampling frequency.
The FFT computation can thus be omitted
when deducing the equivalent half-sine spec-
tra.

5. Experimental application

In this section, the application of the pro-
posed approach to the quantification of Im-
pact-Echo signals is illustrated with experi-
mental data. Two examples are presented in
which the first one contains impact tests at an
identical location using three different impact
sources, while the second case is associated
with impact tests at different points on a uni-
form plate. It should be noted that the differ-
ences among thickness amplitudes resulted
from repeated impacts for a specific steel ball
are typically within 5% and could be as high

as 10% for the smallest ball, the 3-mm ball.
The test data shown in the first example are
intentionally selected so that the thickness
amplitudes recovered using pseudo forces for
the three different steel balls can be almost
identical. In the second example, six impact
tests were performed at each location with a
specific steel ball. The curves shown in fig-
ures are those corresponding to the test sets
which give the intermediate value among the
six impacts.

Example 1 :

In this example, a 60-cm60-cm concrete
plate specimen with 15-cm thickness is pre-
pared and repeatedly tested at a pair of fixed
points with steel balls of different diameters.
The distance between the impact point and the
near-source receiver is 3 cm. The P-wave ve-
locity calculated from the first arrivals of the
surface response histories at two receivers is
3970 m/s. The diameters of balls are 3, 5, and
6 mm and their corresponding compressive
durations are 16, 29 and 36 s, which are
equivalent to 0 of about 1.38, 2.52, and 3.10,
respectively. The recorded time histories of
the impact responses and their frequency am-
plitude spectra are shown in Figure 14. It is
apparent that both time and frequency re-
sponses associated with three different balls
are very similar in terms of the major wave
form and of the frequency contents near the
thickness frequency. Since the frequency am-
plitude is a direct function of force amplitude
and duration, the ordinates at the thickness
frequency for different impacts are clearly
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different from each other.

(a) 3-mm steel ball and 16-s duration (0 = 1.38)

(b) 5-mm steel ball and 29-s duration (0 = 2.52)

(c) 6-mm steel ball and 36-s duration (0 = 3.1)

Figure 14. Response wave forms and amplitude spectra with respect to three different impact steel balls
(impacting at an identical point)
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To illustrate the effect of using the half-sine
amplitude curve in Figure 6 to generate simu-
lated transfer functions, the three amplitude
spectra in Figure 14 are normalized with re-
spect to the pseudo impulses as shown in Fig-
ure 15. The scaled thickness amplitudes asso-
ciated with all three impact sources appear to
be very consistent. Although, what we illus-
trate in the Figures are selected to have very
close scaled thickness amplitudes, these
promising experimental data can be easily
achieved and also be expected since all three
curves are obtained by impacting at an iden-
tical point. The values shown in parentheses,
on the other hand, represent the scaled thick-
ness amplitudes which are calculated using
half-sine impulses with duration 0. The dif-
ferences among values in the parentheses are

less than 4%. The trend-reverse frequencies
associated with the three impact tests can be
estimated by 0.75/t0 and are about 47, 26 and
21 kHz, respectively. Since the thickness fre-
quency, 12.45 kHz, is much lower than the
trend-reverse frequencies, the thickness am-
plitudes recovered by the half-sine force are
clearly lower than those obtained with pseudo
forces as can be expected. The recovered
thickness amplitudes basically remain con-
stant for different sizes of steel balls regard-
less of the (pseudo or equivalent half-sine)
forces used. Figure 16 shows the force-time
functions associated with the pseudo forces
and the equivalent half-sine forces. It is obvi-
ous that, as impact duration becomes larger,
the skewness of the curves becomes more
significant.

(a) 3-mm steel ball and 16-s duration (b) 5-mm steel ball and 29-s duration

(c) 6-mm steel ball and 36-s duration

Figure 15. Simulated transfer functions with respect to three different impact steel balls
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(a) 3-mm steel ball and 16-s duration. (b) 5-mm steel ball and 29-s duration

(c) 6-mm steel ball and 36-s duration

Figure 16. Simulated force-time functions with respect to three different impact steel balls

Example 2 :

In the second example, impact tests are per-
formed on an 80-cm80-cm concrete plate
specimen with a thinner thickness, 9-cm.
Three sizes of balls, 3-mm, 5-mm and 6-mm
in diameters, are used as impact sources at
three different points, specified as A, B, and C.
The distance between the impact point and the
receiver is kept 3 cm. The P-wave velocity
recovered from the first arrivals of the surface
response histories at two receivers is about
3750 m/s. The corresponding compressive
duration t0 are about 15, 36 and 41 s (0 =
1.19, 2.93, 3.34), respectively. The estimated
trend-reverse frequencies (0.75/0) of the
force spectra are around 51, 21 and 18 kHz.
It is shown in Figure 17 the time histories

and frequency amplitudes of the surface dis-
placement responses for three specific test
sets. Comparing to what we saw in the previ-

ous example, the differences in both wave
forms and frequency amplitudes of the three
impact tests are more obvious since they are
recorded at different locations. The thickness
frequency amplitude for the 5-mm steel ball
are about 85% and 50% higher than those of
the 3-mm and 6-mm steel balls. After scaling
the frequency spectra with the proposed
pseudo force spectra, the simulated transfer
functions of the three impact tests provide
consistent values for amplitudes at the thick-
ness frequency. The differences among thick-
ness amplitudes are less than 5%, as shown in
Figure 18. The values in parentheses stand for
the frequency amplitudes obtained using the
half-sine approach. Note that the amplitude of
the 3-mm (15s) is smaller than those of the
5-mm (36s) and the 6-mm (41s). The near
identical amplitudes in Figures 18(b) and 18(c)
are due to the fact that corresponding force
spectra have almost the same ordinate near
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the trend-reverse frequency.
What worth of mentioning is that the thick-

ness amplitude caused by the real force might
be very close to the constant value shown in
Figure 18(b) or 18(c) since the
force-frequency amplitude of the real force
could be close to the estimated ones near the
trend-reverse frequency. The differences
among these three values obtained from the
half-sine approach are around 7% which is
slightly larger than that of the pseudo ap-

proach, 4%. Moreover, the thickness frequen-
cies 20.5 kHz and 19.77 kHz indicate that the
recovered thicknesses of the plate, 8.8 cm and
9.1 cm, are close to the designated 9-cm.
Consequently, the two proposed procedures
can both provide reasonably consistent thick-
ness amplitudes in the simulated transfer
function, even when surface responses are
generated using different impact sources at
different locations on the plate surface.

(a) impact responses at point A using 3-mm steel ball (15-s duration)

(b) impact responses at point B using 5-mm steel ball (36-s duration)

(c) impact responses at point C using 6-mm steel ball (41-s duration)

Figure 17. Surface displacement responses by impacting three steel balls at different locations
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(a) 3-mm steel ball (15-s duration) at A (b) 5-mm steel ball (36-s duration) at B

(c) 6-mm steel ball with 41-s duration at C

Figure 18. Simulated transfer functions of the three impacts corresponding to Figure 17

6. Conclusions

The analytical solution for the normal sur-
face displacement due to the Heaviside force
has been reviewed and applied to compute the
surface responses caused by various im-
pulse-type force functions. A series of nu-
merical studies on the direct Rayleigh re-
sponse are carried out to analyze the varia-
tions of the response amplitudes and the re-
sponse durations associated with the direct
wave form. Based on the varying trends con-
structed by half-sine-powered forces, it can be
concluded that the simple half-sine function
with duration 0 provides frequency contents
similar to those of the designated force func-
tions. Accordingly, an equivalent force func-
tion can be easily established with amplitude
curves that are numerically obtained using

half-sine function as the impact force. In or-
der to make comparison between different
impact responses, a simulated transfer func-
tion is proposed, as Equation (11). Amplitudes
at the thickness frequency can now be prop-
erly scaled and also remain constant for a
uniform specimen.
In computing the normal surface displace-

ment, numerical results are obtained by su-
perposing responses calculated based on the
analytical solution associated with the
Heaviside step force. The well-known
Pekeris’ explicit solution for Poisson’s ratio of 
0.25 is extended to a more general expression
which is valid for Poisson’s ratio of arbitrary 
values. Such explicit formulation may poten-
tially be useful to the investigation on related
research topics.
For the construction of relationship between
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response amplitude and force duration, vari-
ous force functions all lead to similar trends.
These trends can be separated into three re-
gions such that approximations can be made
by three simple mathematic expressions, as
shown in Equation (8). For a given radial dis-
tance r, relatively small durations result in
attenuation of amplitude of r-0.5, while rela-
tively long durations cause amplitudes attenu-
ated with r-1.
Because the value of a transfer function is

dependent on radial distance, shear modulus,
and Poisson’s ratio, a scaled transfer function
is proposed as shown in Equation (11). The
scale factor in Equation (11) is the ordinate
constant of the transfer function associated
with a designated test situation where radial
distance is 0.03 m, P-wave velocity is 4000
m/s, and impact duration is relatively large.
Such factor is equivalent to the nominal am-
plitude factor A0 defined in Equation (3) and
can be arbitrarily adjusted according to the
attribute of tests. The advantage of using a
scaled transfer function is that the ordinate of
thickness amplitude can be of the order near
unity. Thus, it provides more manifest intui-
tion than that of the real transfer function.
The realistic impact is usually highly

field-sensitive and the compressive portion of
surface response essentially retains the shape
of the impact force. Using a pseudo force
function is comparatively better than using
the equivalent half-sine force in providing
sTable values for the thickness amplitudes.
However, the half-sine approach allows one to
deduce transfer functions without the need of
FFT computation. Thus, the half-sine ap-
proach is a relatively simpler alternative to
calculate the normalized amplitude at the
thickness frequency.
From the two application examples of Im-

pact-Echo experiments, it is found that the
proposed approach can recover steady values
for the thickness amplitude not only for tests
at a fixed location but also for tests using
various impact sources at different locations.
When thickness amplitudes obtained for an

identical specimen remain constant regardless
of the impact sources and locations, the
thickness amplitude can serve as an index to
evaluate the impedance change at the bottom
interface of the specimen. The simulated
transfer functions computed for two groups of
experimental data demonstrate the capability
of the proposed method in quantifying the
thickness amplitude for Impact-Echo tests.
The results show that the proposed approach
is very promising and can be extended to
evaluate the information of substrate layers.

Appendix: list of symbols

A0 : permanent normal surface displacement
due to Heaviside step force

Apeak : compressive peak amplitude of the di-
rect Rayleigh waveform

At : trough amplitude of the direct Rayleigh
wave form

a, b, c : roots of Rayleigh characteristic Equa-
tion R(y2) = 0, c is the largest root

Cp , Cs , CR : P, S, and Rayleigh wave veloci-
ties

F(f) : Fourier transform of a unit half-sine
function

Fn : scale constant of simulated transfer func-
tion

F : sampling frequency
f(t) : force-time function
fu(t) : normalized function of f(t) with a unit

amplitude
fue(t) : approximation function of fu(t)
G : shear modulus
: mass density
: ratio of S-wave velocity to Rayleigh wave

velocity (= c )
H(t) : Heaviside step function
: Lame’s constant= G
: Poisson’s ratio
R(y) : characteristic Equation of Rayleigh

wave
R : radial distance
: ratio of S-wave velocity to P-wave veloc-

ity
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t : elapsed time
t0 : duration of compressive portion of the di-

rect Rayleigh wave form
tD : impact duration
td : trough-to-ending duration of the direct

Rayleigh wave form
: dimensionless time parameter (=Cst/r)
0 : dimensionless compressive response dura-

tion (=Cst0/r)
D : dimensionless impact duration (=CstD/r)
d : dimensionless trough-to-ending response

duration (=Cstd/r)
W(t) : normal surface response due to

force-time function
Wu(t) : normalized function of W(t) with a

unit amplitude
w(t) : normal surface response due to the

Heaviside step function
X : ratio of impact duration to the R-wave ar-

rival time (=D / c )
x , x : Fourier transform pair
Y : ratio of Apeak to A0

Y : dimensionless variable defined as Cs/CR

Z : amplitude of the Heaviside step force
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