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Introduction 
 
The study of limit cycles is an interesting 

topic in both mathematics and applied sci-
ences. Normally it includes two aspects: one 
is the existence, stability and instability, 
number and relative positions of limit cycles, 
and the other is the creating and disappearing 
of limit cycles along with the varying of the 
parameters in the system (e.g. bifurcation). 
For the exact number of limit cycles and their 
relative positions, the known results are not 
many because determining the number and 
positions of limit cycles is not easy. That is 
the reason why the 16th Hilbert problem still 
remains open even for the case when n = 2 
after one hundred years, although some im-
portant progress has been made recently [3-9]. 
The development of the qualitative analysis 

of ordinary differential equations is deriving 
not only by the “Hilbert Problems” proposed 
in the Second International Congress of 
Mathematicians, Paris 1900, but also by the 
study of the nonlinear oscillations in many 
other fields, such as discontinuous automatic 
control systems [6], bio-chemical reactions 
[10,11], immune response and predator-prey 
systems, and other problems in mathematical 
bi-sciences [12-15]. Qualitative analysis is 

now a powerful tool in the study of nonlinear 
phenomena in all areas in science and tech-
nology, and it is developing very rapidly.  In 
this paper, we study a cubic differential sys-
tem which is a generalization of the preda-
tor-prey model studied recently by many au-
thors [1,2,16,17]. We analyze the properties 
of the equilibrium points, and study the Hopf 
bifurcation and the stability of the periodic 
solution created by the bifurcation. This work 
is useful for a further understanding of the 
nonlinear oscillations of the predator-prey 
competition. 
 

2. The Cubic Model and Main Theorems 
 
We consider the system 
 

2 3
1 2 3 4

( ) ,

dx b x b x b x b xy
dt
dy cy x y y
dt

α β

= + − −

= − + −
 (1) 

 
where 
 

1 3 4, nonnegative, , , , ,b b b c α β , positive, 
and b2 sign undetermined parameters.  
The system (1) can be considered a special 
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case of the following model for predator-prey 
interaction: 
 

( ) ( , )

( ( , ), ) ( ),

dx f x g x y
dt
dy u g x y y v y
dt

= −

= −
 (2) 

 
where, x and y represent densities of prey and 
predator, respectively. The functions 

,f , , andg u v  represent the rates of prey 
reproduction, prey death due to predation, 
predator reproduction, and predator death, 
respectively. Gilpin (see Kuno [17], for in-
stance) used a function of the form 

2 3( ) ,f x ax bx cx= − +  in his predator-prey 
model, which can be described both over- and 
under-crowding effects in the prey population. 
And many Chinese authors ([1,2]) have used 
some other forms for  ( )f x  and other func-
tions of (2).  
By the variable transform:  
 

1, , ,c cx x y y dt d
c

τ
α β

= = =  and then re-

place ,x  ,y  with , , ,x y tτ the system (1) is 
transferred to  
 

( )
( ) ,1

2
321

yxy
dt
dy

kxyxaxaax
dt
dx

−+−=

−−+=
 (3) 

 
where 
 

31 4
1 3 2

2
2

, n o n n eg a tiv e , ,

p o s itiv e , an d  .

b cb ba a k
c

ba

α β

α

= = =

=

 

 
It is easy to see that, in 

{( , ) | 0, 0},x y x yΩ = ≥ ≥  if 1 2 3a a a+ ≥  the 
system has three equilibrium points: (0,0),O  

2( ,0),B x  and 4 4( , 1)E x x − , 
where 
 

2
2 2 1 3

2
3

2
2 2 1 3

4
3

4
,

2

( ) ( ) 4( )
.

2

a a a a
x

a

a k a k a k a
x

a

+ +
=

− + − + +
=

 

 
Let 
 

2
2 1 3( ) 4( )a k a k a∆ = − + +  (4) 

 
we have 
 

2
4

32
a kx

a
− + ∆

=  

 
Let {( , ) | 0, 0}.x y x y+Ω = > >  Consider the 
eigenvalues of the variational matrix of sys-
tem (3), or of the Jacobian: 
 

2
1 2 32 3

( , ) ,
1 2

a a x a x ky kx
J x y

y x y
⎛ ⎞+ − − −

= ⎜ ⎟
− + −⎝ ⎠

 (5) 

 
and, denote 
 

2 4 1

1

4

( 1 2 ) (1 2 2 ),
1 2 2(2 1) .

p a k x a k
a kR k
x

= − − + + − −
− −

= − +  (6) 

 
It follows that 
(1) (0,0)O  is always a saddle since the ei-

genvalues of (0,0)J : 1a  and 1− , 
having opposite signs; 

(2) 2( ,0)B x  is a saddle if 1 2 3a a a+ >  
since the eigenvalues: 2

1 3 2a a x− − and 

2 1x − , having opposite signs; it is a sta-
ble node or focus if 1 2 3a a a+ < . 

(3) 4 4( , 1)E x x −  is a stable node or focus if 

1 2 3a a a+ > and 0p < , or it is an unsta-
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ble node or focus if 1 2 3a a a+ > and 
0p < . 

 
Note that when 1 2 3a a a+ > , E  is the only 

equilibrium point in +Ω . 
We prove the following theorems: 
 

Theorem 1. System (3) undergoes a Hopf bi-
furcation at 2 .a R=  The periodic solution 
created by the bifurcation is stable if 

122 −< ka , and unstable if 122 −> ka . 
Proof. Compute the Jacobian 
at 4 4( , 1)E x x − with the characteristic equation  
 
2 0p qλ λ− + =  (7) 

 
where p is as defined in (6), and  
 

2
3 4 1 4 1 2 3( )( 1) 0 (since ).q a x a k x a a a= + + − > + >  (8) 

 
Choose p as the bifurcation parameterµ . It 
follows that 
 

1
2

4

1

4

1 2 2 2 1

1 2 2 2 1.

a k pa k
x

a k k
x

µ

− − −
= + −

− − −
= + −

 (9) 

 
We may rewrite system (3) as 
 

( , , ),

( , , ).

dx P x y
dt
dy Q x y
dt

µ

µ

=

=
 (10) 

 
Denote the Jacobian of (10) as ( )J µ , and 

then the trace of the matrix ( )J µ is just p− , 
in other words, by the second equation in (9), 
we have 
 

( )1 2 4( ) 1 2 2 1 2 .trJ a k a k xµ = − + + + + −  (11) 

Since 
 

4
0

( ) 0d trJ x
d µ

µ
µ =

= >  

 
the function )(µtrJ is increasing at 0µ = . It 
is easy to know, by (11) and (9), that 

0( ) 0trJ µµ = = , and we have 
 

0 if 0
( ) 0 if 0

0 if 0.
trJ

µ
µ µ

µ

⎧ < <
⎪ = =⎨
⎪ > >⎩

 (12) 

 
Notice that 0q > , the sign of the real parts 

of the roots of the equation (7) is determined 
by )(µtrJ only, which is changed from nega-
tive to positive when µ  is increasing from 
negative to positive. This means that the 
phase structure of 4 4( , 1)E x x −  changes from 
stable to unstable at 0µ =  as µ  increases.  
We still need to show that when 0µ = , or, 

when 1
2

4

1 2 2(2 1) a ka k
x

− −
= − + , the equilib-

rium point 4 4( , 1)E x x − is a first order focus. 
Let 
 

4
4 4 4

4

, ( )

 ( 1),

y
u y y v y x y x

q
y

y x qt
q

τ

= − = − + −

= − − =
, 

 
and transfer the system (3) to 
 

4
2 21 2 3

3 3 2 24 5 6 7

1

   ,

du v uv
d y
dv u A u A v A uv
d A u A v A u v A uv

τ

τ

= − −

= + + −
+ − − +

 (13) 

 
where 
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4 3 4 2 3 4 2
1 2

4

3 4 2
3

(3 ) 3
, ,

6 2 1

y a x a k a x a
A A

q y
a x a k

A
q

− + −
= =

− + +
=

, 

 

.
3

,
3

,,
4

3
7

3
62

4

3
5

43
4 y

a
A

q
a

A
y

qa
A

q
ya

A ====  

 
Using the polar system: 

,sin,cos θθ rvru ==  the system (13) is 
now 
 

.)cossincossincossincos(

)cossin1cossincossincos(1

,)cossincossinsincossin(

)cossinsincossincossin1(

242
7

3
6

3
5

4
4

2

4

2
3

2
2

3
1

33
7

22
6

4
5

3
4

22
3

3
2

2
1

2

4

rAAAA

r
y

AAA
dt
d

rAAAA

rAAA
ydt

dr

θθθθθθθ

θθθθθθθθ

θθθθθθθ

θθθθθθθ

+−−+

+−++=

+−−+

−++−=

 
Therefore, 
 

.)]}cossin1cossincossincos(

)cossinsincossincossin1[(

)cossincossinsincossin{(

)cossinsincossincossin1(

32

4

2
3

2
2

3
1

2
3

3
2

2
1

2

4

3
7

22
6

4
5

3
4

22
3

3
2

2
1

2

4

⋅⋅⋅++−+

−++−−

+−−+

−++−=

r
y

AAA

AAA
y

AAAA

rAAA
yd

dr

θθθθθθθ

θθθθθθθ

θθθθθθθ

θθθθθθθ
θ

 

(14) 
 

Let the solution of (14) take the form: 
 

⋅⋅⋅+++= 3
3

2
2 )()( crcrcr θθ , 

 
with 0)0()0( 32 =⋅⋅⋅== rr . (15) 
 
Substituting (15) into (14) and comparing the 
coefficients of 2c , one has 
 

2 2 21
4

3 22 3

1 sin cos sin cos

      sin sin cos

dr
A

d y
A A

θ θ θ θ
θ

θ θ θ

= − +

+ −
. (16) 

 

Taking the integration of (16) on ],0[ θ , one 
obtains  
 

3 32 1 2 3
4

2 1 2
4

1 1 1( ) ( ) cos sin
3 3

1 1 2        cos ( ) ,
3 3

r A A A
y

A A A
y

θ θ θ

θ

= − + −

− − − +
 

 
which is a periodic function of period π2 . 
Similarly, for the coefficients of 3c , 
 

)].21(cos3sincos)1[(

)cossinsincossincossin1(
3
2

)cossin1cossincossincos(

)cossinsincossincossin1(

)cossincossin-sincossin(

21
4

2
3

3
3

21
4

2
3

3
2

2
1

2

4

2

4

2
3

2
2

3
1

2
3

3
2

2
1

2

4

3
7

22
6

4
5

3
4

3

AA
y

AAAA
y

AAA
y

y
AAA

AAA
y

AAAA
d
dr

−−−−−+−

−++−+

+−+

−++−−

+−=

θθθ

θθθθθθθ

θθθθθθθ

θθθθθθθ

θθθθθθθ
θ

(17) 
Let ),()( 333 θθθ fgr += then 
 

);3(
8
1

]cos)
3

10
3

10
3

10(

cos)54
3
26(

cos)
3
5

3
262()

3
2[(

2
1

653132

6

4

3
3231

4

4

3
313265

2

4

3
2

0
3163253253

AAAAAA

d
y
A

AAAA

y
A

AAAAAA

y
A

AAAAAAAAAg

−−+=

++−

+−+−+−

++−−++−−= ∫

θθ

θ

θ
π

π

 

 
and 
 

.}cos)2(
3
2cos)2(

3
2

sin)21(
3
2cossin)21)(1(

3
2

cossin)
3
2(cossin)]1(

3
2

)
y
1()

y
1-[()cossin)

3
2

3
2

3
5)(1(

cossin)2(cossin)22{()(

3
3231

4

3
3251

4

3

3
21

4
2

2
31

44
1

5

4

22
3

2
2

23
21

4
2

2
3

21
4

2
4

1
5

4
21

4
1

32
27

3

4

2
214

0
3

θθθ

θθθ

θθθθ

θθ

θθθθθ
θ

dAAAA
y
A

AAAA
y
A

AA
y

AAA
yy

A

y
A

AAAA
y

AA

AAAA
y

AA
y

A

AA
y
AAAAf

−−−−−+

−−−−−−−

+−−+−++

++−−−−−

−++−= ∫
 

 
It is easy to see that )(3 θf  is also a periodic 
function with the period π2 . 
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Notice that when )0or(,2 == pRa , 
2
43424 2 xaxay −= , thus 

 

.0)21(
8

)221(
8

2
43

1
43

3

≠−+=

−−=

ka
qq

kxa

ka
qq

kxa
g

 (18) 

 
By the criteria of the successor function, 

4 4( , 1)E x x − is a first order stable focus if 
,03 <g or 122 −< ka , and unstable if 

.122 −> ka  Moreover, when it is unstable, 
by the method of Friedrich(see, for example, 
[17]), the periodic solution surrounding 

4 4( , 1)E x x − is stable. We thus complete the 
proof of Theorem 1. 
 

3. Applications to the Predator-prey Sys-
tems 

 
We use an example to illustrate our theorems. 

Let 1 0a =  in the system (3), one has  
 

( )

( )

2
2 3

1

dx x a x a x kxy
dt
dy y x y
dt

= − −

= − + −
 (19) 

 
which is studied by [1,2] recently. It is easy to 
see that * *( , )x y , where 
 

2
2 2 3*

3

* *

( ) ( ) 4
2

1,

a k a k ka
x

a

y x

− + − +
=

= −

 (20) 

 
is the only equilibrium point in +Ω  if 

2 3a a> . 
 

Assume 
 

*

0 *(2 1) .yR k
x

= −  

Theorem 2. If 2 30 a a< < , the equilibrium 

2 3( / ,0)a a  of the system (19) is globally as-
ymptotically stable. 
Proof. The Jacobian of system (19) at 

2 3( / ,0)a a is 
 

2 3

2
2 3 2 3

( , ) ( / ,0)
2 3

2 / /
( , ) .

0 1 /x y a a
a a ka a

J x y
a a=

⎛ ⎞− −
= ⎜ ⎟

− +⎝ ⎠
 

 
Both of the eigenvalues are negative if 

2 30 a a< < . Also, by the fact that all the tra-
jectories of system (19) for 0t > are bounded 
in Ω  (see [2]), thus its ω − limit set con-
tains only equilibrium points, close orbits, or 
singular close orbits. Note that  both x-axis 
and y-axis are the orbits of (19), and there is 
no other equilibrium point in 

{( , ) | 0, 0}.x y x y+Ω = > > Therefore, all the 
trajectories approach to 2 3( / ,0)a a for 0t > . 

2 3( / ,0)a a  is globally asymptotically stable. 

Note that if 
*

2 0 *(2 1) ,ya R k
x

= = −  then 

122 −< ka . We have 
 

Theorem 3. If 2 3a a> , then * *( , )x y is the 
only equilibrium point in +Ω . The system (19) 
undergoes a Hopf bifurcation at 

*

0 *(2 1) ,yR k
x

= −  and the periodic solution of 

the system created by the bifurcation is al-
ways stable. 
These theorems have not been studied in 

[1,2], and they are useful in the analysis of the 
nonlinear oscillatory behavior of the predator 
and prey populations. 
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