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1. Introduction 
 
The oscillation is an important phenomenon 

in many natural systems in biology, ecology, 
bio-chemistry and bio-engineering. A typical 
example is the cyclic behavior in bio-reactors. 
In this paper, we study the competition of two 
predators competes exploitatively for a single 
prey species in a bio-reactor. When the prey 
species is non-renewable, many results have 
been reported (see [1,2], for example). But 
there are not so many results reported for the 
case when the prey species is renewable with 
reproductive properties --- a more classic prey. 
Examples of competing for a renewable re-
source with some numerical simulations can 
be found in Hsu, Hubbell and Waltman [3,4], 
McGehee and Armstrong [5], and Koch [6]. 
In most of such models, it is assumed that the 
predators consume the nutrient (prey) and the 
consumed nutrient converted to growth is 
proportional to consumption. Nutrient uptake 
(consumption) is usually taken to be of the 
Monod (or Michaelis-Menten) form: 

/( )mxS a S+ [3,4]. But in reality, other proto-
types of functional responses are also possible 
[2,7]. In population modeling, the global sta-
bility of the model is often established by 
constructing a Lyapunov function. Once the 
Lyapunov function is obtained, the global sta-
bility follows directly from the LaSalle’s in-
variant principle [2,9,10]. Then from the 
global asymptotical stability the Hopf bifur-
cation follows by the center manifold theo-
rem.  
A limit cycle of a mathematical model is re-

lated to the nonlinear phenomena of the cor-
responding system. Thus, the study of limit 
cycles is helpful in understanding the oscilla-
tion of the nonlinear system. The existence of 
limit cycles is often follows from the Hopf 
bifurcation. It is known that to establish the 
existence of limit cycles in n − dimensional 
system for 3n ≥  is quite difficult. Because 
the powerful tools in the plane systems like 
Poincare-Bendixon theorem cannot be applied 
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directly to the ones of 3n ≥  (see counter-
examples [11,12]). Therefore, the method we 
use in this paper is also interesting in mathe-
matical analysis.  
The Michaelis- Menten type of response is 

monotonic, but the inhibition type is not. In 
the literature there are not so many results re-
ported for the models with non-monotonic 
response functions. The study of the 
three-dimensional competition model with the 
non-monotonic inhibition response certainly 
has some interests in bio-mathematical mod-
eling. In this paper, a three-dimensional 
bio-reactor model of exploitative competition 
of two predator organisms with inhibition re-
sponses for the same renewable organism 
with reproductive properties is considered. 
We shall use the Lyapunov function method 
and the center manifold theorem to prove the 
global stability, the existence of Hopf bifurca-
tion and limit cycles. 
We would like to mention that the Ar-

dito-Ricciardi type Layapunov function for 
the system discussed in this paper was used 
before by Chiu and Hsu in the three-level 

food-chain model [17,18]. 
The model and our main results are pre-

sented in the next section, and the proofs are 
listed in the Appendix. 
 
2. The Model and Main Theorems 
 
The competition model of two predators 

competes exploitatively for a single prey spe-
cies in chemostat with inhibition response and 
different death rates takes the form: 
 

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1
1 1

1 1

2 2 2
2 2

2 2

1 2

(1 ) ,
( )( ) ( )( )

,
( )( )

,
( )( )

(0) 0, (0) 0, (0) 0.

m d S x m d S xdS SS
dt K a S b S a S b S

dx m d S d x
dt a S b S

dx m d S d x
dt a S b S

S x x

γ
δ δ

= − − −
+ + + +

⎛ ⎞
= −⎜ ⎟+ +⎝ ⎠
⎛ ⎞

= −⎜ ⎟+ +⎝ ⎠
> > >

   (1) 

 
The meaning of the symbols is listed in the 
following table: 

 
Table 1. Meaning of the symbols 

 
Mathematical 

Symbol 
 Biological Meaning 

, 1, 2ix i =  two predators 
S  prey species 
γ  growth rate 
K  carrying capacity of the renewable resource S 

, , 1, 2i ia b i =  half saturation constants 

, 1, 2id i =  death rate of predator ix  

, 1, 2im i =  maximum predation rate 
, 1, 2i iδ =   yield constant for ix  

 
Notice that in model (1), the predators: ix  

consumes the prey with functional response 

of inhibition type , 1,2.
( )( )

i i

i i

m d S i
a S b S

=
+ +

 

For simplicity, we will assume the yield con-

stant 1, 1, 2i iδ = =  in the following discus-
sion because, if not, a variable transformation 
can always make the constant yield as 1.  
We shall use a corollary to the center mani-

fold theorem to prove the existence of the 
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Hopf bifurcation and the limit cycles of the 
system. 
Our discussion is on the set 

3
1 2 1 2{( , , ) 0, 0, 0}R S x x S x x+ = ≥ ≥ ≥ with the 

following basic assumptions for the parame-
ters: for each 1,2,i =  

1( )B : i i im a b≥ + ; 

2( )B : 2( ) 4 2i i i i i i i im a b m a b a b K− − + − − − > ; 

3( )B : i iK a b> + ; 
The purpose of these basic assumptions is to 
guarantee that our discussion is limited in the 
first quadrant due to biological reasons. For 
example, because of 2( )B , only the usual 
three equilibrium points in 3R+ : 

0 1 1 1 1: ( ,0,0), : ( , ( ),0)E K E hλ λ  and 

1 2 2 2: ( ,0, ( ))E hλ λ  need to be considered. 
It is easy to verify that the solutions of sys-

tem (1) are bounded and positive for all 
0,t >  and ( )S t K≤ for t  sufficient large 

[1,3,7]. 
For each 1,2i = , iλ and '

iλ  are the solu-
tions of the equation  
 

0.
( )( )

i i
i

i i

m d S d
a S b S

− =
+ +       (2) 

 
Then 
 

( )
( )

2

' 2

1 ( ) 4 ,
2
1 ( ) 4 .
2

i i i i i i i i i

i i i i i i i i i

m a b m a b a b

m a b m a b a b

λ

λ

= − − − − − −

= − − + − − −
 (3) 

 
By 2( )B , '

i Kλ > , so there are only three 
equilibrium points in 3R+  that we need to 
consider: 0 1 1 1 1: ( ,0,0), : ( , ( ),0)E K E hλ λ  and 

1 2 2 2: ( ,0, ( ))E hλ λ , where for each ,i  ( )ih S  
is defined as 
 
( ) (1 )( )( )i i i

i i

Sh S a S b S
m d K
γ

= − + + , 1, 2i = .   (4) 

 
It follows that iλ ， 1,2i = ， represent the 

“break-even” concentrations, the values of the 
nutrient where the derivatives of 2,1, =ixi  
are zeros. And, 1 1( )x h S= is the prey isocline 
when 2 0x = ，and so is 2 2 ( )x h S= when 1x  
is absent. 
Regarding the prey isociline 1 1( )x h S= , as 

shown in Figure 1, there exists an 
1 (0, ),S K∈ such that '

1 1( ) 0h S = , where  
 

( )2 2 2
1 1 1 1 1 1 1 1 1 / 3.S K a b K a b a b Ka Kb= − − + + + − + +      (5) 

 
Also, there exists an ( )1 1,S S K∈  such that  

1 1 1 1 1 1 1( ) (0) / .h S h a b m dγ= =  
 

 
 

Figure 1. The prey isocline 1 1( )x h S= when 2 0x = . 
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For the stability of the equilibrium 1E , we 
have  
Theorem 1. If 1 2λ λ< , and if 1 1,S λ≤  then 

1E  is globally asymptotically stable; in other 
words, 1 2 1 1 1( ( ), ( ), ( )) ( , ( ),0)S t x t x t hλ λ→ as 

.t →+∞  
The proof can be found in Appendix. 
Now, let μ  be the bifurcation parameter, 
and rewrite system (1) in μ  as follows:  
 

( , ).dX f X
dt

μ=                       (6) 

 
The stability of an equilibrium and the Hopf 
bifurcation are connected by the center mani-
fold theorem. 
 Theorem A. Let W be an open set in 3R , 

(0,0,0)O W= ∈ , and  the analytic function 
f is defined as 3

00 ),(: RWf →−× μμ , where 

0μ  is a small positive number. Denote the 
Jacobian of f at ( , ) ( ,0)X Oμ = as ( ( , 0))J f O . 
Assume 
 

(i) system (6) has )0,0,0(  as its equilib-
rium point for any μ ; 

(ii) the eigenvalues of 
( ( ,0))J f O are

0 0( ) | (0), ( ) | (0)i iμ μβ μ β α μ α= =± = ± =  
which satisfy the condi-

tions (0) 0, (0) 0.β α> <   
 

Then, if )0,0,0(  is asymptotically stable 
at 0=μ , unstable on 0μ > , there exists a 
sufficiently small 0, >μμ  such that system 
(6) has an asymptotically stable closed orbit 
surrounding )0,0,0( . 
The proof of Theorem A can be found in 

[13,14]. In order to use this theorem to estab-
lish the existence of bifurcation, we need the 
following theorem 
Theorem 2. If 1 2λ λ<  and 1 1S λ> , 1E  is 
unstable. 
Now, assume 1 1Sμ λ= −  is a bifurcation 

parameter. We are going to prove the follow-
ing theorem. 
Theorem 3. If 1 2λ λ< , then system (1) un-
dergoes a Hopf bifurcation at 1 1 0Sμ λ= − = , 
and the periodic solution created by the Hopf 
bifurcation is asymptotically stable for 

1 10 1.S λ< − <<  
Recently, a quite similar food chain model 

but with Monod functional response is pub-
lished [16] with some numerical results. The 
limit cycles in the numerical simulation of [16] 
take the following forms which give us some 
idea about the locations and shapes of limit 
cycles in the model (1.1) (Figure 2). 

 

 
 

Figure 2. Example of limit cycles of competition in bio-reactor. 
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For the following discussion, we recall a re-
sult from our previous work [8]. Considering 
the system 
 

( )( ( ) ( )),

( )( ( ) ( )),

dx x F x y
dt
dy y r x y
dt

φ π

ρ ψ ξ

= −

= − + +
                (7) 

 
in which the biological meanings of the func-
tions and parameters in (7) are as in [8]. 
Let E  be the equilibrium point of system 

(7). Assume the following assumptions are 
satisfied:  

)( 1H  1 1, , , [0, ), (0. ), 0,C F C Fφ ψ π ξ ∈ ∞ ∈ ∞ >  
(0) (0) (0) (0) 0,φ π ρ ξ= = = =  and ' 0φ ≥  

for all 0x ≥ , and ', ', ' 0π ρ ξ ≥  for all y > 0; 
Also, there exists an  0x ≥  such that ψ( x ) 
= r, and for x ≠ x , '( ) 0xψ > ；For 0 x k≤ ≤ , 

( )xφ is bounded by a linear function. 
)( 2H  The curve ( ) ( ) 0y F xπ − =  is defined 

for all x > 0, ( ) ( )x y rψ ξ+ =  is for y > 0 and 
0r ≥ . 
)( 3H  There exists k > x such that F(k) = 0, 

'( ) 0F k < , and F(x) > 0, for all 0 x k< < ; 
and for any k  > k, '( ) 0F k ≠  if F( k ) = 0. 
It is proved in [8] that  
Theorem B. If E  is unstable, then the sys-
tem (7) has at least one limit cycles around 
E . 
The following result is for the case when 
1 1 1( , ( ),0)E hλ λ=  is unstable. The projecting 

system of (1) onto the plane 2 0x =  takes the 
form: 
 

1 1 1

1 1 1

1 1 1
1 1

1 1

1

(1 ) ,
( )( )

,
( )( )

(0) 0, (0) 0.

m d S xdS SS
dt K a S b S

dx m d S d x
dt a S b S

S x

γ
δ

= − −
+ +

⎛ ⎞
= −⎜ ⎟+ +⎝ ⎠
> >

          (8) 

 
It follows that the point '

1 1 1 1( , ( ))E hλ λ=  is 
the equilibrium of (8). It is easy to see that, 

'
1E  is unstable since 1 1.S λ>  In other words, 
'
1E  is on the two dimensional unstable mani-

fold of 1E . 
Consider 1as ,  and  as S x x y , then system 

(8) is reduced to a special case of system (7) 
with  
 

1 1

1 1

( )
( )( )

m d SS
a S b S

φ =
+ +

,
1 1 1

1 1

( ) ( ) (1 )( )( ),r SF S h S a S b S
m d K

= = − + +
 

 
1

1
1

( ) ,xxπ
δ

= 1 1 1( ) , ( ) 0,x x xρ ξ= =  

1 1
1

1 1

and ( ) .
( )( )

m d Sr d S
a S b S

ψ= =
+ +

      (9) 

 
1 1 1

1 1

( ) ( ) (1 )( )( ),r SF S h S a S b S
m d K

= = − + +  

 
1 1

1 1 1 1
1 1

( ) , ( ) 0,  and ( ) .
( )( )

m d Sx x x r d S
a S b S

ρ ξ ψ= = = =
+ +

 

 
The basic assumptions 1 3( )H H−  are satis-

fied, by Theorem C, for system (8), there ex-
ists at least a limit cycle around '

1E . There-
fore, we have 
Theorem 4. If 1 2λ λ< , system (1) has at least 
one limit cycle around the equilibrium 1E . 
 

3. Discussion 
 
Competition between species exploiting a 

common prey species is probably frequent 
occurrence in both nature and laboratory. 
However, not many theoretical work has been 
done on such systems [4,7,15]. Moreover, in 
most of the population models, the functional 
responses are chosen to be some monotonic 
functions such as Monod (or Michaelis- 
Menten) type. But in real world applications, 
it is not always the case. The one with 
non-monotonic inhibition response is, of 
course, worth a further study. 
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It looks to us the methods used in Section 2 
for the equilibrium 1 1 1 1( , ( ),0)E hλ λ  is also 
working for the equilibrium 2 2 2 2( ,0, ( ))E hλ λ . 
For example, if we define  
 

( )2 2 2
2 2 2 2 2 2 2 2 2 / 3S K a b K a b a b Ka Kb= − − + + + − + +    (10) 

 
Theorem A is also valid for 2 2.S λ≤  

Moreover, in the proof of Theorem 1 in the 
Appendix, if we use 1 2λ λ≤  instead of 

1 2λ λ< , it seems that the proof is still working.  
Therefore, an open problem arises what 
would happen if 1 2λ λ= , the two predator 
species having same “break-even” concentra-
tion? Both survive? A further study of this 
phenomenon must be very interesting in the 
bio-mathematical modeling. 
Some numerical simulation of limit cycles 

for the food chain model with Monod func-
tional response can be found in [16]. As is 
well known, a limit cycle in a mathematical 
model corresponds to the nonlinear oscillation 
phenomena in the bio-reactor system. Thus 
the study of limit cycles of the model is useful 
in analyzing the behavior of the reactor. Ac-
tually, the reacting behavior of the food-chain 
bio-reactor system is very complicated. 
Computer simulation shows that it includes 
stationary, cyclic and chaotic coexistence 
[19.20]. Therefore, a further mathematical 
analysis of the food-chain is definitely neces-
sary. 
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Appendix 
 
Before we prove Theorem 1, we need a use-

ful lemma. At first we define an auxiliary 
function 1( )F S : 1 1(0, ) ( , )K Rλ λ →U  as 
 

1

1 1 1
1 2

1 1 1 1 1 1

1

( ) ( )( ) .
( )S

h h SF S
m a b a b d

mλ

λ
ξ λ ξ
ξ

−
=

− − − −
∫            (11) 

 
It follows that  
 

1

2
1 1 1 1 1 1

1

1 1 1
1

1 1

( )

1( ) 1 ,

S m a b a b d
m

m a b S
m

λ

ξ λ ξ
ξ

λ λ
ς

− − − −

⎛ ⎞− −
= − −⎜ ⎟

⎝ ⎠

∫  

where 
 

1 1 1 1 1
1

1ln ln ( ), for some ( , ) ( , ).S S S Sλ λ ς λ λ
ς

− = − ∈ U  

 
Thus, it can be verified that  
 

1

2
1 1 1 1 1

1
1

( ) 0, for (0, ),
S m a b a b d S K S

mλ

ξ ξ ξ λ
ξ

− − − −
> ∈ ≠∫ . 

(12) 
 

In fact, if 1S λ≥ , then 1 1,ς λ>  and if 1S λ< , 
then 1 1,ς λ<  therefore 
 

1

2
1 1 1 1 1 1

1

1 1 1
1 1 1

1 1

( )

( )( )

0.

i

S m a b a b d
m

m a b S
m

λ

ξ λ ξ
ξ

λ ζ λ
ζ

− − − −

− −
= − −

>

∫
 

 
The following result is necessary for the in-
vestigating of the stability of the equilib-
rium 1E . 
As shown in Fig. 1, by the definition of 
1( )h S , it is easy to see that there exists an 

1 (0, ),S K∈ such that '
1 1( ) 0h S = , where  

 
( )2 2 2

1 1 1 1 1 1 1 1 1 / 3S K a b K a b a b Ka Kb= − − + + + − + + . 

(13) 
 

Moreover, there also exists ( )1 1,S S K∈  such 
that  
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1 1 1 1 1 1 1( ) (0) / .h S h a b m dγ= =  
 

Lemma 1. If 1 1S λ≤ , then there exists a 
0,  such that θ >  

 

11
1 10

max ( ) min ( ).
S KS

F S F S
λλ

θ
< ≤≤ ≤

≤ ≤           (14) 

 
Proof. We divide the proof into three different 
cases: (i) 1 1 1,S Sλ< ≤  (ii) 1 1,S λ≤ and (iii) 

1 1.Sλ =  We shall find a θ  such that (14) 
holds in each case. 
The proof of (i): 1 1 1S Sλ< ≤ . 
Consider the curve: 1 1( )x h S=  in the 1S x−  

plane, as it is shown in Fig. 1, it can be veri-
fied that there exists 1 1

ˆ [0, )S S∈ such 

that 1 1 1 1
ˆ( ) ( )h S h λ= . By the definition of 1( )F S , 

we have 
 

1 1

1 1 1
0

1 1

ˆlim ( ) 0, ( ) 0,

lim ( ) , lim ( ) ,
S

S S

F S F S

F S F S
λ λ

+

− +

→

→ →

= =

= −∞ = +∞
 

 

1 1
1

1 1

ˆ0 for (0, ) ( , ],
( ) ˆ0 for ( , ).

S S K
F S

S S

λ

λ

⎧> ∈⎪
⎨
< ∈⎪⎩

U
 

 
Suppose 
 

11
1 10

max ( ) min ( )
S KS

F S F S
λλ < ≤≤ ≤

> . 

 
Then there exists 0π > such that the equa-

tion 1( ) 0F S π− =  has three distinct roots, of 

which two are in 1̂(0, )S  and one in 1( , ]Kλ . 
Let 1 2 3, ,r r r be the three roots, then 

1 2 1 3
ˆ0 .r r S r Kλ< < < < < ≤  

Consider the equation 
 

1

1
2

1 1 1 1 1 1
1 1 1

1

( )

( )( ) ( ) 0.
S

H S

m a b a bh h S d
mλ

ξ λλ π ξ
ξ

=

− − − −
− − =∫       (15) 

 

It has four roots: 1,λ  and 1 2 3, ,r r r  in[0, ]K . 
By a simple calculation, 
 

''' 1 1 1 1
1 3

1 1 1

2 ( )6( ) 0m a bH S
m d K m S

π λγ − −
= + > . 

 
From Rolle’s Theorem, there exists 

(0, )Kζ ∈ such that '''
1 ( ) 0H ζ = . This contra-

diction implies the existence of 0θ >  such 
that 
 

11
1 10

max ( ) min ( )
S KS

F S F S
λλ

θ
< ≤≤ ≤

≤ ≤ . 

 
Since 1 1

ˆ( ) 0 for ( , ),F S S S λ< ∈  
1

1 1ˆ0 0
max ( ) max ( ).

S S S
F S F S

λ≤ ≤ ≤ ≤
<  

Obviously, this θ  satisfies the hypothesis 
(14). 
The proof of (ii): 1 1S λ≤ .  
In this case, we have, 

1 1
1 1 1

0
lim ( ) 0, lim ( ) , lim ( ) ,
S S S

F S F S F S
λ λ+ − +→ → →

= = −∞ = +∞

and 
 

1
1

1

0 for (0, ),
( )

0 for ( , ].
S

F S
S K

λ
λ

< ∈⎧
⎨> ∈⎩

 

 
It is easy to see that any 

1
1(0, min ( ))

S K
F S

λ
θ

< ≤
∈  will 

satisfy formula (14). 
The proof of (iii): 1 1.Sλ =  
It follows that  

 

1

1
0

1 1 1 1
1

1 1 1 1

lim ( ) 0,

2 (3 )lim ( ) 0
( )

S

S

F S

K a bF S
d K m a bλ

γλ λ

+→

→

=

− + +
= >

− −

  

 
(by L’Hospital law), 1( ) 0F S ≥  for 

(0, ],S K∈  and 1( )F S  is continuous in 
(0, ]K .  
Let 1,S ηλ=  1(0, / ), 1.Kη λ η∈ ≠ Then 
 

1 1 1 1 1 1 1
1 1

( ) ( )( )( )h K a b
m d K
γηλ ηλ ηλ ηλ= − + + , 
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and  
 

( )
1 1 1

1 1
1 1 1

1 1 1
1

2
1 1 1 1 1

1 1 1 1

1

( ) ( )( )
( ) (ln ln )

( 1) (( 2) )         = ,
( )( -1- ln )

             (0, / ), 1.

i i

h hF m a b
m

a b K
d K m a b
K

λ ηληλ
ηλ λ λ ηλ λ

δ γλ η η λ
η η

η λ η

−
=

− −
− − −

− + + + −
− −

∈ ≠

 

 
Consider the function 

 
( )2

1 1 1 1 1 1 1( ) ( 1) ( 2) ( )( 1 ln ),f a b K m a bη η η λ π η η= − + + + − − − − − −  
(16) 

 
for 1(0, / )Kη λ∈ , and 1,η ≠  where π is a 
positive constant which will be determined 
later. It is easy to see that  
 

1 1
0

lim ( ) , (1) 0,f f
η

η
+→

= −∞ =   

and 
 

'' 2
1 1 1 1 1 1 1( ) 6 2( ) 2 ( ) / .f a b K m a bη λη π η= + + − − − −

 
Let 1η = . We can choose  
 

1 1 1
0

1 1 1

2(3 ) 0 .a b K
m a b
λπ π

⎛ ⎞+ + −
= = >⎜ ⎟− −⎝ ⎠

     (17) 

 
such that ''

1 (1) 0f = . In other words, when π  
takes the value 0π , 1η =  is an inflection 
point of the curve 1( )y f η= .  
Since 1 1Sλ = , 1 1 13 0a b Kλ + + − >  and 

0 0.π >  
Now by  
 

''' 3
1 1 1 1 1( ) 6 ( ) / 0,f m a bη λ π η= + − − >  

 
for 1(0, / ), or (0, )K S Kη λ∈ ∈ . Therefore, 

''
1 ( )f η is increasing, and ''

1 ( ) 0f η >  
on 1(1, / )Kη λ∈ . This implies that '

1 ( )f η is 
increasing on 1(1, / )Kη λ∈ , and 

' '
1 1( ) (1) 0f fη > = . In other words, 1 ( )f η is 

increasing on 1(1, / )Kη λ∈ , and 

1 1( ) (1) 0,f fη > =  that is  
 

2
1 1 1

0
1 1 1

( 1) (( 2) )
( )( 1 ln )

a b K
m a b

η η λ π
η η

− + + + −
>

− − − −
.    (18) 

 
Thus, 
 

2
1 1 1 1 1

1
1 1 1 1

1 1 1 1 1 1 1
0

1 1 1 1 1

1

( 1) (( 2) )( )
( )( 1 ln )

2 (3 ) ,
( )

          ( , ).

a b KF S
d K m a b

a b K
d K d K m a b

S K

δ γλ η η λ
η η

δ γλ δ γλ λπ

λ

− + + + −
=

− − − −

+ + −
> =

− −
∀ ∈

 
Moreover, if (0,1),η∈ then 1(0, ),S λ∈  and 

( ) (1) 0,f fη < =  which implies 
 

2
1 1 1

0
1 1 1

( 1) (( 2) )
( )( 1 ln )

a b K
m a b

η η λ π
η η

− + + + −
<

− − − −
, 1(0, ).S λ∀ ∈  

(19) 
 

Thus, 
 

1 1 1 1 1 1 1
1 0 1

1 1 1 1 1

2 (3 )( ) , (0, ).
( )

a b KF S S
d K d K m a b
δ γλ δ γλ λπ λ+ + −

< = ∀ ∈
− −

 

 
Therefore, we always can choose 
 

2
1 1 1 1 1

1 1 1 1

2 (3 ) ,
( )

a b K
d K m a b

δ γλ λθ + + −
=

− −
 

 
such that the hypothesis (14) is satisfied. We 
complete the proof of Lemma 1. 
 
Proof of Theorem 1. Let  
 

1

1

1 1

2
1 1 1 1 1

1 2 1
1

1
1 1 1 2( )

( )( , , )

                     ( ( )) ,

S

x

h

m a b a bV S x x x d
m

h d cx x

θ

λ

θ θ

λ

ξ ξ ξ
ξ

ξ ξ λ ξ−

− − − −
= +

− +

∫

∫

 (20) 
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, ( 0)cθ ≥  will be determined later. It is easy 
to see that  1 3

1 2( , , ) ( , ),V S x x C R R+∈  
3

1 2 1 2{( , , ) 0, 0, 0}R S x x S x x+ = > > > , and 

1 1 1 1 2( , ( ),0) 0, ( , , ) 0V h V S x xλ λ = >  for 
3

1( , , ) /{ }.S x y R E+∈  
The derivative of V along the trajectory of 
system (1) is  

1 2

2
1 1 1 1 1 1 1 2 2

1 1 2
1 1 1 2 2

( , , )

( ) 1
( )( ) ( )( )

V S x x

m a b S S a b m d S m d SSx S x x
m S K a S b S a S b S

θ γ

=

⎛ ⎞− − − − ⎛ ⎞− − −⎜ ⎟⎜ ⎟ + + + +⎝ ⎠⎝ ⎠

&

1 1

1

2
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1

( )( )
( )( )

S m a b a b m d Sx h x x d d x
m a S b S

θ θθ

λ

ξ ξλ θ ξ
ξ

− −⎛ ⎞⎛ ⎞− − − −
+ − + −⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

∫
 

1 1 2 2
1 1 2 1 2 2

1 1 2 2

.
( )( ) ( )( )

m d S m d Sc x d x cx d x
a S b S a S b S

θ θθ
⎛ ⎞ ⎛ ⎞

+ − + −⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

 
Denote 

1 2 1 2 3( , , ) ,V S x x V V V= + +&  
where 
 

1

2
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1

2
1 1 1 1 1

1

( ) ( ) ( )( ) ( )
( )( )

( ) ,
S

m a b S S a bV x K S a S b S h
a S b S m d K

m a b S S a b d
m

θ

λ

γ λ

θ ξ
ξ

⎛− − − −
= − + + −⎜+ + ⎝

⎞− − − −
+ ⎟

⎠
∫  

2 2 1
2 1 2 2

2 1 2 1

,
( )( )

m dV cx x d
a b

θ λ
λ λ

⎛ ⎞
= −⎜ ⎟+ +⎝ ⎠

 and 
2

1 1 1 1 1 2 2
3 1 2

1 2 2

1 1 2 2 2 2 1
1

1 1 2 2 2 1 2 1

( )
( )( )

.
( )( ) ( )( ) ( )( )

m a b S S a b m d SV x x
m S a S b S

m d S m d S m dc d c
a S b S a S b S a b

θ

λθ
λ λ

⎛ − − − −
= −⎜ + +⎝

⎞⎛ ⎞ ⎛ ⎞
+ − + − ⎟⎜ ⎟ ⎜ ⎟⎟+ + + + + +⎝ ⎠ ⎝ ⎠⎠

 
By Theorem 2, there exists 0θ > such that 
(14) holds.  
Notice that, '

1λ  is as defined in (3),  
 

2 '
1 1 1 1 1 1 1( ) ( )( ).m a b S S a b S Sλ λ− − − − = − −    (21) 

 
If 1S λ< ,  
 

2
1 1 1 1 1

1 1

( ) 0,
( )( )

m a b S S a b
a S b S

− − − −
<

+ +
 

 
and 
 

1

1 1 1
2

1 1 1 1 1

1

( ) ( )
( )S

h h S
m a b a b d

mλ

λ θ
ξ ξ ξ
ξ

−
<

− − − −
∫

 

Therefore, 
 

1

2
1 1 1 1 1

1 1 1
1

( )( ) ( )
S m a b a bh S h d

mλ

ξ ξλ θ ξ
ξ

− − − −
− > ∫ , 

 
and thus 1 0.V ≤  Similarly, if 1S λ≥ , we 
also have 1 0.V ≤  
Also, since 1 2λ λ< , 2 0V ≤  for any 0.c ≥  

We now just need to show that there exists a 
0,c ≥  constant or a function of S, such that 

3 0.V ≤  In the case of c is a function of S, as 
we will see '

1 1( ) ( ),c Sλ ψ λ= − a negative term 
of '

1 2 1 1 2( )c x x x xθ θψ λ= −  will be added into 
'

1 2( , , )V S x x , which is still negative. We shall 
find the c  in two cases: (i) 1 2a a≥ , 

1 2or b b≥  (ii) 1 2a a<  and 1 2b b< . 
In the first case of 1 2 1 2,  or a a b b≥ ≥ , since 

1 2λ λ< , by Markus theorem ([10,11]), we can 
follow the same argument of Theorem 3.4 in 
[11], for any number c , the solution of sys-
tem (1) satisfies that  
 

1 1 1( ( ), ( ), ( )) ( , ( ),0) as .S t x t y t h tλ λ→ →∞  
 
This means that 1 1 1 1( , ( ),0)E hλ λ  is globally 

asymptotically stable. We just need to find a 
c for the second case of 1 2a a<  and 1 2b b< . 
Let  
 

2
2 2 1 1 1 1 1

2 2 1
2

1 1 1 1 1
1

1 1

2 2 2 2 1

2 2 2 1 2 1

( )( )
( )( )

( )
( )( )

       .
( )( ) ( )( )

m d m a b S S a bS
a S b S m

m a b S S a bc d
a S b S

m d S m dc
a S b S a b

θ

λ
λ λ

− − − − −
Δ = +

+ +

− − − −
+

+ +

⎛ ⎞
−⎜ ⎟+ + + +⎝ ⎠

  (22) 

 
It follows that  
 

'
'2 2 1 1

1 1 1
1 2 2 1 1

2 2 1 2 2 1

2 2 2 1 2 1

( )( )( ) ( )( )
( )( ) ( )( )

( )( ) ;
( )( )( )( )

m d S SS S S c d
m a S b S a S b S

m d S a b Sc
a S b S a b

λ λλ λ θ

λ λ
λ λ

− − −
Δ = − − +

+ + + +
− −

+
+ + + +
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or, 
 

'
1 2 2 1 1 1

2 1 2 1 1

' 1 1 2 2 1 1 1
1 1 2 2

2 1 2 1

( )( )( )( )
( )( )( )( )

( )( )( )( )( )( ) .
( )( )

S m d S a S b SS
a S a S b S b S m

cm d a b S a S b Sc d S a S b S
a b

λ λ

λθ λ
λ λ

⎛− − − + +
Δ = ⎜+ + + + ⎝

⎞− + +
+ − + + + ⎟+ + ⎠

(23) 
Define 
 

2 2
1 1

1

' 1 1 2 2 1 1 1
1 1 2 2

2 1 2 1

( )( )
( ) .( )( )( )( )( )( )

( )( )

m d a S b S
mS m d a b S a S b Sd S a S b S

a b
λθ λ
λ λ

+ +
Ψ =

− + +
− + + +

+ +

   

(24) 
 

That is 
 

2 2

'1 1 2 1 2 1 1 2 2 1
1

1 1 2 1 2 1

1( ) .
( )( ) 1 1

( )( )

m dS
m d a a b b m a b SS

a S b S a b
λθ λ

λ λ

Ψ =
⎛ ⎞⎛ ⎞− − −

− + + +⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

 
Since 
 
' 2 2

2
1 1 ' 2 1 2 1 1 1 2 2 1

1
1 1 2 1 2 1

( )( ) ,
( )( ) 1 1

( )( )

m d SS
m d a a b b m d a b SS

a S b S a b
λθ λ

λ λ

Θ
Ψ =

⎛ ⎞⎛ ⎞⎛ ⎞− − −
− − + + +⎜ ⎟⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠⎝ ⎠

   

(25) 
 

where  
 

'2 1 2 1 2 1 2 1
1 2

1 1 1 1

' 2 1 2 1 1 1 1
1 2

1 1 2 1 2 1

( ) 1 1 ( ) 1
( )

( ) 1
( ) ( )( )

0.

a a b b a a b bS S
a S b S a S b S

a a b b m dS
a S b S a b

θ θ λ

λθ λ
λ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞− − − −
Θ = − + + + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞− −
+ − + − −⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

<

    

(26) 
 

It follows that ' ( ) 0,SΨ >  since 2 1 0a a− >  
and 2 1 0.b b− >  
By 2( )B , '

2 Kλ > , then '
2 2 2 2 2 ,a b Kλ λ λ= >  

or 2 2 2 0,a b Kλ− >  which implies  
 

2 2 1 2 2 1 2 2 2 0.a b S a b K a b Kλ λ λ− ≥ − > − >  
 

Since 2
2 2 1 0,a b λ− >  we can choose 

'
1 1( ) ( ) 0c Sλ λ= − Ψ > . It follows that  

 

( )

' 1 1 2 2 1 1 1
1 1 2 2

2 1 2 1

'
1 1

1
2 1 2 1

( )( )( )( ) ( )( )( )
( )( )

( )( ) ( ) ( )
( )( )( )( )

0 (since ( ) increases).

m d a b S a S b SS d S a S b S
a b

S S S
a S a S b S b S

S

λθ λ
λ λ

λ λ λ

⎛ ⎞− + +
Δ = − + + +⎜ ⎟+ +⎝ ⎠

− −
⋅ Ψ −Ψ

+ + + +

≤ Ψ

  

(27) 
Note that ( )SΔ is always negative if 1S λ≠ . 
Therefore, 1 2 3( , , ) 0.V S x y V V V= + + ≤&  
By the LaSalle’s invariant principle, all tra-

jectories tend to the largest invariant set 
in '{( , , ) | 0}S x y VΛ = = . This requires 1S λ≡  
and 0y ≡ .  
To make 1{ | }S S λ= invariant under the 

condition 0y = , it follows 
 

1 1 1
1 1

1 1 1 1

' 1 0
( )( )

m dS x
K a b
λ λγλ

λ λ
⎛ ⎞= − − =⎜ ⎟ + +⎝ ⎠

.      (28) 

 
In other words,  
 

1
1 1 1 1 1 1 1

1 1

1 ( )( ) ( )x a b h
m d K

λγ λ λ λ⎛ ⎞= − + + =⎜ ⎟
⎝ ⎠

. 

 
Therefore 1{ }E  is the only invariant set inΛ . 
We thus complete the proof of Theorem 1. 
Proof of Theorem 2.  Consider the Jocobian 
of system (1) at 1E , 1( ) ( ),ijJ E a=  
, 1, 2,3.i j =  It follows that its characteristic 

equation is 
 

2
33 11 12 21( )( ) 0r a r a r a a− − − = ,         (29) 

 
2

1 1 1 1 1
11 1 1 12 2

1 1 1 1

( )(1 2 / ) ( ),
( ) ( )

m d a ba K h
a b

λγ λ λ
λ λ

−
= − −

+ +
1 1 1

12
1 1 1 1

,
( )( )

m da
a b

λ
λ λ
−

=
+ +

 

 
2

1 1 1 1 1 2 2 1
21 1 1 33 22 2

1 1 1 1 1 1 1 1

( ) ( ), .
( ) ( ) ( )( )

m d a b m da h a d
a b a b

λ λλ
λ λ λ λ

−
= = −

+ + + +
 

 
Assume the three roots of (29) as 1 2,r r  and 

3r . It follows that  
 

2
1 2 11 1 2 12 21 1 1 1

3 33 1 2

, 0 (since ),
0 (since ).

r r a r r a a a b
r a

λ
λ λ

+ = = − > >
= < <
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Therefore, if  
 

1 2 1
11

1 2 1

0,  and  have positive real part,  is unstable;
0,  and  have negative real part,  is stable.

r r E
a

r r E
>⎧

⎨<⎩
 

Notice that 
 

( )

2
1 1 1 1 1 1

11 1 1 1 1 12 2
1 1 1 1 1 1

21
1 1 1 1 1 1 1 1

1 1 1 1

( )(1 2 / ) 1 ( )( )
( ) ( )

3 2( ) ( ) .
( )( )

m d a ba K a b
a b m d K

K a b K a b a b
K a b

λ λγγ λ λ λ
λ λ

γλ λ λ
λ λ

− ⎛ ⎞= − − − + +⎜ ⎟+ + ⎝ ⎠

= − + − − + + −
+ +

 

 
Since 1S  is the only point such that 

'
1 1( ) 0h S =  on (0, ]K , it follows that if 

1 1 11, 0S aλ< <  and 1E  is stable; if 

1 1 11, 0S aλ> >  and 1E  is unstable but with 
a one-dimensional stable manifold. The proof 
of Theorem 2 is complete. 
Proof of Theorem 3. Since 1 1,Sλ μ= −  

1 1 1 1
1

1

( )( )a bm λ λ
λ

+ +
= , system (1) can be 

written in μ  as follows:  
 

'
1 1 1 2
'
1 1 1 2
'
2 1 1 2

( , , , ),

( , , , ),

( , , , ).

S S x x

x S x x

x S x x

ϕ μ

ϕ μ

ϕ μ

=

=

=

 

 
Use the variable changes: 
 

1 1 1 1 1 2 2, ( ),S S x x h x xλ λ= − = − = , 
 

system (1) in variables 1 2, ,S x x  is  
 

( , ),dX f X
dt

μ=                      (30) 

 
whose Jacobian is denoted as 1 2( , , )J S x x .  
 
Consider system (30) and its Jacobian at 

0μ =  and 1 2( , , ) (0,0,0)S x x = , 
 
( ( ,0))J f O =

1 2( , , )J S x x   
 

2 3 1 1 11 2
1 1

1 2 ( , , ) ( , ( ),0)( , , ) (0,0,0)
0

( , , ) S x x hS x x
S

J S x x λ λ
λμ

==
==

= . 

 
Its characteristic equation has the eigenvalues: 

)0(βi±  and (0)α , where 
 

2 2 2
1 1 1 1 1 1

3 3
1 1 1 1

2 2 1
2 1 2

2 1 2 1

( )(0) 0,
( ) ( )

(0) 0 (since ).
( )( )

m d a b
a b

m d d
a b

λ λβ
λ λ
λα λ λ

λ λ

−
= >

+ +

= − < <
+ +

 

 
By Theorem A when 1 2λ λ< and 1 1S λ≤ , 

the equilibrium 
1E  is globally asymptoti-

cally stable, and by Theorem 1, when 1 1S λ> , 
it is unstable. Therefore, the hypotheses of 
Theorem B are satisfied. Actually, we have  
(1) The equilibrium of system (1): 

(0,0,0)O =  in the 1 2, ,S x x  coordinate, 
or

1E = 1 1( , ( ),0)hλ λ  in 1 2, ,S x x , is glob-
ally asymptotically stable if =0μ ;  

(2) and, it is unstable if 0>μ . 
Therefore, system (8) undergoes a Hopf bi-
furcation at 0μ = , and so does system (1) at 

1 1S λ= . From Theorem B it follows that, for a 
sufficient small 0, >μμ , system (30) has 
an asymptotically stable closed orbit sur-
rounding (0,0,0).  In other words, for 

1 10 1S λ< − << , system (1) has an asymptoti-
cally stable closed orbit surrounding 

1 1 1( , ( ),0)E hλ λ . The proof of Theorem 3 is 
complete. 
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