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Abstract: Project preemption allows resources flow passively from one project or task to another. 
Due to high-cost and high-risk characteristics of software development, project preemption 
might have a significant impact on the ultimate completion time of a software project. This arti-
cle examines the feasibility of the Taguchi’s parameter design to achieve robust resource as-
signment for multiple software projects with different preemptive rules. Two examples of soft-
ware projects is employed to demonstrate the design process of the parameter design applying in 
the project scheduling problems. The first project illustrates a preemptive single software project. 
Project preemption occurs when resource vacations are considered. The second example consid-
ers problems of preemptive multiple project scheduling. The parameter design with preemption 
rules and scheduling heuristics are employed to solve the problem. The results show that the pa-
rameter design can achieve robust resource assignment by minimizing the effect of task varia-
tion.  
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1. Introduction 
 
Solutions for solving a preemptive human 

resource assignment problem contain deci-
sions for assigning the right task to the right 
person under the condition of allowing human 
resources flow passively from one project or 
task to another. Considering critical constrains 
of task complexity and resource scarcity, hu-
man resources for software projects are as-
signed to a certain scope of tasks by judging 
their technical skill suitable for the specialty 
and familiarity of the task, and therefore not 
easily substituted. When preemption occurs, a 
preemptive resource assignment problem for 
multiple software projects becomes more 
complex and needs to be solved robustly to 

reduce the impact of task complexity. Project 
resources in this paper are regard as human 
resources. Robust resource assignment aims 
to assign proper project resources under 
minimum turbulence of task variation, which 
means the selected resources can achieve 
project goals with most probability no mater 
how project tasks are over estimated or under 
estimated. Considering the difficulties for 
project managers to learn complex scheduling 
algorisms this paper aims to propose an easy 
and quick method for solving the preemptive 
resource assignment problem robustly. 
Based on the definition by Liu and Cheng [1] 

preemptive scheduling problems are those in 
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which the processing of a job can be tempo-
rarily interrupted and restarted at a later time. 
But what tasks should be re-scheduled among 
preemptive projects and non-preemptive pro-
jects? What impact there will be to the project 
objectives when project preemption occurs? 
And who is proper for the preemptive tasks? 
Considering those questions there are three 
issues that should be discussed further: 
1. Project preemption: project preemption 

may occur in different ways. Project 
managers need to determine what type of 
preemption so as to identify which task 
should be preempted and which task 
should be interrupted.  

2. Task priority: the priority of tasks should 
be pre-determined under the preemption 
rules. The determination of task priority 
requires easy to be operated and can be 
used to reduce the project duration. 

3. Resource assignment methods: resource 
assignment methods focus on proper se-
lection of resources. Considering the 
complex relationships among tasks, the 
method should be less sensitive to tasks 
variations.  

Taguchi’s parameter design is applied to 
solve the preemptive resource assignment 
problem since it is easy and famous for its 
robust designing results. This paper will pro-
pose the assignment process using Taguchi’s 
parameter design for solving the preemptive 
problem. Two examples is employed to illus-
trate the use of the proposed method.  
 
2. Literature review 
 
2.1. Preemptive scheduling 
 
Preemptive scheduling allows a task tempo-

rarily interrupted and restarted at a later time. 
Many of academy articles have discussed the 
scheduling problems, especial on the solu-
tions of manufacturing processes. For exam-
ple, Brasel and Hennes [2] consider an 
open-shop problem with n jobs being proc-
essed on m machines and preemption rule is 

each operation can be stop and continued later 
on; Averbakh and Xue [3] discuss the pre-
emptive problem in a supply chain scenario 
with a customer and a manufacturer. Discus-
sions of preemptive scheduling in project 
management are relatively few since compli-
cate situations needed to be considered in-
cluding preemption rules, resource assign-
ment, project due date, respectively. Herroe-
len et al. [4] recommend that task preemption 
increases the computational complexity on the 
project resource scheduling problems. For 
software projects the problems have to con-
sider further constrains non-renewable re-
sources because programming skill are not 
easy to learn. 
 

2.2. Project resource scheduling 
 
Problems of project resource assignment had 

been wildly discussed for decades. Research-
ers propose various methods especially on 
resource constrained project scheduling prob-
lems (RCPSP) with different resource or task 
constrains. The use of linear algorithms is a 
main direction for solving the problems. For 
instances of recent development, Carlier and 
Neron [5] develop a linear method based on 
linear lower bounds to solve the traditional 
RCPSP. They [6] propose another algorithms 
with time-bound adjustment to compute re-
dundant resources; Damay, Quilliot and 
Sanlaville [7] employ a linear programming 
model to solve preemptive and non-preemp-
tive scheduling problems considering each 
task may or may not be preemptive. Other 
popular computational methods recently for 
solving the RCPSP are the application of ge-
netic algorithms (GAs). For example, Alba 
and Chicano [8] use the GAs to calculate op-
timal resource scheduling for software project 
to reduce project budget; Ranjbar and Kianfar 
[9] employ the GAs incorporated with a local 
search method to achieve optimal resource 
utilization ratio. 
Those algorithms might achieve optimal so-

lutions under variety of constrains. However, 
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mass computation are required and not easy to 
understand become barriers for project man-
agers to apply. Therefore, the advantage of 
easy use induces the heuristic methods play 
another important role for solving the sched-
uling problems. Scheduling heuristics are 
used to decide the priority of tasks among 
projects. Classical scheduling heuristics 
which are well known are First in First Serve 
(FIFS), Minimum Slack (MINSLK), and 
Shortest Activity From Shortest Project 
(SASP). FIFS is one of the most popular 
scheduling heuristic found in many multi- 
project environments, in which task priority is 
determined by its arrival time. Although 
MINSLK has many extension versions, the 
basic minimum slack time heuristic deter-
mines task’s priority by its last starting time 
and earliest starting time. SASP was found to 
be effective in reducing mean completion 
time in a multi-project environment, in which 
task priority is based on its duration plus the 
project’s remaining critical path time. 
Many studies had been made to compare 

performances among these scheduling heuris-
tics. Kurtulus and Davis [10] examined heu-
ristic methods including MINSLK, SASP, and 
“maximum total work content.” They con-
cluded that SASP and “maximum total work 
content” are better than MINSLK. Dumond 
and Mabert [11] found that SASP is more ef-
fective in reducing mean completion time. 
Moreover, SASP and FIFS achieve better tar-
diness performance. Dumond [12, 13] con-
ducted experiments to compare the perform-
ances of FIFS and SASP, specially to address 
the problem of projects with due date and 
limited resources. He concluded that FIFS 
performs well in reducing mean completion 
time, however, SASP completes small pro-
jects very quickly and delays large projects. 
Oguz and Bala [14] conducted computer ex-
periments to test MINSLK and “shortest du-
ration,” and concluded that MINSLK 
achieves more number of best solutions while 
the “shortest duration” has a better solution 
quality on the average. 

Scheduling heuristics had been proposed and 
modified for years to solve scheduling prob-
lems with different constrains. For recent de-
velopment on issues of project scheduling, 
Yang, Geunes and O’Brien [15] develop a 
heuristic approach to balance of project costs 
of overtime and costs of tardiness. However, 
only one resource is considered in their model. 
Hartmann and Kolisch [16] and an update 
survey [17] summarize well-known heuristics 
for RCPSP and evaluate them with a stan-
dardized experimental test. Their collections 
of heuristics draw a clear picture of recent 
development of heuristics on RCPSP. How-
ever, the result is not able to point which is 
the best and new heuristics are proposed con-
tinuously. Such as Rabbani et al. [18] present 
a new heuristic using critical chain concept; 
Buddhakulsomsiri and Kim [19] propose a 
rule-based heuristic considering resource va-
cations and the split of project tasks. From 
paper review it is found that many heuristics 
are developed incorporated with other meth-
ods to achieve their research goals. In this 
paper, classical heuristics are employed in-
corporated with Taguchi’s parameter design 
to present an easy operation process for solv-
ing the specific problem. 
 

2.3. Taguchi’s parameter design  
 
Taguchi’s parameter design is well known 

for its robust optimization [20]. The design is 
wildly applied in the field of engineering to 
select proper parameter levels on engineering 
design or manufacturing processes. For ex-
ample, Liou, Lin, Lindeke and Chiang [21] 
employed the design to analysis the specifica-
tion of robot kinematics parameters; Kim and 
Yum [22] try to find robust optimization of 
BPN parameter; Savas and Kayilci [23] use 
Taguchi’s parameter design to select proper 
operation levels for a sand cast alloy.  
Taguchi’s parameter design [24] can be iden-

tified with two portions: an inner array con-
taining the controllable factors and an outer 
array with noise factors. The controllable fac-
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tors are the factors that can be monitored and 
are expected to select their proper levels so as 
to achieve higher performance. The noise 
factors are uncertainty factors that can not be 
well control. Those factors are regard as 
“noise” and are expected to minimum the ef-
fect affecting the performance. The objective 
of the outer array is to efficiently draw infor-
mation of the joint effect of noise factors in 
order to achieve robust results. An inner array 
is designed to facilitate the optimization. 
These two special arrays allow Taguchi’s pa-
rameter design to address the optimal condi-
tions of controllable factors with minimum 
variation of noise factors. And the results of 
the experiment are regarded can achieve “ro-
bust” since the results is obtained by testing 
different conditions of noise factors.  
The design using in issues of project man-

agement can be found in Santell et al.’s [25] 
report. They show the feasibility of parameter 

design apply in project management. Tsai, 
Moskowitz and Lee [26] make further appli-
cations on a resource selection problem for a 
single software project. And the parameter 
design will be employed in this paper to dis-
cuss multiple projects with preemptive tasks. 
 

3. Proposed resource assignment process 
 
Generally, Taguchi’s parameter design has 

three main steps: (1) select factors and factor 
levels, (2) design experiment layout, and (3) 
conduct experiments and evaluate perform-
ance. Following those steps this paper pre-
sents the experimental process for resource 
assignment in software projects, including (1) 
measure factors of projects, (2) determine task 
priority, (3) design experiment layout, (4) 
evaluate project performance. The flow of the 
experimental process is illustrated as in Fig-
ure 1. 

 

 
 

Figure 1. Experimental process of resource assignment. 
 
3.1. Project task measures 
 
Task complexity of software is not easily an-

ticipated or measured and is thus treated sto-
chastically. A software task often contains 

several subprograms (procedures, functions, 
or subroutines), thus its number of subpro-
grams can measure the loading of a task by 
assuming the complexity of each subprogram 
being equal. Following three time estimates 

Project tasks measures 

Project resources measures 

Task priority  

Outer array 

Inner array 

Project performance 
evaluation 

Layout of design 
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on the program evaluation and review and 
review technique (PERT): optimistic (low 
complexity), normal (average complexity), 
and pessimistic (high complexity) estimates 
of the number of subprograms for each task 
are obtained to reflect three possible task 
complexity environments, denoted as levels 1, 
2, and 3, respectively. 
 

3.2. Project resource measures 
 
Design capabilities and design costs are 

measured as two factors of resources. Re-
source capability is the average design speed, 
which is measured by the average design 
hours per subprogram. By experience, Re-
source’s design hour is estimated as 5 hours 
per day. Resource cost is the average payoff 
per day. 
 
3.3. Task priority 
 
Task priority is pre-determined according to 

the design flow. Each software task has its 
precedence task until all tasks are completed. 
When multiple projects and preemption are 
considered the priority of tasks required 
re-scheduled by scheduling heuristics and 
preemption rules. 
 

3.4. Project performance 
 
In the experiment, total project costs with n 

projects and m resources are calculated by 
following formula: 
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where  
 
 PC = total project cost, 
 CTi = critical duration (days) of project i, 
 DCi= daily penalty for not complete pro-

ject i on time, 
 DTi = deadline of the project i, 
 TLij = total duration (days) of resource j in 

project i, 
 RCj = daily payment of resource j. 
 
4. Examples 
 
4.1. Example 1: scheduling for a single 

project 
 
A single software project [8] is employed to 

illustrate the process of the parameter design. 
There are five tasks (T1- T5) in the project 
with pre-determined priority as shown in Fig-
ure 2. Each task is estimated with task efforts. 
For example, Task T1 consists in creating the 
UML diagrams and is estimated 5 days to 
perform, denoted by 51 =effortT . Since the tasks 
T1 and T5 (testing) require collaborative work 
of all resources the two tasks are set to be one 
time estimates as the due date of the tasks. 
Task T2, T3 and T4 can be done by a single 
resource. Their task efforts are measured with 
three time estimates: optimistic, normal and 
pessimistic. For example, efforts of task T2 is 

}23,20,17{2 =effortT , which is estimated 17 days in 
optimistic condition, 20 days in normal con-
dition, and 23 days in pessimistic condition, 
respectively. 
The work flow in Figure 2 shows two re-

sources are required in this project, denoted as 
P1 and P2. Resource P1 and P2 will work to-
gether for T1 and T5, then resource P1 is ar-
ranged to design tasks of T2 and T4, resource 
P2 is sent to implement task T3. 
There are two possible staffs for the project, 

denoted as R1 and R2. The work rate of Re-
source R1 is 1.2, which means R1 can work 
over time and the duration of a task is task 
effort divided by the correspondent resource’s 
work rate. Resource R1’s salary is $2000 per 
day, and will have vacation for two days 
every 10 days. Resource R2’s work rate is 1.5, 
salary is $2500 per day, and will have vaca-
tion for two days every 7 days, respectively. 
When resources go for vacations the corre-
spondent tasks will be temporally preempted 
until vacations are finish.  
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Outer array(L9 orthogonal array) 

T2:  1  1  1  2  2  2  3  3  3  
T3:  1  2  3  1  2  3  1  2  3 
T4:  1  2  3  2  3  1  3  1  2 

Inner array 

Figure 3. Results of Taguchi’s parameter design of Example 1 

1  2  
2  1  

Project performance (duration)        
     51  56  60  56   59   60  61  56  60 

      
     56  60  64  56   60   64  57  60  64 

P1 P2 
Average 

Duration  Cost 
 
57.67   259,500 
 
60.11   270,500 

The scheduling problem of Example 1 is: 
which resource should be assigned as re-
source P1 who will be responsible for tasks 

T2 and T4, and which resource should be as-
signed as resource P2 who will implement 
task T3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Work flow of Example 1 
 
For the problem applying in the parameter 

design, the two candidates R1 and R2 are re-
garded as controllable resource levels. Two 
possible level combinations located in the in-
ner array are {1, 2} and {2, 1}, presenting re-
source R1 as P1 and R2 as P2, or resource R2 
as P1 and R2 as P1. Task complexities are re-

garded as levels of noise factors. The possible 
level combinations of the three tasks T2, T3 
and T4 are 33=27 sets. To reduce the number 
of calculation this paper employs the L9 or-
thogonal array, which level combinations can 
be 9 sets. The related design layout is pre-
sented in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Project performance is measured using pro- ject duration which is calculated from level 

}40,35,30{3 =effortT

}13.10,7{4 =effortT}23,20,17{2 =effortT  

T1

T4

T5

T2

T351 =effortT  

T1: perform UML diagrams 
T2: design the database 
T3: implementation 
T4: design the web page tem-

plates 
T5: test the software 
 

205 =effortT
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combinations of inner array and outer array. 
For example, the first level combinations of 
controllable factors and noise factors are {1, 2} 
for {P1, P2} and (1, 1, 1,) for {T2, T3, T4}, 
and task durations of T1 and T5 are set to be 
constant. The computation of project duration 
is listed in Table 1 and Figure 4. Table 1 
shows the calculation process of task duration. 
The duration of T2, T3 and T4 are estimated 
by its work effort divided by the work rate of 
the correspondent resource, and plus the dura-

tion of resource vacation. For example, task 
duration of T2 is: 17 (work effort)/ 1.2 (work 
rate of correspondent resource R1) + 2 (days 
of vacation of resource R2= 16 days. After all 
task durations are estimated the project dura-
tion is then estimated by the rule of the criti-
cal path. For the example, the project duration 
is 51 days, and related project cost is 
(2000+2500)*51=229,500 (resource salary * 
project duration). 

 
Table 1. An example of calculating task duration 

 
 Controllable factors  Noise factors  
 P1 P2 T1 T2 T3 T4 T5 

Level 1 2  1 1 1  
 Work rate 

1.2 
Work rate 
1.5 

Due date 
5 days 

Condition : 
Optimistic  
Work effort 17 

Condition : 
Optimistic 
Work effort 35 

Condition : 
Optimistic 
Work effort 7 

Due date
 20 days

Estimated 
duration 

   17/1.2=14 days 35/1.5=23 
days 

7/1.2=6  
Resource 
vacation 

   Int((5+14)/10)*2
=2 days 

Int((5+23)/7)*2=
8 days 

Int(5+14+7)/10-1)*
2=4 

 
Task duration     16 31 10  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. An example of calculating project duration and cost 
 
The results of the parameter design in Figure 

3 show the average project duration is 57.67 
days and the average project cost is $259,500 
when the level combination is {1, 2} of {P1, 
P2). Meanwhile, the duration is 60.11 days 

and the project is $270,500 when the level 
combination is {2, 1} of {P1, P2}. Therefore, 
it is suggested that resource R1 should be as-
signed to take tasks T2 and T4, and resource 
R2 should be assigned to take task T3. 

16  

T1

T4

T5

T2

T3

Project duration: 51 days 
Project cost: (2000+2500)*51=229,500

10

20

31 

5 
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4.2. Example 2: scheduling for multiple 
projects 

 
4.2.1. Estimation of project parameters 
 
In this example we consider a more compli-

cate preemption problem. Two software pro-
jects from the Institute of Information Indus-
try in Taiwan are examined. The first project, 
denoted as Project 1, was held earlier than the 
second project, denoted as Project 2. Project 1 
had three human resources: R1, R2, and R3, 
each one being assigned with different tasks. 

Project 2 had shorter due date with higher 
penalty so that its tasks should be preempted 
to reduce project duration. Under the condi-
tion of no further resources being added, the 
project manager needed to decide who should 
be assigned to which tasks on Project 2. 
According to the previous planning of sys-

tem design, Project 1 is planned to have seven 
main tasks, denoted as A1 to A7, while Pro-
ject 2 has 8 tasks, denoted as A8 to A13, re-
spectively. The workflows of two projects are 
presented in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Each node in Figure 5 refers to one software 

task and its corresponding human resource. 
Three human resources R1, R2 and R3 in 
Project 1 (the current project) were 
pre-determined and assigned with two or 
three tasks, for example, R1 worked on A1 
and A4; R2 worked on A2 and A5; and R3 
worked on A3, A6, A7, respectively. Since 
Project 2 would be preempted and no extra 
human resources are available, three current 
human resources have to be assigned to Pro-
ject 2. Based on the specialty of design skill, 
all tasks in Project 2 can be categorized into 
three groups, denoted as G1, G2, and G3. 
Each group contains two tasks: G1 had A9 
and A12; G2 had A8 and A10; G3 had A11 

and A13. Due to work loading, each human 
resource is limited to one group only. Now, 
the problem is how to assign each human re-
source (R1, R2, R3) to which group (G1, G2, 
G3)? 
Based on the contracts, the starting time of 

Project 2 is three days later than Project 1; the 
due date of Project 1 is 70 days, and the tar-
diness cost (penalty) is $10,000 per day after 
the due day, while the due date of Project 2 is 
50 days and the penalty is $20,000 per day. 
There are 13 tasks Table 2 shows these esti-
mates for 13 tasks in two projects. 
The design speed and costs for three human 

resources are summarized in Table 3. The de-
sign speed of a resource is measured by the 

Figure 5. Project workflows of Example 2 

A2 A5 
A7 

A4 

A3 A6 

A1 

R1 

R2

R1 

R3 

R3R3

R2

Project 1 Project 2

A9 

A10

A11 

A12 

A8 

G2 

G1

G3 

G1

G2 

A13

G3 



Robust Preemptive Resource Assignment for Multiple Software  
Projects Using Parameter Design 

Int. J. Appl. Sci. Eng., 2007. 5, 2     167 

average design hours per subprogram. On the 
average resource, the capability is 4, 6, and 5 
hours per subprogram for R1, R2 and R3, re-
spectively. By experience, Resource’s design 

hour is estimated as 5 hours per day. Resource 
cost is the average payoff per day such as the 
daily payment of resource R1, R2, and R3 are 
$2000, $1500 and $1800, respectively. 

 
Table 2. Optimistic, normal, and pessimistic estimates of the number of subprograms for each Task 

 
Project 1 Project 2 

Task Resource Optimistic Normal Pessimistic Task Resource Optimistic Normal Pessimistic
A1 R1 8 10 12 A8 G2 6 8 10 
A2 R2 10 12 15 A9 G1 8 10 13 
A3 R3 10 12 14 A10 G2 3 4 5 
A4 R1 17 19 21 A11 G3 9 12 15 
A5 R2 12 15 18 A12 G1 4 6 8 
A6 R3 15 17 19 A13 G3 5 7 9 
A7 R3 8 10 12      

Total 80 95 111 Total 35 47 60 
 
 

Table 3. Design speed and costs of three human resources 
 

Resource Capability (Design hours/ subprogram) Resource cost ($ per day) 
R1 4 2000 
R2 6 1500 
R3 5 1800 

 
4.2.2. Preemption scheduling 
 
Bock and Patterson [27] summarized three 

project preemption rules: no preemption of 
resources (NPR), absolute priority for re-
sources (APR), and limited priority for re-
sources (LPR). NPR denotes resources are not 
preempted from any task, which provides a 
baseline for comparisons. APR has the abso-
lute priority for assigning resources. When a 
preemptive project (or task) follows APR rule, 
resources are preempted from current projects 
(or tasks) without any constraint. A preemp-
tive project (or task) under LPR rule receives 
higher but limited priority, in which resources 
are preempted only if the current task has 
positive slack time; otherwise the First In 
First Serve (FIFS) rule is applied to hold re-
sources over current tasks.  
The priority of tasks is determined by a pre-

emption rule (NPR, APR, LPR) together with 
a heuristic (MINSLK, SASP, FIFS). Namely, 
if one project is preempted, the resource will 
be reallocated to the first task of the pre-
empted project, and then the priorities of the 
rest tasks in two projects will follow one of 
three scheduling heuristics until all projects 
are completed. For example, if we use the 
APR rule together with FIFS and the resource 
R1 is assumed for group G2, then the priority 
of tasks will be A1-A8-A4-A10. This means 
that resource R1 should go for task A8 after 
A1 is completed since A8 has the absolute 
priority by the APR rule. After A8 is com-
pleted resource R1 should go back for A4 in 
Project 1 based on the FIFS heuristic. 
 

4.2.3. Experimental design 
 
The objective of the experiment is to assign 
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proper resources to the preempted project so 
as to optimize project performance. In the de-
sign, groups of tasks G1, G2 and G3 are re-
garded as controllable variables and resources 
R1, R2 and R3 are regarded as level 1, 2, and 
3 for each variable. Since a human resource 
can take only one task group in Project 2, 
there are six possible combinations for reas-
signing three human resources to three task 
groups, say, {R1, R2, R3}, {R1, R3, R2}, {R2, 
R1, R3}, {R2, R3, R1}, {R3, R1, R2}, and 
{R3, R2, R1} to groups {G1, G2, G3}, re-
spectively. These six possible combinations 
were arranged into the inner array in Figure 6.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The outer array in Figure 2 contains 13 

variables presenting the 13 tasks of the two 
projects. The levels of each noise factor are 
the three time estimates, where the optimistic, 
normal and pessimistic conditions are denoted 
as level 1, 2, and 3, respectively. The outer 
array is formed with 13 lines selected from 
lines 1, 2, 5, 10, 12, 13, 14, 27, 29, 31, 32, 33 
and 34 of a L81 orthogonal array, where the 
selection rule is made by the first linear graph 
of the L81 array to avoid possible interactions 

(see e.g., Peace [24]). Considering all combi-
nations of the inner and outer arrays, the de-
sign layout has a total of 6*81=486 different 
network trails, each with an easily computable 
project duration and cost. 
 

4.2.4. Results 
 
The proper resource assignment is deter-

mined by minimizing the project cost for each 
combination, as shown by the blocked entry 
in Table 4. For example, the minimum project 
cost is $534,944 for the assignment of {3, 2, 1} 
using NPR and FIFS. Namely, resource R3, 
R2, and R1 were reallocated to group G1, G2, 
and G3 in Project 2, respectively, and the re-
sulting project cost is estimated as $534,944. 
The conclusion findings in Table 4 are as 

follows: 
1. The results showed that one project 

without a preemption rule might cause 
higher cost, for example, the average 
project costs for NPR are $710,170, 
$915,513 and $858,145, respectively, 
which are relatively much higher than 
others.  

2. When FIFS is used, LPR is preferred 
since its project costs are relatively lower; 
for example, it’s 539,794 of project cost. 
When MINSLK or SASP is used, APR is 
preferred.  

3. Uniformly over all assignments, the 
combination of APR and SASP has the 
lowest project cost among all combina-
tions. For example, its average project 
cost is $370,450 and the standard devia-
tion is $1,833.  

4. Under the combination of SASP and 
APR, the assignment of {1, 2, 3} 
achieves the overall minimum project 
cost of $367,298.  

 
5. Conclusions 
 
Project scheduling problems have been stud-

ied for decades; however, little attention has 
been paid on the methods for assigning proper 
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resources for multiple projects. This article 
employed the parameter design to achieve 
robust resource assignment quickly and less 
sensitive to task variations. Two examples of 
software projects are used to introduce the 
process of the parameter design applying in 
the preemptive multiple project scheduling 
problems. The first example illustrates sce-
narios of a single software project with two 
resources. Project preemption occurs when 
resources go for vacation and the project tasks 
will be interrupted until the vacation is fin-
ished. The problem of resource assignment is 
which resource should be assigned to take 
which tasks so as to obtain minimum project 
duration and project costs.  
The second example employs the parameter 

design with different preemptive rules and 
scheduling heuristics to solve a scheduling 
problem of multiple projects. Although the 
scenario is complicated, the parameter design 
method shows its easiness of use and quick 
computation and it is feasible applying the 
method to the multiple project scheduling 
problems. Furthermore, the design can con-
sider the complexities of project tasks and 
reduce the impact of high variations of project 
tasks so as to achieve a robust result. The 
scheduling problem can further consider the 
learning effect of human resources as the ex-
tent issue of the study. With the learning ef-
fect resources’ design speed will be changed, 
and the result of the experiment might achieve 
different results. 

 

Table 4. Comparison of total project costs for three preemptive rules and three heuristics 
 
Assignment FIFS MINSLK SASP 

G1  G2   G3 NPR APR LPR NPR APR LPR NPR APR LPR 
1 2 3 827017 849337 723380 968419 371806 412668 1012107 367298 412668 
1 3 2 634957 774244 567988 979636 377343 583712 905273 371357 582619 
2 1 3 950820 955140 377383 923722 393535 424680 916168 369080 382349 
2 3 1 574529 893136 416045 909604 375979 420927 749313 371605 419864 
3 2 1 534944 820860 692788 871944 377645 419689 736361 370420 419689 
3 1 2 738750 861300 461181 839752 384834 512658 829650 372942 482150 

Average 710170 859003 539794 915513 380190 462389 858145 370450 449890 
Std. Dev. 145569 56488 132776 49415 7098 64139 97279 1833 66356 
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