
International Journal of Applied Science and Engineering
2007. 5, 2: 159-171

Int. J. Appl. Sci. Eng., 2007. 5, 2 159

Robust Preemptive Resource Assignment for Multiple
Software Projects Using Parameter Design

Lai-Hsi Lee*

Department of Information Management

National Ping Tung Institute of Commerce,
51 Min-Sheng E. Road, Pingtung, 900,Taiwan, R. O. C.

Abstract: Project preemption allows resources flow passively from one project or task to another.
Due to high-cost and high-risk characteristics of software development, project preemption
might have a significant impact on the ultimate completion time of a software project. This arti-
cle examines the feasibility of the Taguchi’s parameter design to achieve robust resource as-
signment for multiple software projects with different preemptive rules. Two examples of soft-
ware projects is employed to demonstrate the design process of the parameter design applying in
the project scheduling problems. The first project illustrates a preemptive single software project.
Project preemption occurs when resource vacations are considered. The second example consid-
ers problems of preemptive multiple project scheduling. The parameter design with preemption
rules and scheduling heuristics are employed to solve the problem. The results show that the pa-
rameter design can achieve robust resource assignment by minimizing the effect of task varia-
tion.

Keywords: Project Preemption; Robust Resource Assignment; Parameter Design.

* Corresponding author; e-mail: lhlee@npic.edu.tw Accepted for Publication: December 05, 2007

© 2007 Chaoyang University of Technology, ISSN 1727-2394

1. Introduction

Solutions for solving a preemptive human

resource assignment problem contain deci-
sions for assigning the right task to the right
person under the condition of allowing human
resources flow passively from one project or
task to another. Considering critical constrains
of task complexity and resource scarcity, hu-
man resources for software projects are as-
signed to a certain scope of tasks by judging
their technical skill suitable for the specialty
and familiarity of the task, and therefore not
easily substituted. When preemption occurs, a
preemptive resource assignment problem for
multiple software projects becomes more
complex and needs to be solved robustly to

reduce the impact of task complexity. Project
resources in this paper are regard as human
resources. Robust resource assignment aims
to assign proper project resources under
minimum turbulence of task variation, which
means the selected resources can achieve
project goals with most probability no mater
how project tasks are over estimated or under
estimated. Considering the difficulties for
project managers to learn complex scheduling
algorisms this paper aims to propose an easy
and quick method for solving the preemptive
resource assignment problem robustly.
Based on the definition by Liu and Cheng [1]

preemptive scheduling problems are those in

Lai-Hsi Lee

160 Int. J. Appl. Sci. Eng., 2007. 5, 2

which the processing of a job can be tempo-
rarily interrupted and restarted at a later time.
But what tasks should be re-scheduled among
preemptive projects and non-preemptive pro-
jects? What impact there will be to the project
objectives when project preemption occurs?
And who is proper for the preemptive tasks?
Considering those questions there are three
issues that should be discussed further:
1. Project preemption: project preemption

may occur in different ways. Project
managers need to determine what type of
preemption so as to identify which task
should be preempted and which task
should be interrupted.

2. Task priority: the priority of tasks should
be pre-determined under the preemption
rules. The determination of task priority
requires easy to be operated and can be
used to reduce the project duration.

3. Resource assignment methods: resource
assignment methods focus on proper se-
lection of resources. Considering the
complex relationships among tasks, the
method should be less sensitive to tasks
variations.

Taguchi’s parameter design is applied to
solve the preemptive resource assignment
problem since it is easy and famous for its
robust designing results. This paper will pro-
pose the assignment process using Taguchi’s
parameter design for solving the preemptive
problem. Two examples is employed to illus-
trate the use of the proposed method.

2. Literature review

2.1. Preemptive scheduling

Preemptive scheduling allows a task tempo-

rarily interrupted and restarted at a later time.
Many of academy articles have discussed the
scheduling problems, especial on the solu-
tions of manufacturing processes. For exam-
ple, Brasel and Hennes [2] consider an
open-shop problem with n jobs being proc-
essed on m machines and preemption rule is

each operation can be stop and continued later
on; Averbakh and Xue [3] discuss the pre-
emptive problem in a supply chain scenario
with a customer and a manufacturer. Discus-
sions of preemptive scheduling in project
management are relatively few since compli-
cate situations needed to be considered in-
cluding preemption rules, resource assign-
ment, project due date, respectively. Herroe-
len et al. [4] recommend that task preemption
increases the computational complexity on the
project resource scheduling problems. For
software projects the problems have to con-
sider further constrains non-renewable re-
sources because programming skill are not
easy to learn.

2.2. Project resource scheduling

Problems of project resource assignment had

been wildly discussed for decades. Research-
ers propose various methods especially on
resource constrained project scheduling prob-
lems (RCPSP) with different resource or task
constrains. The use of linear algorithms is a
main direction for solving the problems. For
instances of recent development, Carlier and
Neron [5] develop a linear method based on
linear lower bounds to solve the traditional
RCPSP. They [6] propose another algorithms
with time-bound adjustment to compute re-
dundant resources; Damay, Quilliot and
Sanlaville [7] employ a linear programming
model to solve preemptive and non-preemp-
tive scheduling problems considering each
task may or may not be preemptive. Other
popular computational methods recently for
solving the RCPSP are the application of ge-
netic algorithms (GAs). For example, Alba
and Chicano [8] use the GAs to calculate op-
timal resource scheduling for software project
to reduce project budget; Ranjbar and Kianfar
[9] employ the GAs incorporated with a local
search method to achieve optimal resource
utilization ratio.
Those algorithms might achieve optimal so-

lutions under variety of constrains. However,

Robust Preemptive Resource Assignment for Multiple Software
Projects Using Parameter Design

Int. J. Appl. Sci. Eng., 2007. 5, 2 161

mass computation are required and not easy to
understand become barriers for project man-
agers to apply. Therefore, the advantage of
easy use induces the heuristic methods play
another important role for solving the sched-
uling problems. Scheduling heuristics are
used to decide the priority of tasks among
projects. Classical scheduling heuristics
which are well known are First in First Serve
(FIFS), Minimum Slack (MINSLK), and
Shortest Activity From Shortest Project
(SASP). FIFS is one of the most popular
scheduling heuristic found in many multi-
project environments, in which task priority is
determined by its arrival time. Although
MINSLK has many extension versions, the
basic minimum slack time heuristic deter-
mines task’s priority by its last starting time
and earliest starting time. SASP was found to
be effective in reducing mean completion
time in a multi-project environment, in which
task priority is based on its duration plus the
project’s remaining critical path time.
Many studies had been made to compare

performances among these scheduling heuris-
tics. Kurtulus and Davis [10] examined heu-
ristic methods including MINSLK, SASP, and
“maximum total work content.” They con-
cluded that SASP and “maximum total work
content” are better than MINSLK. Dumond
and Mabert [11] found that SASP is more ef-
fective in reducing mean completion time.
Moreover, SASP and FIFS achieve better tar-
diness performance. Dumond [12, 13] con-
ducted experiments to compare the perform-
ances of FIFS and SASP, specially to address
the problem of projects with due date and
limited resources. He concluded that FIFS
performs well in reducing mean completion
time, however, SASP completes small pro-
jects very quickly and delays large projects.
Oguz and Bala [14] conducted computer ex-
periments to test MINSLK and “shortest du-
ration,” and concluded that MINSLK
achieves more number of best solutions while
the “shortest duration” has a better solution
quality on the average.

Scheduling heuristics had been proposed and
modified for years to solve scheduling prob-
lems with different constrains. For recent de-
velopment on issues of project scheduling,
Yang, Geunes and O’Brien [15] develop a
heuristic approach to balance of project costs
of overtime and costs of tardiness. However,
only one resource is considered in their model.
Hartmann and Kolisch [16] and an update
survey [17] summarize well-known heuristics
for RCPSP and evaluate them with a stan-
dardized experimental test. Their collections
of heuristics draw a clear picture of recent
development of heuristics on RCPSP. How-
ever, the result is not able to point which is
the best and new heuristics are proposed con-
tinuously. Such as Rabbani et al. [18] present
a new heuristic using critical chain concept;
Buddhakulsomsiri and Kim [19] propose a
rule-based heuristic considering resource va-
cations and the split of project tasks. From
paper review it is found that many heuristics
are developed incorporated with other meth-
ods to achieve their research goals. In this
paper, classical heuristics are employed in-
corporated with Taguchi’s parameter design
to present an easy operation process for solv-
ing the specific problem.

2.3. Taguchi’s parameter design

Taguchi’s parameter design is well known

for its robust optimization [20]. The design is
wildly applied in the field of engineering to
select proper parameter levels on engineering
design or manufacturing processes. For ex-
ample, Liou, Lin, Lindeke and Chiang [21]
employed the design to analysis the specifica-
tion of robot kinematics parameters; Kim and
Yum [22] try to find robust optimization of
BPN parameter; Savas and Kayilci [23] use
Taguchi’s parameter design to select proper
operation levels for a sand cast alloy.
Taguchi’s parameter design [24] can be iden-

tified with two portions: an inner array con-
taining the controllable factors and an outer
array with noise factors. The controllable fac-

Lai-Hsi Lee

162 Int. J. Appl. Sci. Eng., 2007. 5, 2

tors are the factors that can be monitored and
are expected to select their proper levels so as
to achieve higher performance. The noise
factors are uncertainty factors that can not be
well control. Those factors are regard as
“noise” and are expected to minimum the ef-
fect affecting the performance. The objective
of the outer array is to efficiently draw infor-
mation of the joint effect of noise factors in
order to achieve robust results. An inner array
is designed to facilitate the optimization.
These two special arrays allow Taguchi’s pa-
rameter design to address the optimal condi-
tions of controllable factors with minimum
variation of noise factors. And the results of
the experiment are regarded can achieve “ro-
bust” since the results is obtained by testing
different conditions of noise factors.
The design using in issues of project man-

agement can be found in Santell et al.’s [25]
report. They show the feasibility of parameter

design apply in project management. Tsai,
Moskowitz and Lee [26] make further appli-
cations on a resource selection problem for a
single software project. And the parameter
design will be employed in this paper to dis-
cuss multiple projects with preemptive tasks.

3. Proposed resource assignment process

Generally, Taguchi’s parameter design has

three main steps: (1) select factors and factor
levels, (2) design experiment layout, and (3)
conduct experiments and evaluate perform-
ance. Following those steps this paper pre-
sents the experimental process for resource
assignment in software projects, including (1)
measure factors of projects, (2) determine task
priority, (3) design experiment layout, (4)
evaluate project performance. The flow of the
experimental process is illustrated as in Fig-
ure 1.

Figure 1. Experimental process of resource assignment.

3.1. Project task measures

Task complexity of software is not easily an-

ticipated or measured and is thus treated sto-
chastically. A software task often contains

several subprograms (procedures, functions,
or subroutines), thus its number of subpro-
grams can measure the loading of a task by
assuming the complexity of each subprogram
being equal. Following three time estimates

Project tasks measures

Project resources measures

Task priority

Outer array

Inner array

Project performance
evaluation

Layout of design

Robust Preemptive Resource Assignment for Multiple Software
Projects Using Parameter Design

Int. J. Appl. Sci. Eng., 2007. 5, 2 163

on the program evaluation and review and
review technique (PERT): optimistic (low
complexity), normal (average complexity),
and pessimistic (high complexity) estimates
of the number of subprograms for each task
are obtained to reflect three possible task
complexity environments, denoted as levels 1,
2, and 3, respectively.

3.2. Project resource measures

Design capabilities and design costs are

measured as two factors of resources. Re-
source capability is the average design speed,
which is measured by the average design
hours per subprogram. By experience, Re-
source’s design hour is estimated as 5 hours
per day. Resource cost is the average payoff
per day.

3.3. Task priority

Task priority is pre-determined according to

the design flow. Each software task has its
precedence task until all tasks are completed.
When multiple projects and preemption are
considered the priority of tasks required
re-scheduled by scheduling heuristics and
preemption rules.

3.4. Project performance

In the experiment, total project costs with n

projects and m resources are calculated by
following formula:

∑∑∑
= ==

×+×−=
n

i

m

j
jij

n

i
iii RCTLDCDTCTPC

1 11

)()(, (1)

where

 PC = total project cost,
 CTi = critical duration (days) of project i,
 DCi= daily penalty for not complete pro-

ject i on time,
 DTi = deadline of the project i,
 TLij = total duration (days) of resource j in

project i,
 RCj = daily payment of resource j.

4. Examples

4.1. Example 1: scheduling for a single

project

A single software project [8] is employed to

illustrate the process of the parameter design.
There are five tasks (T1- T5) in the project
with pre-determined priority as shown in Fig-
ure 2. Each task is estimated with task efforts.
For example, Task T1 consists in creating the
UML diagrams and is estimated 5 days to
perform, denoted by 51 =effortT . Since the tasks
T1 and T5 (testing) require collaborative work
of all resources the two tasks are set to be one
time estimates as the due date of the tasks.
Task T2, T3 and T4 can be done by a single
resource. Their task efforts are measured with
three time estimates: optimistic, normal and
pessimistic. For example, efforts of task T2 is

}23,20,17{2 =effortT , which is estimated 17 days in
optimistic condition, 20 days in normal con-
dition, and 23 days in pessimistic condition,
respectively.
The work flow in Figure 2 shows two re-

sources are required in this project, denoted as
P1 and P2. Resource P1 and P2 will work to-
gether for T1 and T5, then resource P1 is ar-
ranged to design tasks of T2 and T4, resource
P2 is sent to implement task T3.
There are two possible staffs for the project,

denoted as R1 and R2. The work rate of Re-
source R1 is 1.2, which means R1 can work
over time and the duration of a task is task
effort divided by the correspondent resource’s
work rate. Resource R1’s salary is $2000 per
day, and will have vacation for two days
every 10 days. Resource R2’s work rate is 1.5,
salary is $2500 per day, and will have vaca-
tion for two days every 7 days, respectively.
When resources go for vacations the corre-
spondent tasks will be temporally preempted
until vacations are finish.

Lai-Hsi Lee

164 Int. J. Appl. Sci. Eng., 2007. 5, 2

Outer array(L9 orthogonal array)

T2: 1 1 1 2 2 2 3 3 3
T3: 1 2 3 1 2 3 1 2 3
T4: 1 2 3 2 3 1 3 1 2

Inner array

Figure 3. Results of Taguchi’s parameter design of Example 1

1 2
2 1

Project performance (duration)
 51 56 60 56 59 60 61 56 60

 56 60 64 56 60 64 57 60 64

P1 P2
Average

Duration Cost

57.67 259,500

60.11 270,500

The scheduling problem of Example 1 is:
which resource should be assigned as re-
source P1 who will be responsible for tasks

T2 and T4, and which resource should be as-
signed as resource P2 who will implement
task T3.

Figure 2. Work flow of Example 1

For the problem applying in the parameter

design, the two candidates R1 and R2 are re-
garded as controllable resource levels. Two
possible level combinations located in the in-
ner array are {1, 2} and {2, 1}, presenting re-
source R1 as P1 and R2 as P2, or resource R2
as P1 and R2 as P1. Task complexities are re-

garded as levels of noise factors. The possible
level combinations of the three tasks T2, T3
and T4 are 33=27 sets. To reduce the number
of calculation this paper employs the L9 or-
thogonal array, which level combinations can
be 9 sets. The related design layout is pre-
sented in Figure 3.

Project performance is measured using pro- ject duration which is calculated from level

}40,35,30{3 =effortT

}13.10,7{4 =effortT}23,20,17{2 =effortT

T1

T4

T5

T2

T351 =effortT

T1: perform UML diagrams
T2: design the database
T3: implementation
T4: design the web page tem-

plates
T5: test the software

205 =effortT

Robust Preemptive Resource Assignment for Multiple Software
Projects Using Parameter Design

Int. J. Appl. Sci. Eng., 2007. 5, 2 165

combinations of inner array and outer array.
For example, the first level combinations of
controllable factors and noise factors are {1, 2}
for {P1, P2} and (1, 1, 1,) for {T2, T3, T4},
and task durations of T1 and T5 are set to be
constant. The computation of project duration
is listed in Table 1 and Figure 4. Table 1
shows the calculation process of task duration.
The duration of T2, T3 and T4 are estimated
by its work effort divided by the work rate of
the correspondent resource, and plus the dura-

tion of resource vacation. For example, task
duration of T2 is: 17 (work effort)/ 1.2 (work
rate of correspondent resource R1) + 2 (days
of vacation of resource R2= 16 days. After all
task durations are estimated the project dura-
tion is then estimated by the rule of the criti-
cal path. For the example, the project duration
is 51 days, and related project cost is
(2000+2500)*51=229,500 (resource salary *
project duration).

Table 1. An example of calculating task duration

 Controllable factors Noise factors
 P1 P2 T1 T2 T3 T4 T5

Level 1 2 1 1 1
 Work rate

1.2
Work rate
1.5

Due date
5 days

Condition :
Optimistic
Work effort 17

Condition :
Optimistic
Work effort 35

Condition :
Optimistic
Work effort 7

Due date
 20 days

Estimated
duration

 17/1.2=14 days 35/1.5=23
days

7/1.2=6
Resource
vacation

 Int((5+14)/10)*2
=2 days

Int((5+23)/7)*2=
8 days

Int(5+14+7)/10-1)*
2=4

Task duration 16 31 10

Figure 4. An example of calculating project duration and cost

The results of the parameter design in Figure

3 show the average project duration is 57.67
days and the average project cost is $259,500
when the level combination is {1, 2} of {P1,
P2). Meanwhile, the duration is 60.11 days

and the project is $270,500 when the level
combination is {2, 1} of {P1, P2}. Therefore,
it is suggested that resource R1 should be as-
signed to take tasks T2 and T4, and resource
R2 should be assigned to take task T3.

16

T1

T4

T5

T2

T3

Project duration: 51 days
Project cost: (2000+2500)*51=229,500

10

20

31

5

Lai-Hsi Lee

166 Int. J. Appl. Sci. Eng., 2007. 5, 2

4.2. Example 2: scheduling for multiple
projects

4.2.1. Estimation of project parameters

In this example we consider a more compli-

cate preemption problem. Two software pro-
jects from the Institute of Information Indus-
try in Taiwan are examined. The first project,
denoted as Project 1, was held earlier than the
second project, denoted as Project 2. Project 1
had three human resources: R1, R2, and R3,
each one being assigned with different tasks.

Project 2 had shorter due date with higher
penalty so that its tasks should be preempted
to reduce project duration. Under the condi-
tion of no further resources being added, the
project manager needed to decide who should
be assigned to which tasks on Project 2.
According to the previous planning of sys-

tem design, Project 1 is planned to have seven
main tasks, denoted as A1 to A7, while Pro-
ject 2 has 8 tasks, denoted as A8 to A13, re-
spectively. The workflows of two projects are
presented in Figure 5.

Each node in Figure 5 refers to one software

task and its corresponding human resource.
Three human resources R1, R2 and R3 in
Project 1 (the current project) were
pre-determined and assigned with two or
three tasks, for example, R1 worked on A1
and A4; R2 worked on A2 and A5; and R3
worked on A3, A6, A7, respectively. Since
Project 2 would be preempted and no extra
human resources are available, three current
human resources have to be assigned to Pro-
ject 2. Based on the specialty of design skill,
all tasks in Project 2 can be categorized into
three groups, denoted as G1, G2, and G3.
Each group contains two tasks: G1 had A9
and A12; G2 had A8 and A10; G3 had A11

and A13. Due to work loading, each human
resource is limited to one group only. Now,
the problem is how to assign each human re-
source (R1, R2, R3) to which group (G1, G2,
G3)?
Based on the contracts, the starting time of

Project 2 is three days later than Project 1; the
due date of Project 1 is 70 days, and the tar-
diness cost (penalty) is $10,000 per day after
the due day, while the due date of Project 2 is
50 days and the penalty is $20,000 per day.
There are 13 tasks Table 2 shows these esti-
mates for 13 tasks in two projects.
The design speed and costs for three human

resources are summarized in Table 3. The de-
sign speed of a resource is measured by the

Figure 5. Project workflows of Example 2

A2 A5
A7

A4

A3 A6

A1

R1

R2

R1

R3

R3R3

R2

Project 1 Project 2

A9

A10

A11

A12

A8

G2

G1

G3

G1

G2

A13

G3

Robust Preemptive Resource Assignment for Multiple Software
Projects Using Parameter Design

Int. J. Appl. Sci. Eng., 2007. 5, 2 167

average design hours per subprogram. On the
average resource, the capability is 4, 6, and 5
hours per subprogram for R1, R2 and R3, re-
spectively. By experience, Resource’s design

hour is estimated as 5 hours per day. Resource
cost is the average payoff per day such as the
daily payment of resource R1, R2, and R3 are
$2000, $1500 and $1800, respectively.

Table 2. Optimistic, normal, and pessimistic estimates of the number of subprograms for each Task

Project 1 Project 2

Task Resource Optimistic Normal Pessimistic Task Resource Optimistic Normal Pessimistic
A1 R1 8 10 12 A8 G2 6 8 10
A2 R2 10 12 15 A9 G1 8 10 13
A3 R3 10 12 14 A10 G2 3 4 5
A4 R1 17 19 21 A11 G3 9 12 15
A5 R2 12 15 18 A12 G1 4 6 8
A6 R3 15 17 19 A13 G3 5 7 9
A7 R3 8 10 12

Total 80 95 111 Total 35 47 60

Table 3. Design speed and costs of three human resources

Resource Capability (Design hours/ subprogram) Resource cost ($ per day)
R1 4 2000
R2 6 1500
R3 5 1800

4.2.2. Preemption scheduling

Bock and Patterson [27] summarized three

project preemption rules: no preemption of
resources (NPR), absolute priority for re-
sources (APR), and limited priority for re-
sources (LPR). NPR denotes resources are not
preempted from any task, which provides a
baseline for comparisons. APR has the abso-
lute priority for assigning resources. When a
preemptive project (or task) follows APR rule,
resources are preempted from current projects
(or tasks) without any constraint. A preemp-
tive project (or task) under LPR rule receives
higher but limited priority, in which resources
are preempted only if the current task has
positive slack time; otherwise the First In
First Serve (FIFS) rule is applied to hold re-
sources over current tasks.
The priority of tasks is determined by a pre-

emption rule (NPR, APR, LPR) together with
a heuristic (MINSLK, SASP, FIFS). Namely,
if one project is preempted, the resource will
be reallocated to the first task of the pre-
empted project, and then the priorities of the
rest tasks in two projects will follow one of
three scheduling heuristics until all projects
are completed. For example, if we use the
APR rule together with FIFS and the resource
R1 is assumed for group G2, then the priority
of tasks will be A1-A8-A4-A10. This means
that resource R1 should go for task A8 after
A1 is completed since A8 has the absolute
priority by the APR rule. After A8 is com-
pleted resource R1 should go back for A4 in
Project 1 based on the FIFS heuristic.

4.2.3. Experimental design

The objective of the experiment is to assign

Lai-Hsi Lee

168 Int. J. Appl. Sci. Eng., 2007. 5, 2

proper resources to the preempted project so
as to optimize project performance. In the de-
sign, groups of tasks G1, G2 and G3 are re-
garded as controllable variables and resources
R1, R2 and R3 are regarded as level 1, 2, and
3 for each variable. Since a human resource
can take only one task group in Project 2,
there are six possible combinations for reas-
signing three human resources to three task
groups, say, {R1, R2, R3}, {R1, R3, R2}, {R2,
R1, R3}, {R2, R3, R1}, {R3, R1, R2}, and
{R3, R2, R1} to groups {G1, G2, G3}, re-
spectively. These six possible combinations
were arranged into the inner array in Figure 6.

The outer array in Figure 2 contains 13

variables presenting the 13 tasks of the two
projects. The levels of each noise factor are
the three time estimates, where the optimistic,
normal and pessimistic conditions are denoted
as level 1, 2, and 3, respectively. The outer
array is formed with 13 lines selected from
lines 1, 2, 5, 10, 12, 13, 14, 27, 29, 31, 32, 33
and 34 of a L81 orthogonal array, where the
selection rule is made by the first linear graph
of the L81 array to avoid possible interactions

(see e.g., Peace [24]). Considering all combi-
nations of the inner and outer arrays, the de-
sign layout has a total of 6*81=486 different
network trails, each with an easily computable
project duration and cost.

4.2.4. Results

The proper resource assignment is deter-

mined by minimizing the project cost for each
combination, as shown by the blocked entry
in Table 4. For example, the minimum project
cost is $534,944 for the assignment of {3, 2, 1}
using NPR and FIFS. Namely, resource R3,
R2, and R1 were reallocated to group G1, G2,
and G3 in Project 2, respectively, and the re-
sulting project cost is estimated as $534,944.
The conclusion findings in Table 4 are as

follows:
1. The results showed that one project

without a preemption rule might cause
higher cost, for example, the average
project costs for NPR are $710,170,
$915,513 and $858,145, respectively,
which are relatively much higher than
others.

2. When FIFS is used, LPR is preferred
since its project costs are relatively lower;
for example, it’s 539,794 of project cost.
When MINSLK or SASP is used, APR is
preferred.

3. Uniformly over all assignments, the
combination of APR and SASP has the
lowest project cost among all combina-
tions. For example, its average project
cost is $370,450 and the standard devia-
tion is $1,833.

4. Under the combination of SASP and
APR, the assignment of {1, 2, 3}
achieves the overall minimum project
cost of $367,298.

5. Conclusions

Project scheduling problems have been stud-

ied for decades; however, little attention has
been paid on the methods for assigning proper

A1

A2

.

.

.

A1

OUTER ARRAY

L81 Orthogonal Array

G1 G2 G3

I
N
N
E
R

A
R
R
A
Y

Project performance

Figure 6. Design layout of Example 2

1 2
3
1 3
2
2 1
3
2 3
1
3 1
2
3 2

Robust Preemptive Resource Assignment for Multiple Software
Projects Using Parameter Design

Int. J. Appl. Sci. Eng., 2007. 5, 2 169

resources for multiple projects. This article
employed the parameter design to achieve
robust resource assignment quickly and less
sensitive to task variations. Two examples of
software projects are used to introduce the
process of the parameter design applying in
the preemptive multiple project scheduling
problems. The first example illustrates sce-
narios of a single software project with two
resources. Project preemption occurs when
resources go for vacation and the project tasks
will be interrupted until the vacation is fin-
ished. The problem of resource assignment is
which resource should be assigned to take
which tasks so as to obtain minimum project
duration and project costs.
The second example employs the parameter

design with different preemptive rules and
scheduling heuristics to solve a scheduling
problem of multiple projects. Although the
scenario is complicated, the parameter design
method shows its easiness of use and quick
computation and it is feasible applying the
method to the multiple project scheduling
problems. Furthermore, the design can con-
sider the complexities of project tasks and
reduce the impact of high variations of project
tasks so as to achieve a robust result. The
scheduling problem can further consider the
learning effect of human resources as the ex-
tent issue of the study. With the learning ef-
fect resources’ design speed will be changed,
and the result of the experiment might achieve
different results.

Table 4. Comparison of total project costs for three preemptive rules and three heuristics

Assignment FIFS MINSLK SASP

G1 G2 G3 NPR APR LPR NPR APR LPR NPR APR LPR
1 2 3 827017 849337 723380 968419 371806 412668 1012107 367298 412668
1 3 2 634957 774244 567988 979636 377343 583712 905273 371357 582619
2 1 3 950820 955140 377383 923722 393535 424680 916168 369080 382349
2 3 1 574529 893136 416045 909604 375979 420927 749313 371605 419864
3 2 1 534944 820860 692788 871944 377645 419689 736361 370420 419689
3 1 2 738750 861300 461181 839752 384834 512658 829650 372942 482150

Average 710170 859003 539794 915513 380190 462389 858145 370450 449890
Std. Dev. 145569 56488 132776 49415 7098 64139 97279 1833 66356

References

[1] Liu, Z., and Cheng, T. C. E. 2002.
Scheduling with job release dates, deliv-
ery times and preemption penalties. In-
formation Processing Letters, 82:
107-111.

[2] Brasel, H., and Hennes, H. 2004. On the
open-shop problem with preemption and
minimizing the average completion time.
European Journal of Operational Re-
search, 157, (3): 607-619.

[3] Averbakh, I., and Xue, Z. 2007. On-line
supply chain scheduling problems with
preemption. European Journal of Op-
erational Research, 181, (1): 500-504.

[4] Herroelen, W., De Reyck, B., and De-
meulemeester, E. 1998. Re-

source-constrained project scheduling: a
survey of recent development. Com-
puters and Operations, 25, (4): 279-302.

[5] Carlier, J., and Neron, E. 2003. On linear
lower bounds for the resource con-
strained project scheduling problem.
European Journal of Operational Re-
search, 149, (2): 314-324.

[6] Carlier, J., and Neron, E. 2007. Comput-
ing redundant resources for the resource
constrained project scheduling problem.
European Journal of Operational Re-
search, 176, (3): 1452-1463.

[7] Damay, J., Quilliot, A., and Sanlaville, E.
2007. Linear programming based algo-
rithms for preemptive and
non-preemptive RCPSP. European
Journal of Operational Research, 182,

Lai-Hsi Lee

170 Int. J. Appl. Sci. Eng., 2007. 5, 2

(3): 1012-1022.
[8] Alba, E., and Chicano, J. F. 2007. Soft-

ware project management with GAs. In-
formation Sciences, 177: 2380-2401.

[9] Ranjbar, M. R., and Kianfar, F. 2007.
Solving the discrete time/resource
trade-off problem in project scheduling
with genetic algorithms. Applied
Mathematics and Computation, 191, (2):
451-456.

[10] Kurtulus, I., And Davis, E. W. 1982.
Multi-project scheduling: categorization
of heuristic rules performance. Man-
agement Science, 28: 161-172.

[11] Dumond, J., and Mabert, V. A. 1988.
Evaluating project scheduling and due
date assignment procedures: an experi-
mental analysis. Management Science,
34, (1): 101-118.

[12] Dumond, J. 1992. In a multi-resource
environment, how much is enough? In-
ternational Journal of Production Re-
search, 30, (2): 395-410.

[13] Dumond, E. J., and Dumond, J. 1993. An
examination of resourcing policies for
the multi-resource problem. Interna-
tional Journal of Operations and Pro-
duction Management, 13, (5): 54-76.

[14] Oguz, O., and Bala, H. 1994. A com-
parative study of computational proce-
dures for the resource constrained project
scheduling problem. European Journal
of Operational Research, 72: 406-416.

[15] Yang, B., Geunes, J., and O’Brien, W. J.
2004. A heuristic approach for minimiz-
ing weighted tardiness and overtime
costs in single resource scheduling.
Computers and Operations Research, 31,
(8): 1273-1301.

[16] Hartmann, S., and Kolisch, R. 2000. Ex-
perimental evaluation of state-of-the-art
heuristics for the resource-constrained
project scheduling problem. European
Journal of Operational Research, 127,
(2): 394-407.

[17] Kolisch, R., and Hartmann, S. 2006. Ex-
perimental investigation of heuristics for

resource-constrained project scheduling:
an update. European Journal of Opera-
tional Research, 174, (1): 23-37.

[18] Rabbani, M., Fatemi Ghomi, S. M. T.,
Jolai, F., and Lahiji, N. S. 2007. A new
heuristic for resource-constrained project
scheduling in stochastic networks using
critical chain concept. European Journal
of Operational Research, 176, (2):
794-808.

[19] Buddhakulsomsiri, J., and Kim, D. S.
2007. Priority rule-based heuristic for
multi-mode resource-constrained project
scheduling problems with resource vaca-
tions and activity splitting. European
Journal of Operational Research, 178,
(2): 374-390.

[20] Beyer, H. G., and Sendhoff, B. 2007.
Robust optimization –a comprehensive
survey. Computer Methods in Applied
Mechanics and Engineering, 196,
(33-34): 3190-3218.

[21] Liou, Y. H. A., Lin, P. P., Lindeke, R. R.,
and Chiang, H. D. 1993. Tolerance
specification of robot kinematic parame-
ters using an experimental design tech-
nique - the Taguchi method. Robotics
and Computer-Integrated Manufacturing,
10, (3): 199-207.

[22] Kim, Y. S., and Yum, B. J. 2004. Robust
design of multilayer feed forward neural
networks: an experimental approach.
Engineering Applications of Artificial
Intelligence, 17, (3): 249-263.

[23] Savas, O., and Kayilci, R. 2007. Appli-
cation of Taguchi’s methods to investi-
gate some factors affecting microporos-
ity Formation in A360 aluminium alloy
casting. Materials and Design, 28, (7):
2224-2228.

[24] Peace, G. S. 1993. “Taguchi methods: a
hands-on approach”, Addison Wesley,
Massachusetts, U.S.A.

[25] Santell, M. P., Jung, Jr., J. R., and Warner,
J. C. 1992. Optimization in project coor-
dination scheduling through application
of Taguchi Methods. Project Manage-

Robust Preemptive Resource Assignment for Multiple Software
Projects Using Parameter Design

Int. J. Appl. Sci. Eng., 2007. 5, 2 171

ment Journal, 23, (3): 5-16.
[26] Tsai, H. T., Moskowitz, H., and Lee, L. L.

2003. Human resource selection for
software development projects using
Taguchi’s parameter design. European
Journal of Operational Research, 151:

167-180.
[27] Bock, D. B., and Patterson, J. H. 1990. A

comparison of due date setting, resource
assignment, and job preemption heuris-
tics for the Multiproject Scheduling
Problem. Decision Science, 21: 387-402.

