
International Journal of Applied Science and Engineering 
2008. 6, 2: 163-180 
 

Int. J. Appl. Sci. Eng., 2008. 6, 2    163 

On a Batch Arrival Queue with Setup and Uncertain 
Parameter Patterns 

 
Chuen-Horng Lina*,

 and Hsin-I Huangb , Jau-Chuan Kec 
 

aGraduate School of Computer Science and Information Technology. 
bDepartment of Computer Science and Information Engineering. National Taichung Institute 

of Technology, Taiwan 404, R.O.C. 
cDepartment of Applied Statistics, National Taichung Institute of Technology, 

Taiwan 404, R.O.C. 
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1. Introduction 
 
Queueing models with a setup are effective 

methods for performance analysis of com-
puter and telecommunication systems, manu-
facturing/production systems and inventory 
control (Borthakur and Medhi [1], Li et al. [2], 
Lee and Park [3], Krishna Reddy et al. [4], 
Choudhury ([5,6], and Ke [7]). In practical 
situations, the server setup corresponds to the 
preparatory work of the service before start-
ing the service. For example, when a typical 
machine tool is turned on, a proper setup time 
before the normal use state is necessary for 
the machine tool. During this setup time, the 
lubricant can increasingly extend its function 
and the number of the unsteady conditions of 

the machine tool is reduced. Because the most 
dramatic changes of the thermal distortion 
occurs during the first thirty minutes of the 
start-up process, to maintain the precise state 
the machine tool without a proper setup time 
is installed and run in a controlled 
air-conditional room which has relatively high 
maintenance cost. On the other hand, the ma-
chine tool with the start-up process with a 
setup time period can operate in regular 
workspace not the controlled environment. 
Hence, the start-up process with the setup 
time is cost-effective.  
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Li et al. [2] proposed an efficient iterative 
algorithm to compute the stationary queue 
length distributions for the M/G/1/N1queues 
with setup time and arbitrary state dependent 
arrival rate. Lee and Park [3] examined a 
like-queue M/G/1 production system with 
early setup and then developed a procedure to 
find the joint optimal thresholds that mini-
mize a linear average cost. Krishna Reddy et 
al. [4] studied a N policy M[x]/G/1 queueing 
system with multiple vacations and setup 
times for a two stage flow line production 
system.  
In the literature described above, customer 

inter-arrival times, customer service times and 
server setup times are required to follow cer-
tain probability distributions with fixed pa-
rameters. However, in many real-world ap-
plications, the parameter distributions may 
only be characterized subjectively; that is, the 
arrival, service and setup patterns are typi-
cally described in everyday language summa-
ries of central tendency, such as “the mean 
arrival rate is around 5 per day”, “the mean 
service rate is about 10 per hour” or “the 
mean setup rate is approximately 2 per day”, 
rather than with complete probability distri-
butions. In other words, these system pa-
rameters are both possibilistic and probabilis-
tic. Thus, fuzzy queues are potentially much 
more useful and realistic than the commonly 
used crisp queues (see Li and Lee [8] and 
Zadeh [9]). By extending the usual crisp 
queues to fuzzy queues in the context of a 
setup server, these queuing models become 
appropriate for a wider range of applications. 
Li and Lee [8] investigated the analytical 

                                                                            
1 Kendall’s shorthand notation a/b/c/d is widely used to describe 
queueing models. In this notation, a specifies the interarrival time 
(arrival process), b specifies the service time, c is the number of 
servers, and d is the restriction of system capacity. In many situations 
only the first three symbols are used. Current practice is to omit the 
service-capacity symbol if no restriction is imposed ( ∞=d ). The 
following symbols are used: M for the exponential distribution (for 
memoryless), G for a general distribution, D for deterministic, …, 
etc. 
 

results for two typical fuzzy queues (denoted 
M/F/1/∞  and FM/FM/1/∞ , where F repre-
sents fuzzy time and FM represents fuzzified 
exponential distributions) using a general ap-
proach based on Zadeh’s extension principle 
(see also Prade [10] and Yager [11]), the pos-
sibility concept and fuzzy Markov chains (see 
Stanford [12]). A useful modeling and infer-
ential technique would be to apply their ap-
proach to general fuzzy queuing problems. 
However, their approach is complicated and 
not suitable for computational purposes; 
moreover, it cannot easily be used to derive 
analytic results for other complicated queuing 
systems (see Negi and Lee [13]). In particular, 
it is very difficult to apply this approach to 
fuzzy queues with three or more fuzzy vari-
ables. Negi and Lee [13] proposed a proce-
dure using α-cuts and two-variable simulation 
to analyze fuzzy queues (see also Chanas and 
Nowakowski [14]). Unfortunately, their ap-
proach provides only crisp solutions; i.e., it 
does not fully describe the membership func-
tions of the system characteristics. Using pa-
rametric programming, Kao et al. [15] con-
structed the membership functions of the sys-
tem characteristics for fuzzy queues and suc-
cessfully applied them to four simple fuzzy 
queue models: M/F/1/∞ , F/M/1/∞ , F/F/1/∞  
and FM/FM/1/∞ . Chen [16, 17] developed 
FM/FM/1/L and FM/FM[K]/1/ ∞  fuzzy sys-
tems. Recently, Ke and Lin [18] and Ke et al. 
[19], who respectively analyzed fuzzy queues 
with unreliable-server and retrial systems us-
ing the same approach (Zadeh’s extension 
principle). 
All previous researches on fuzzy queuing 

models are focused on ordinary queues with 
one or two fuzzy variables. In this paper, we 
develop an approach that provides system 
characteristics for queues with a setup and 
three fuzzy variables: fuzzified exponential 
arrival, service and setup rates. Through 
α -cuts and Zadeh’s extension principle, we 
transform the fuzzy queues to a family of 
crisp queues. As α  varies, the family of 
crisp queues is described and solved using 
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parametric nonlinear programming (NLP). 
The NLP solutions completely and success-
fully yield the membership functions of the 
system characteristics, including the expected 
number of customers in the system, the ex-
pected waiting time in the queue, and the ex-
pected lengths of time the server is idle and 
busy, Although an explicit closed-form ex-
pression for the membership function is very 
difficult to obtain in the case of three fuzzy 
variables, we develop a characterization that 
yields closed-form expressions when interval 
limits are invertible. Furthermore, this paper 
extends the analysis of system characteristics 
to encompass other system indices that are 
useful in more realistic systems. 
The remainder of this paper is organized as 

follows. Section 2 presents the system char-
acteristics of standard and fuzzy queuing 
models with a setup time. In Section 3, a 
mathematical programming approach is de-
veloped to derive the membership functions 
of these system characteristics. To demon-
strate the validity of the proposed approach, 
two realistic numerical examples are de-
scribed and solved. Discussion is provided in 
Section 4, and conclusions are drawn in Sec-
tion 5. For notational convenience, our model 
in this paper is hereafter denoted 
FM[x]/FM/1/FSET, where FSET represents the 
fuzzified exponential setup rate. 
 

2. Fuzzy queues with a setup time 
 
2.1. M[x]/M/1/SET queues 
 
We consider a batch arrival queuing system 

with a setup, where the server has a setup 
time before serving the first customer who 
initializes a busy period. It is assumed that 
customers arrive in batches to occur accord-
ing to a compound Poisson process with arri-
val rate λ . Let kA  denote the number of 
customers belonging to the kth arrival batch, 
where kA , ,,3 ,2 ,1 L=k  are with a com-
mon distribution 

 
L ,3,2,1 ,]Pr[   nanA nk ===  (1) 

 

and ∑=
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nnaAE . Customers arriving at the 

server form a single-file queue and are served 
in order. The service time is exponentially 
distributed with rate μ . The server can serve 
only one customer at a time. When one or 
more customers arrive, the server is immedi-
ately reactivated but is temporarily unavail-
able to the waiting customers. He needs a 
random setup time with an exponential rate 
θ  before providing service. Once the setup is 
over, the server immediately starts serving the 
waiting customers until the system becomes 
empty. Define: 
 

sN ≡  the expected number of customers in 
the system,  

 
qW ≡  the expected waiting time in the queue, 

 
[ ]E B ≡  the expected length of time the 

server is busy, 
 

[ ]E I ≡  the expected length of time the server 
is idle. 
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of the system parameters:  
 

μθ
θμλ

λμ
λ

λμμ
λ ][)(

])[(2
)]1([

])[(
])[( 2 AE

AE
AAE

AE
AEN s

+
+

−
−

+
−

=

(2) 
 

θλμλμμ
λ 1

])[]([2
)]1([

])[(
][

+
−
−

+
−

=
AEAE

AAE
AE

AEWq

 (3) 
 

])[(
][][

AE
AEBE

λμθ
λθ
−
+

=  (4) 

 



Chuen-Horng Lin,
 and Hsin-I Huang, Jau-Chuan Ke 

 

166    Int. J. Appl. Sci. Eng., 2008. 6, 2 

][
][][
AE

AEIE
λθ

θλ +
=  (5) 

In steady-state, it is necessary that we have 

 

1
)(
)(0 <

+
−

<
θλμ
λμθ . 

 
2.2. FM[x]/FM/1/FSET queues 
 
To extend the applicability of the standard 

queuing model with a setup time, we allow 
for fuzzy specification of system parameters. 
Suppose the arrival rate λ , service rate μ  
and setup rate θ  are approximately known 
and can be represented by the fuzzy sets λ~ , 
μ~  and θ~ , respectively. Let )(~ xλφ , )(~ yμφ  
and )(~ vθφ  denote the membership functions 

of λ~ , μ~  and θ~ , respectively. We then 
have the following fuzzy sets: 
 

{ }Xxxx ∈=   ))(,( ~
~λφλ  (6a) 

 
{ }Yyyy ∈=   ))(,( ~

~μφμ  (6b) 
 

{ }Vvvv ∈=   ))(,( ~
~θφθ  (6c) 

 
where X , Y  and V  are the crisp universal 
sets of the arrival, service and setup rates, re-
spectively. 
 
Let ),,( vyxf  denote the system character-

istic of interest. Since λ~ , μ~  and θ~  are 
fuzzy numbers, )~,~,~( θμλf  is also a fuzzy 
number. Following Zadeh’s extension princi-
ple (see Zadeh [9] and Yager [11]), the mem-
bership function of the system characteristic 

)~,~,~( θμλf  is defined as: 
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Assume that the system characteristic of in-

terest is the expected number of customers in 
the system. It follows from Equation(2) that 
the expected number of customers in the sys-
tem is: 
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The membership function for the expected 
number of customers in the system is: 
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Unfortunately, the membership function is 

not expressed in the usual forms, making it 
very difficult to imagine their shapes. In this 
paper we approach the representation problem 
using a mathematical programming technique. 
Parametric NLPs are developed to find the 
α -cuts of )~,~,~( θμλf  based on the exten-
sion principle. 
 

3. Parametric Nonlinear Programming 
 
To re-express the membership function 

)(~ z
sNφ  of sN~  in an understandable and us-
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able form, we adopt Zadeh’s approach, which 
relies on α -cuts of sN~ . Definitions for the 

α -cuts of λ~ , μ~  and θ~  as crisp intervals 
are as follows: 
 

[ ]
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 The constant arrival, service and setup rates 
are shown as intervals when the membership 
functions are no less than a given possibility 
level for α . As a result, the bounds of these 
intervals can be described as functions of α  
and can be obtained as: , )( min 1
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~ αφθα
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)( max 1
~ αφθα
−=Uv . Therefore, we can use the 

α -cuts of sN~  to construct its membership 
function since the membership function de-
fined in Equation(9) is parameterized by α . 
Using Zadeh’s extension principle, )(~ z

sNφ  

is the minimum of )(~ xλφ , )(~ yμφ  and )(~ vθφ . 
To derive the membership function )(~ z

sNφ , 
we need at least one of the following cases to 
hold such that 
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Case (i): ( αφλ =)(~ x , αφμ ≥)(~ y , αφθ ≥)(~ v ) 
 

Case (ii): ( αφλ ≥)(~ x , αφμ =)(~ y , αφθ ≥)(~ v ) 
 

Case (iii): ( αφλ ≥)(~ x , αφμ ≥)(~ y , αφθ =)(~ v ) 
 
This can be accomplished using parametric 

NLP techniques. The NLP to find the lower 
and upper bounds of the α -cut of )(~ z

sNφ  
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and for Case (iii) are: 
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From the definitions of )(αλ , )(αμ  and 

)(αθ  in Equation (10), )(αλ∈x , )(αμ∈y  
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and )(αθ∈v  can be replaced by 
],[ UL xxx αα∈ , ],[ UL yyy αα∈  and ],[ UL vvv αα∈ , 

respectively. The α -cuts form a nested 
structure with respect to α  (see Kaufmann 
[21] and Zimmermann [22]); i.e., given 

10 12 ≤<≤ αα , we have 
],[],[

2211

ULUL xxxx αααα ⊆ , ],[],[
2211

ULUL yyyy αααα ⊆  

and ],[],[
2211

ULUL vvvv αααα ⊆ . Therefore, Equa-
tions (11a), (11c) and (11e) have the same 
smallest element and Equations (11b), (11d) 
and (11f) have the same largest element. To 
find the membership function )(~ z

sNφ , it suf-
fices to find the left and right shape functions 
of )(~ z

sNφ , which is equivalent to finding the 

lower bound L
sN α)(  and upper bound U

sN α)(  

of the α -cuts of sN~ , which can be rewritten 
as: 
 

min)( =L
sN α yv

AEvyx
AxEy

AAxE
AxEyy

AxE ][)(
])[(2
)]1([

])[(
])[( 2 +

+
−

−
+

−
 

 
s.t. UL xxx αα ≤≤ , UL yyy αα ≤≤  and UL vvv αα ≤≤   

 (12a) 
 

max)( =U
sN α yv

AEvyx
AxEy

AAxE
AxEyy

AxE ][)(
])[(2
)]1([

])[(
])[( 2 +

+
−

−
+

−  
 
s.t. UL xxx αα ≤≤ , UL yyy αα ≤≤  and 

UL vvv αα ≤≤  (12b) 
 
At least one of x , y  or v  must hit the 

boundaries of their α -cuts to satisfy 
)(~ z

sNφ =α . This model is a set of mathe-
matical programs with boundary constraints 
and lends itself to the systematic study of how 
the optimal solutions change with Lxα , Uxα , 

Lyα , Uyα , Lvα  and Uvα  as α  varies over 
[0,1]. The model is a special case of paramet-
ric NLPs (see Gal [23]).  
The crisp interval [ L

sN α)( , U
sN α)( ] obtained 

from Equation (12) represents the α -cuts of 

sN~ . Again, by applying the results of Kauf-
mann [21] and Zimmermann [22] and con-
vexity properties to sN~ , we have 

L
s

L
s NN
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)()( αα ≥  and U

s
U

s NN
21

)()( αα ≤ , where 

10 12 ≤<< αα . In other words, L
sN α)(  in-

creases and U
sN α)(  decreases as α  in-

creases. Consequently, the membership func-
tion )(~ z

sNφ  can be found from Equation 
(12). 
If both L

sN α)(  and U
sN α)(  in Equation (12) 

are invertible with respect to α , then a left 
shape function 1])[()( −= L

sNzL α  and a right 
shape function 1])[()( −= U

sNzR α  can be de-
rived, from which the membership function 

)(~ z
sNφ  is constructed: 
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In most cases, the values of L

sN α)(  and 
U

sN α)(  cannot be solved analytically. Conse-
quently, a closed-form membership function 
for )(~ z

sNφ  cannot be obtained. However, the 

numerical solutions for L
sN α)(  and U

sN α)(  
at different possibility levels can be collected 
to approximate the shapes of )(zL  and 

)(zR . That is, the set of intervals 
]}1,0[|])(,){[( ∈ααα

U
s

L
s NN  shows the shape 

of )(~ z
sNφ , although the exact function is not 

known explicitly. 
Note that the membership functions for the 

expected waiting time in the queue, the ex-
pected length of time the server is busy and 
idle can be expressed in a similar manner. 
Because the system characteristics are de-
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scribed by membership functions, the values 
completely preserve all the fuzziness of the 
arrival rate, service rate and setup rate. How-
ever, managers or designers may prefer a sin-
gle crisp value for a system characteristic 
rather than a fuzzy set. To address this de-
mand, the fuzzy values of system characteris-
tics are defuzzified using Yager’s [22] ranking 
index method. Because Yager’s method pos-
sesses the property of area compensation, this 
method is adopted to transform fuzzy values 
of system characteristics into crisp ones. 
Suitable values of system characteristics are 
calculated as 
 

ααα d
EE

E
UL

∫
Λ+Λ

=ΛΟ
1

0
  

2
])[(])[(

  ])[(  

 
where ][ΛE  is a convex fuzzy number, and 

( UL EE αα ])[(,])[( ΛΛ ) is the α -cut of ][ΛE . 
Note that this method is a robust ranking 
technique that possesses the properties of 
compensation, linearity, and additivity (see 
Fortemps & Roubens [25]). 
 
4. Numerical example 
 
This section we present two examples moti-

vated by real-life systems to demonstrate the 
practical use of the proposed approach.  
Example 1. A factory produces dia-
mond-cylinder parts with milling machine. 
The number of arriving materials each time 
follows a geometric distribution with pa-
rameter 0.5p = ; i.e., the size of arriving 
materials A is 1)5.01(5.0)Pr( −−== kkA , 

∞= ,,2,1 Lk . As soon as no materials arrive, 
the milling machine is turned off. When one 
or more materials arrive, the milling machine 
is immediately turned on. A proper setup time 
is performed before the normal use state for 
the milling machine (Because the most dra-
matic changes of the thermal distortion occurs 
during the first few minutes of the start-up 
process). Clearly, this problem can be de-

scribed by FM/FM/1/FSET system. For effi-
ciency, the management wants to get the sys-
tem characteristics such as the expected 
number of materials in the system, the ex-
pected waiting time in the queue, the expected 
length of time the server is busy and idle. 
 
The fuzzy expected number of materials in the 
system ( sN~ ) 
 
Suppose the arrival rate, service rate and 

setup rate are trapezoidal fuzzy numbers rep-
resented by 8] ,7 ,6 ,5[~

=λ , 
]26,25,24,23[~ =μ  and =θ~  ].4 ,3 ,2 ,1[  

First, it is easy to find that 
]8 ,5[] ,[ αααα −+=UL xx , 

]62 ,23[] ,[ αααα −+=UL yy  and 
]4 ,1[] ,[ αααα −+=UL vv . Next, it is obvious 

that when Uxx α= , Lyy α=  and Lvv α= , the 
expected number of materials in the system 
attains its maximum value, and when Lxx α= , 

Uyy α=  and Uvv α= , the expected number of 
materials in the system attains its minimum 
value. According to Equation (12), the 
α -cuts of sN~  are: 
 

2

2

32864
102240)(
αα
αα

α +−
−−

=L
sN  (14a) 

 

2

2

3107
1062144)(
αα
αα

α ++
−+

=U
sN  (14b) 

 
The inverse functions of L
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exist, yielding the membership function: 
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as shown in Figure 1. The overall shape turns 
out as expected. 
Next, we perform α -cuts of arrival, service 

and setup rates and fuzzy expected number of 
materials in the system at eleven distinct α  
values: 0, 0.1, …, 1. Crisp intervals for fuzzy 
expected number of materials in the system at 
different possibilistic α  levels are presented 
in Table 1. The fuzzy expected number of 
materials in the system sN~  has two charac-

teristics to be noted. First, the support of sN~  
ranges from 3.75 to 20.5714; this indicates 
that, though the expected number of materials 
in the system is fuzzy, it is impossible for its 
values to fall below 3.75 or exceed 20.5714. 
Second, the α -cut at 1=α  contains the 
values from 5.8462 to 9.8, which are the most 
possible values for the fuzzy expected number 
of materials in the system. 

 

 
 

Figure 1. The membership function for fuzzy expected number of materials in the system 
 

Table 1. α -cuts of arrival, service and setup rates and expected number of materials in the system 
 

α  Lxα  Uxα  Lyα  Uyα  Lvα  Uvα  L
sN α)(  U

sN α)(  
0.00 5.00 8.00 23.00 26.00 1.00 4.00 3.7500 20.5714 
0.10 5.10 7.90 23.10 25.90 1.10 3.90 3.9147 18.6924 
0.20 5.20 7.80 23.20 25.80 1.20 3.80 4.0875 17.1053 
0.30 5.30 7.70 23.30 25.70 1.30 3.70 4.2688 15.7449 
0.40 5.40 7.60 23.40 25.60 1.40 3.60 4.4595 14.5645 
0.50 5.50 7.50 23.50 25.50 1.50 3.50 4.6601 13.5294 
0.60 5.60 7.40 23.60 25.40 1.60 3.40 4.8716 12.6136 
0.70 5.70 7.30 23.70 25.30 1.70 3.30 5.0948 11.7970 
0.80 5.80 7.20 23.80 25.20 1.80 3.20 5.3309 11.0638 
0.90 5.90 7.10 23.90 25.10 1.90 3.10 5.5809 10.4015 
1.00 6.00 7.00 24.00 25.00 2.00 3.00 5.8462 9.8000 

 
 

sN

sN~φ



On a Batch Arrival Queue with Setup and Uncertain Parameter Patterns 

Int. J. Appl. Sci. Eng., 2008. 6, 2    171 

The fuzzy expected waiting time in the queue 
( qW~ ) 
 
Using the same argument and Equation (3), 

the α -cuts of qW~  are: 
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2126560)(

ααα
αα

α −+−
+−

=L
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With the help of MATLAB® 7.0.4, the mem-
bership function is: 
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as shown in Figure 2. The membership func-
tions )(zL  and )(zR  have complex values 
with their imaginary parts approaching zero 

when 
975
436

104
35

≤≤ z  for )(zL  and 

161
200

120
79

≤≤ z  for )(zR . Hence, the imagi-

nary parts of these two functions have no in-
fluence on the computational results and can 
be disregarded. Crisp intervals for the fuzzy 
expected waiting time in the queue at differ-
ent possibilistic α  levels are given in Table 
2. For the fuzzy expected waiting time qW~ , 

the range of qW~  at 1=α  is [0.4472, 
0.6583], indicating that it is definitely possi-
ble that expected waiting time falls between 
0.4472 and 0.6583. Moreover, the range of 

qW~  at 0=α  is [0.3365, 1.2422], indicating 
that the expected waiting time in the queue 
will never exceed 1.2422 or fall below 
0.3365. 
 
 The fuzzy expected length of time the server 
is busy ])[~( BE  
 

Using the same argument and Equation 
(4), the α -cuts of ][~ BE  are: 
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The membership function is: 
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as shown in Figure 3. Crisp intervals for the 
fuzzy expected length of time server is busy 
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at different possibilistic α  levels are given 
in Table 3. 
 

 
 
 

 
 

Figure 2. The membership function for fuzzy expected waiting time in the queue 
 

Table 2. α -cuts of arrival, service and setup rates and expected waiting time in the queue 
 

α  Lxα  Uxα  Lyα  Uyα  Lvα  Uvα  L
qW α)(  U

qW α)(
0.00 5.00 8.00 23.00 26.00 1.00 4.00 0.3365 1.2422
0.10 5.10 7.90 23.10 25.90 1.10 3.90 0.3452 1.1398
0.20 5.20 7.80 23.20 25.80 1.20 3.80 0.3543 1.0534
0.30 5.30 7.70 23.30 25.70 1.30 3.70 0.3638 0.9795
0.40 5.40 7.60 23.40 25.60 1.40 3.60 0.3739 0.9155
0.50 5.50 7.50 23.50 25.50 1.50 3.50 0.3844 0.8594
0.60 5.60 7.40 23.60 25.40 1.60 3.40 0.3956 0.8099
0.70 5.70 7.30 23.70 25.30 1.70 3.30 0.4074 0.7658
0.80 5.80 7.20 23.80 25.20 1.80 3.20 0.4199 0.7263
0.90 5.90 7.10 23.90 25.10 1.90 3.10 0.4331 0.6907
1.00 6.00 7.00 24.00 25.00 2.00 3.00 0.4472 0.6583
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Figure 3. The membership function for fuzzy expected length of time the server is busy 
 

Table 3. α -cuts of arrival, service and setup rates and expected length of time the server is busy 
 

α  Lxα  Uxα  Lyα  Uyα  Lvα  Uvα  LBE α])[(  UBE α])[(
0.00 5.00 8.00 23.00 26.00 1.00 4.00 0.2188 2.4286 
0.10 5.10 7.90 23.10 25.90 1.10 3.90 0.2303 2.1046 
0.20 5.20 7.80 23.20 25.80 1.20 3.80 0.2427 1.8421 
0.30 5.30 7.70 23.30 25.70 1.30 3.70 0.2560 1.6261 
0.40 5.40 7.60 23.40 25.60 1.40 3.60 0.2703 1.4460 
0.50 5.50 7.50 23.50 25.50 1.50 3.50 0.2857 1.2941 
0.60 5.60 7.40 23.60 25.40 1.60 3.40 0.3024 1.1648 
0.70 5.70 7.30 23.70 25.30 1.70 3.30 0.3205 1.0537 
0.80 5.80 7.20 23.80 25.20 1.80 3.20 0.3401 0.9574 
0.90 5.90 7.10 23.90 25.10 1.90 3.10 0.3614 0.8736 
1.00 6.00 7.00 24.00 25.00 2.00 3.00 0.3846 0.8000 

 
 The fuzzy expected length of time the server 
is idle ])[~( IE  
 

Using the same argument and Equation 
(5), the α -cuts of ][~ IE  are: 
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The membership function is: 
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as shown in Figure 4. Crisp intervals for the 
fuzzy expected length of time server is idle at 
different possibilistic α  levels are provided 
in Table 4. From Figures 3-4 and Tables 3-4, 
we can gain insight into the possible expected 
time server is busy and idle. 

][~ BEφ
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Example 2. The positive film maker can ex-
port the images in a computer into films di-
rectly. To reduce the possible failure of the 
laser beam in the film maker, the correct op-
erating steps of this film maker are to turn-on 
and to wait for setup time. After the setup 
time, the computer linked with the film maker 
is started for the continuous steps (This posi-
tive film maker can be viewed as a server). 
The number of arriving images each time fol-
lows a geometric distribution with parameter 

0.5p = . Suppose the arrival rate, service rate 
and setup rate are trapezoidal fuzzy numbers 
represented by 8] ,7 ,6 ,5[~

=λ , 
]41,40,39,38[~ =μ  and =θ~  ].16 ,9 ,8 ,1[  For 

efficiency, the designer wants to get the sys-
tem characteristics such as the expected 
number of images in the system, the expected 
waiting time in the queue, the expected length 
of time the server is busy and idle and etc. 

 
 

Figure 4. The membership function for fuzzy expected length of time the server is idle  
 

Table 4. α -cuts of arrival and setup rates and expected length of time the server is idle 
 

α  Lxα  Uxα  Lvα  
Uvα  LIE α])[( UIE α])[(  

0.00 5.00 8.00 1.00 4.00 0.3125 1.1000 
0.10 5.10 7.90 1.10 3.90 0.3197 1.0071 
0.20 5.20 7.80 1.20 3.80 0.3273 0.9295 
0.30 5.30 7.70 1.30 3.70 0.3352 0.8636 
0.40 5.40 7.60 1.40 3.60 0.3436 0.8069 
0.50 5.50 7.50 1.50 3.50 0.3524 0.7576 
0.60 5.60 7.40 1.60 3.40 0.3617 0.7143 
0.70 5.70 7.30 1.70 3.30 0.3715 0.6760 
0.80 5.80 7.20 1.80 3.20 0.3819 0.6418 
0.90 5.90 7.10 1.90 3.10 0.3930 0.6111 
1.00 6.00 7.00 2.00 3.00 0.4048 0.5833 
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Following the solution procedure illustrated 
above, we obtain membership functions as 
shown in Figures 5 to 8 and crisp intervals for 
the expected number of images in the system, 
the expected waiting time in the queue and 
the expected lengths of time the server is busy 

and idle for different possibilistic α  levels 
in Tables 5 to 8. We gain insight into the pos-
sible system characteristics. 
 

 

 
 

Figure 5. The membership function for fuzzy expected number of images in the system  
 

Table 5. α -cuts of arrival, service and setup rates and expected number of images in the system 
 

α  Lxα  Uxα  Lyα  Uyα  Lvα  Uvα  L
sN α)(  U

sN α)(  
0.00 5.00 8.00 38.00 41.00 1.00 16.00 1.2702 17.4545 
0.10 5.10 7.90 38.10 40.90 1.70 15.30 1.3312 10.7112 
0.20 5.20 7.80 38.20 40.80 2.40 14.60 1.3965 7.8805 
0.30 5.30 7.70 38.30 40.70 3.10 13.90 1.4669 6.3127 
0.40 5.40 7.60 38.40 40.60 3.80 13.20 1.5430 5.3103 
0.50 5.50 7.50 38.50 40.50 4.50 12.50 1.6258 4.6099 
0.60 5.60 7.40 38.60 40.40 5.20 11.80 1.7163 4.0899 
0.70 5.70 7.30 38.70 40.30 5.90 11.10 1.8160 3.6862 
0.80 5.80 7.20 38.80 40.20 6.60 10.40 1.9266 3.3621 
0.90 5.90 7.10 38.90 40.10 7.30 9.70 2.0504 3.0950 
1.00 6.00 7.00 39.00 40.00 8.00 9.00 2.1905 2.8700 
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Figure 6. The membership function for fuzzy expected waiting time in the queue 
 

Table 6. α -cuts of arrival, service and setup rates and expected waiting time in the queue  
 

α  Lxα  Uxα  Lyα  Uyα  Lvα  Uvα  L
qW α)(  U

qW α)(
0.00 5.00 8.00 38.00 41.00 1.00 16.00 0.1026 1.0646
0.10 5.10 7.90 38.10 40.90 1.70 15.30 0.1061 0.6517
0.20 5.20 7.80 38.20 40.80 2.40 14.60 0.1098 0.4790
0.30 5.30 7.70 38.30 40.70 3.10 13.90 0.1138 0.3838
0.40 5.40 7.60 38.40 40.60 3.80 13.20 0.1182 0.3233
0.50 5.50 7.50 38.50 40.50 4.50 12.50 0.1231 0.2814
0.60 5.60 7.40 38.60 40.40 5.20 11.80 0.1285 0.2504
0.70 5.70 7.30 38.70 40.30 5.90 11.10 0.1345 0.2266
0.80 5.80 7.20 38.80 40.20 6.60 10.40 0.1412 0.2077
0.90 5.90 7.10 38.90 40.10 7.30 9.70 0.1488 0.1923
1.00 6.00 7.00 39.00 40.00 8.00 9.00 0.1575 0.1794
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Figure 7. The membership function for fuzzy expected length of time the server is busy 
 

Table 7. α -cuts of arrival, service and setup rates and expected length of time the server is busy 
 

α  Lxα  Uxα  Lyα  Uyα  Lvα  Uvα  LBE α])[(  UBE α}){(
0.00 5.00 8.00 38.00 41.00 1.00 16.00 0.0524 0.7727 
0.10 5.10 7.90 38.10 40.90 1.70 15.30 0.0543 0.4616 
0.20 5.20 7.80 38.20 40.80 2.40 14.60 0.0563 0.3319 
0.30 5.30 7.70 38.30 40.70 3.10 13.90 0.0586 0.2606 
0.40 5.40 7.60 38.40 40.60 3.80 13.20 0.0610 0.2155 
0.50 5.50 7.50 38.50 40.50 4.50 12.50 0.0637 0.1844 
0.60 5.60 7.40 38.60 40.40 5.20 11.80 0.0668 0.1616 
0.70 5.70 7.30 38.70 40.30 5.90 11.10 0.0701 0.1442 
0.80 5.80 7.20 38.80 40.20 6.60 10.40 0.0740 0.1304 
0.90 5.90 7.10 38.90 40.10 7.30 9.70 0.0783 0.1192 
1.00 6.00 7.00 39.00 40.00 8.00 9.00 0.0833 0.1100 
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Figure 8. The membership function for fuzzy expected length of time the server is idle 
 

Table 8. α -cuts of arrival and setup rates and expected length of time the server is idle 
 

α  Lxα  Uxα  Lvα  Uvα  LIE α])[(  UIE α])[(  
0.00 5.00 8.00 1.00 16.00 0.1250 1.1000 
0.10 5.10 7.90 1.70 15.30 0.1287 0.6863 
0.20 5.20 7.80 2.40 14.60 0.1326 0.5128 
0.30 5.30 7.70 3.10 13.90 0.1369 0.4169 
0.40 5.40 7.60 3.80 13.20 0.1415 0.3558 
0.50 5.50 7.50 4.50 12.50 0.1467 0.3131 
0.60 5.60 7.40 5.20 11.80 0.1523 0.2816 
0.70 5.70 7.30 5.90 11.10 0.1586 0.2572 
0.80 5.80 7.20 6.60 10.40 0.1656 0.2377 
0.90 5.90 7.10 7.30 9.70 0.1735 0.2217 
1.00 6.00 7.00 8.00 9.00 0.1825 0.2083 

 
Comparison Analysis Results of Using Fuzzy 
Theory and Conventional Method 
 
As shown on these two examples, these re-

corded values of the parameters are approxi-
mated to the constants. It is not proper to 

analyze the characters of the system with a 
single crisp mean value. Traditionally, engi-
neers used the mean of these possible obser-
vations for the parameters as the estimates for 
finding features such as the expected number 
of materials in the system, or the expected 
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waiting time in the queue. Example 1 in Sec-
tion 4, if the traditional approach is used to 
find the expected number of materials in the 
system, the arrival rate, service rate and setup 
rate are respectively estimated as 5.6ˆ =λ , 

5.24ˆ =μ , and 5.2ˆ =θ , and the expected 
number of materials in the system will be 
7.4608. However, if the fuzzy parameters are 
used to find the expected number of materials 
in the system, then the ranges are between 
3.75 to 20.5714. Table 1 illustrates 10 crisp 
intervals for fuzzy expected number of mate-
rials in the system at different possibilistic α  
levels. Although the possibilities of some oc-
currences are very low, the system is still af-
fected by these occurrences. Therefore, the 
occurrences can not be neglected. If the engi-
neers prefer a suitable single value expected 
number of materials in the system for practi-
cal use with these approximate parameters, 
this paper uses an approach following the 
Yager ranking index method. Based on the 
illustrated example, the suitable expected 
number of materials in the system is 9.3816. 
Compared to the expected number of materi-
als in the system with the traditional approach, 
the risk of under-estimation occurs. 
 

5. Conclusions 
 
This paper applies the concepts of α -cuts 

and Zadeh’s extension principle to a queuing 
system with a setup and constructs member-
ship functions of the expected number of 
customers in the system, the expected waiting 
time in the queue, and the expected lengths of 
time the server is busy and idle using paired 
NLP models. Following the proposed ap-
proach, α -cuts of the membership functions 
are found and their interval limits inverted to 
attain explicit closed-form expressions for the 
system characteristics. Even when the mem-
bership function intervals cannot be inverted, 
system managers or designers can specify the 
system characteristics of interest, perform 
numerical experiments to examine the corre-

sponding α -cuts and then use this informa-
tion to develop or improve system processes. 

For example, in Example 1, a designer 
(manager) can set the range of the expected 
waiting time to be [0.4199,0.7263] to reflect 
the desired service and setup rates and find 
that the corresponding α  level is 0.8 with 

=Lyα 23.8, =Uyα 25.2, =Lvα 1.8 and =Uvα 3.2. 
In other words, the designer can determine 
that the service rate is between 23.8 and 25.2 
and the setup rate is between 1.8 and 3.2. 
Similarly, a designer can also set the number 
of materials with “rounder” numbers like 
[4.8716, 12.6136] to reflect the desired ser-
vice and setup rates, and the corresponding 
α  level is 0.6 with =Lyα 23.6, =Uyα 25.4, 

=Lvα 1.6 and =Uvα 3.4. As this example dem-
onstrates, the approach proposed in this paper 
provides practical information for system de-
signers and practitioners. 
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