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Abstract: This paper utilizes a continuous wavelet transform algorithm to identify the dynamic 
parameters of a cable-stayed bridge under normal traffic and environmental wind fields. The dy-
namic characteristics were determined by using an identification technique for the Kao Ping Hsi 
cable-stayed bridge. The modal parameters identified from the field vibration tests were com-
pared with those used in the finite element analysis. The finite element model can then be refined 
by the experimental results. Next, a comparison between the identified results and the updating 
finite element results shows reasonable agreements for the first several modes in the two direc-
tions, namely, vertical, and transverse directions. Finally, the rational finite element model of 
Kao Ping Hsi cable-stayed bridge can be established. The finite element model obtained herein 
were used as the damage index for monitoring the long-term safety of the Kao Ping Hsi ca-
ble-stayed bridge under environmental loads in the future. 
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1. Introduction 
 
Field vibration test is the most reliable 

means for determining the dynamic charac-
teristics of an existing bridge. The results ob-
tained in a field test can be adopted to im-
prove the finite element model used, to evalu-
ate the rationality of the original design, or to 
assess the damage occurring on a bridge after 
a major wind or earthquake event [1]. The 
ambient vibration test is easy, practical, and 
economic. It is the most popular way to per-
form vibration tests because it utilizes com-
mon loadings such as wind, normal traffic and 
environmental noise as the input [2]. Two 
primary approaches are normally used to per-
form the system identification. Identification 
techniques in the frequency domain are easy 

and widely accepted, but they do not accu-
rately calculate the spectra for highly damped 
systems. On the other hand, the system identi-
fication in time domain can provide accurate 
results if the measured signals are pure with 
low noise [3]. Over the past two decades, an 
advanced time-frequency algorithm method, 
called wavelet transform, became 
well-developed in both theoretical and practi-
cal aspects. Various identification method-
ologies for identifying modal parameters of 
linear systems have been developed based on 
discrete or continuous wavelet transforms [4, 
5]. 
In this work, an efficient technique is pro-

posed for identifying dynamic characteristics 
of a cable-stayed bridge from the data col-
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lected in an ambient vibration test with the 
application of the continuous wavelet trans-
form. The linear systems of equations of mo-
tion among the measured degrees of freedom 
are established in the wavelet domain. The 
coefficients of each discrete equation can be 
determined in the wavelet domain through the 
least squares approach. Then, the modal pa-
rameters are recovered directly from these 
coefficients by solving an eigenvalue problem. 
The original finite element model is modified 
and accordingly refined by the identified re-
sults from the field test. Finally, a rational 
analytical model of the Kao Ping Hsi ca-
ble-stayed bridge can thus be established.  

 
2. Tested bridge description and FEM  

model of original design 
 
The tested bridge is the Kao Ping Hsi ca-

ble-stayed bridge which supported by an in-
verse Y-shaped reinforced concrete pylon. 
The bridge crosses the middle stream of Kao 
Ping Hsi connecting Tashu Village at Kaoh-
siung County and Chiuru Village at Pingtung 
County. As shown in Fig. 1, this bridge is an 
asymmtric cable-stayed bridge with a single 
tower. The asymmetric cable-stayed bridge is 
erected as a hybrid system, utilizing different 
materials for main span and side span in order 
to balance the force systems at both sides. 
Therefore, the side span was built by heavier 
concrete material, while the main span was 
built using lighter steel. A total of 30 sets of 
cables are used to connect the girders to the 
pylon in two planes. 
A 3-D finite element model was constructed 

using commercial finite element package 
SAP2000 to simulate the Kao Ping Hsi ca-
ble-stayed bridge. In the finite element model, 
33 beam elements are used for modeling the 
deck, 38 beam elements are used for the pylon, 
and 28 cable elements were used for the cable. 
The soil-structure interaction was not consid-
ered in the model. A simple hinged support 
was assumed at abutment (A1) and a roller 
support was used for the pier P2. Typical ma-

terial properties for practical designs were 
used in this analysis. Table 1 lists the first five 
natural frequencies in both directions obtained 
from the finite element analysis.  
 

Table 1. The modal analysis of results for the  
 original finite element model 

 
Vertical Transverse Mode
f (Hz) f (Hz) 

1 0.318 0.646 
2 0.792 1.40 
3 1.046 2.16 
4 1.304 2.63 
5 2.06 3.02 

 
3. Field experiment using ambient vibra-

tion test 
 
Ambient vibration tests were performed on 

the Kao Ping Hsi cable-stayed bridge to de-
termine its dynamic characteristics under 
normal traffic and environmental wind loads. 
To identify the modal shapes of the bridge, a 
total of 33 measuring stations on the deck was 
adopted to record responses in the vertical 
direction. Figure 1 shows that the measuring 
stations on the deck are setup near each cable 
anchor position and pier position. In addition, 
several measuring stations are designated 
between cable F101 and Pier 2 and between 
cable B114 and cable F114. Sixteen highly 
sensitive sensors of servo velocity type were 
used to measure simultaneously the ambient 
vibration response of the deck. The resolution 
can reach the level of 10-4 cm/s. The record 
system is a PC-based portable data acquisition 
system with 16 channels, which can convert 
analogue signals to digital data and restore the 
measurement data. Because of the limited 
number of channels that can be simultane-
ously used during testing, the deck was di-
vided into three segments as shown in Fig. 1. 
All the responses were recorded for a period 
of ten minutes at a sampling rate of 100 Hz, 
implying that 60000 data points are recorded 
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in each measurement. It should be noted that 
the points of overlap at the 11th and 12th sta-
tions of the main span, and the 21th and 22th 
stations of the side span, were used as the 
bases for linking the data recorded at two ad-

jacent segments. Figure 2 indicates a set of 
typical measured data and corresponding 
auto-spectra from the ambient vibration test.  
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Figure 1. Kao Ping Hsi cable-stayed bridge and sensor layout 
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Figure 2. Typical sets of recorded data for ambient test with corresponding auto-spectra in two directions: 

(a) time history; (b) corresponding auto-spectra 
 
4. Modal identification 
 
The continuous wavelet transform is applied 

to the measured dynamic responses of the ca-
ble-stayed bridge in the wavelet domain. The 
dynamic responses are discretized into a set of 
linear equations of motion according to the 
measured degrees of freedom. Several scale 
parameters can be adopted in the transforma-
tion to filter out the measured noise. Based on 
the equivalence relationship, the traditional 
least squares approach is proposed to deter-
mine the characteristic coefficients in the dis-
crete domain. Consequently, the dynamic 
characteristics of a structure can be deter-
mined directly from such coefficients by 
solving the eigenvalue problem. 
 
 

4.1. Continuous wavelet transform 
 
Consider a function of time, f(t), in the L2 

space, the corresponding wavelet transform 
can be defined as [6] 
 

( ) ( ) ( )∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

== ∗
−

Rba dt
a

bttfattfbafW ψψψ
2
1

, )(),(,  

(1) 
 

where ( )tψ  is the mother wavelet function. 
<,> denotes inner product. The superscript * 
stands for the complex conjugate, respectively. 
a is a dilation or scale parameter, which is 
typically a positive real and is equivalent to of 
the inverse of frequency. Symbol b denotes a 
translation parameter, which indicates the lo-
cality of the transformation. The base function 
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of a mother wavelet function can be written as  
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a
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tba ψψ 1
,  (2) 

 
The inverse of the wavelet transform is de-
termined by 
 

( ) ( )∫ ∫
∞

∞−

∞

∞−
⎟
⎠
⎞

⎜
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where CΨ is the admissibility condition, 
which can be given by 
 

( )
∫=

R
dC ω

ω
ωψ

ψ

2ˆ  (4) 

 
with ( )ωψ̂  is the Fourier transform of ( )tψ . 
Basically, a mother wavelet function must 
satisfy the admissibility condition. The wave-
let transform decomposes an arbitrary func-
tion of time f(t) into a set of functions ( )tba,ψ  
for different values a and b. Therefore, the 
transformation has a filtering effect because 
the wavelet transform decomposition alters 
the frequency contents of f(t) provided that 
the scale parameter is fixed.  
Applying Fourier transformation to Eq. (1) 

with a fined scale parameter, a, yields 
 

)(ˆ)(ˆ),(ˆ ωωψωψ faaafW =  (5) 
 
where ( )ωf̂  and ),(ˆ ωψ afW  are Fourier 
transforms of f(t) and ),( bafWψ  with re-
spect to b. According to Parseval equation [6], 
the wavelet transform gives the localized in-
formation of the spectrum of f(t) with a fre-
quency window  
 

⎥
⎦

⎤
⎢
⎣

⎡ Δ
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Δ
−
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aaaa

ˆ
,
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where a/∗ω  is the center of the window and 
a/Δ̂  is the half width of the window. 

 
4.2. Estimation of Time Series model 
 
The equations of motion of a linear system 

is given by  
 

)}({}]{[}]{[}]{[ tpxKxCxM =++ &&&  (7) 
 
where [M], [C], and [K] are the mass, damp-
ing, and stiffness matrices of the structural 
system, respectively. }{x&& , }{x& , and }{x  are 
the acceleration , velocity, and displacement 
vectors of the structure. )}({ tp  is the exter-
nal force vector. The equations of motion can 
be accurately discretised by the impulse in-
variant transformation. The structural re-
sponses often only measure acceleration or 
velocity responses at some degrees of free-
dom due to limited instrumentations. The dis-
crete equation of motion corresponding the 
measured degrees of freedom can be ex-
pressed  
 

( ){ } [ ] ( ){ } [ ] ( ){ }∑∑
==

−Θ+−Φ=
J

j
j

I

i
i jtpityty

1,02,1
 (8) 

 
where ( ){ }ity − and ( ){ }itp −  are the meas-
ured responses, and the forces at t-iΔt, respec-
tively. [ ] iΦ  and [ ] jΘ  are unknown coeffi-
cient matrices. Symbols I and J denote the 
lags of output and input, respectively. The ex-
pression of Eq. (8) is similar to the time-series 
model, ARX. The ARX model equates the 
equations of motion as given in Eq. (7). For 
the problem of free decayed vibration re-
sponses, the term of external forces would 
vanish, thus  
 

( ){ } [ ] ( ){ }∑
=

−Φ=
I

i
i ityty

2,1
 (9) 

 
where ( ){ }ty  is the Randomdec signatures, 
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and is similar to freely decayed signals. It 
should be mentioned that Eq. (9) is only valid 
for free vibration response. 
Applying the continuous wavelet transform 

to Eq. (9) yields  
 

{ }( ) [ ] { }( )∑
=

−Φ=
I

i
yiy ibaWbaW

1

,,  (10) 

 
Carefully constructing Eq. (10) for different b 
yields 
 

}]{~[}{ )0( YCY =  (11) 
 
Where 
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ψ=  (14) 
 
The unknown coefficient matrix ]~[C  in the 
overdeterminate system of Eq. (11) is calcu-
lated by using the least squares, and can be 
determined by  
 

( ) 1)0( }{}{}}{{]~[ −
= TT YYYYC  (15) 

 
4.3. Identification of the modal parameter 
 
Equation (11) is similar to the time series 

model, AR (Auto-Regressive model). The AR 
model equates the equations of motion. Hence, 
the dynamic characteristics of the structural 
system can be obtained from the coefficient 
matrices of AR, ]~[C . The modal parameters 
can be determined from the eigenvalues and 
eigenvectors of [ ]G , which leads to the fol-

lowing matrix [2, 7]. 
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⎥
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The eigenvectors of [G] correspond to the 
mode shapes of the structural system of inter-
est in the form of state variables, whereas the 
eigenvalues of [G] relate to the natural fre-
quencies and damping ratios. Let kλ and 
{ }kψ  represent the kth eigenvalue and ei-
genvector of [ ]G , respectively. The eigen-
value, kλ , is a complex number, and can thus 
be expressed as ak+ibk. The complex conju-
gates of kλ  and { }kψ  are also an eigen-
value and eigenvector, respectively. The 
natural frequency and modal damping of the 
system, as in Eq. (16) are given by 
 

22~
kkk βαβ +=  (17) 

 
kkk βαξ ~/−=  (18) 

 
where kβ~  is the pseudo-undamped circular 
natural frequency; kξ  is the modal damping 
ratio;  
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and tΔ/1  is the sampling rate of measure-
ment. 
The particular composition of [ ]G  in Eq. 

(16) is such that its eigenvectors exhibit the 
following property. 
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where { }1kψ  is the modal shape of the sys-
tem that corresponds to the natural frequency, 

kβ~ . Hence, the responses measured in the 
structure during the field vibration test show 
that a continuous wavelet transform can be 
established. The modal parameters of such a 
structural system can be determined using the 
foregoing method. 

 
4.4. Selection of wavelet function 
 
For the wavelet transform, several wavelet 

functions can be applied to, such as the Meyer, 
Shannon, Morlet and Harr functions as have 
been studied by Huang and Su [5]. These 
wavelet functions can be applied to identify 
forced vibration data. The Meyer function is 
compactly supported in the frequency domain 

and smoothes out the discontinuity of the 
Shannon wavelet function. Thus, the Meyer 
wavelet function was selected to identify the 
modal parameters in this work. The Meyer 
wavelet (see Fig. 3) is defined in the fre-
quency counterpart domain as below [8] 
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where ( ) ( )324 20708435 aaaaa −+−=ν , and 
a ]1,0[∈ . The Meyer wavelet and its Fourier 
modulus are depicted in Fig 3. 
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Figure 3. Meyer wavelet function and its Fourier modulus: (a) time domain; (b) frequency domain 

 
5. Data processing and identification re-

sults 
 
Each set of velocity data recorded in the am-

bient vibration test was processed using the 
random decrement technique to generate the 
free vibration responses. The free vibration 
responses obtained are called Randomdec 
signatures [9]. Then, the foregoing identifica-

tion method was applied to these Randomdec 
signatures to yield the dynamic characteristics 
of the structure. The typical velocity-time 
history records with the corresponding 
auto-spectra are illustrated in Fig. 2. The 
natural frequencies and modal damping ratios 
of the first five modes in the vertical and 
transverse directions determined from the 
ambient vibration test are listed in Table 2 and 
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Table 3, respectively, while the corresponding 
modal shapes are shown in Fig. 4 and Fig. 5. 
Symbols f and ξ are natural frequency and 
damping ratios in those table, respectively. 
For such a long span cable-stayed bridge, 
however, the frequency range of interest lies 

below 2 Hz. As can be seen, the frequencies 
of lower modes identified in Table 2 and Ta-
ble 3 correspond well with those associated 
with the peaks of the auto-spectra shown in 
Fig 2. 

 
 

 
 

Figure 4. Comparison of identified mode shapes with finite element results in vertical direction 
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Figure 5. Comparison of identified mode shapes with finite element results in transverse direction 
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Table 2. Comparison of natural frequencies and  
      damping ratios in the vertical direction 

 

Ambient Test FEM 
(updated) Mode 

f (Hz) ξ (%) f (Hz) 
MAC

1 0.284 2.9 0.293 0.99 
2 0.574 3.7 0.561 0.99 
3 0.92 4.4 0.931 0.95 
4 1.54 3.9 1.52 0.98 
5 1.81 3.0 1.79 0.97 

 
Table 3. Comparison of natural frequencies and  

       damping ratios in the transverse direction 
 

Ambient Test FEM 
(updated) Mode 

f (Hz) ξ (%) f (Hz) 
MAC

1 0.643 3.3 0.646 0.99 
2 1.64 2.9 1.40 0.96 
3 2.17 3.2 2.16 0.98 
4 2.51 2.5 2.63 0.98 
5 3.13 3.9 3.02 0.96 

 
6. Refining FEM model 
 
A 3-D finite element model has been estab-

lished to simulate the Kao Ping Hsi ca-
ble-stayed bridge. The natural frequencies of 
the first five modes in the vertical and trans-
verse directions are listed in Table 1. Com-
parisons with measured results in Table 2 and 
Table 3 reveal that the computed frequencies 
are significantly larger than the experimental 
ones for most mode. Therefore, the dynamic 
parameters of the original finite element 
model need to be updated. To obtain a more 
accurate analytical model, the experimental 
results can be used to refine the original finite 
element model. 
The finite element model used in designing 

the structure must be further refined by either 
experimentally or using model updating 
methods , in which one needs to more realis-
tically evaluate the boundary conditions and 
both the geometric and material characteris-

tics of the structure. Overview the construc-
tion process of Kao Ping Hsi cable-stayed 
bridge, the quality of construction is satisfac-
tory. The dynamic characteristics computed in 
the original FEM model are larger than the 
identified value of 0.5%~15% except for the 
second mode. The geometric and material of 
the structure are less sensitive than the 
boundary conditions to the simulated results. 
Therefore, only boundary conditions are 
modified to modulate the FEM model. As 
shown in Fig. 6, the transverse beams are 
used to simulate the supports of the bridge at 
the abutment A1 and the pier P2. The linking 
transverse system is adopted to simulate the 
interaction between main beam and main 
tower.  
For comparison, the first five natural fre-

quencies computed from the FEM updating 
model is also listed in Table 2 and Table 3, in 
which the dominant direction of vibration is 
determined by the maximum component of 
each eigenvector. The modal shapes obtained 
from the finite element analysis of updating 
model are also plotted in Fig. 4 and Fig. 5. 
The FEM results appear to be similar to the 
measured ones. To evaluate the correlation 
between the identified and the theoretical 
mode shapes, the MAC index (modal assur-
ance criterion), which is defined as [10], was 
used to show the correlation between any two 
mode shapes of interest 
 

}{}}{{}{

}{}{
}){},({

2

iA
T

IAiI
T

iI

iA
T

iI
iAiIMAC

ϕϕϕϕ

ϕϕ
ϕϕ =  (23) 

 
where {ϕiI} is the ith mode shape identified 
from the wavelet transform algorithm and 
{ϕiA} is the corresponding mode shape ob-
tained by theoretical analysis. The value of 
MAC is between zero and one. An MAC in-
dex near unity indicates to similarity in the 
mode shapes of interest. An MAC index is 
zero when the two mode shapes are orthogo-
nal and unrelated to each other. Table 2 and 
Table 3 present the MAC values for the modal 
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shapes in Fig. 4 and Fig. 5 which are obtained 
from the ambient vibration test and finite 
element analysis. As can be seen, correlations 
between the two sets of modal shapes are 

generally good. Herein, the refined finite 
element model can be rationally established 
for the Kao Ping Hsi cable-stayed bridge. 

 
 

 
(a)                                          (b) 

 
Figure 6. Boundary conditions modified for the FEM model: (a) at abutment A1 and pylon P2; (b) between  

main beam and main tower 
 

7. Conclusions 
 
This study presents a method of structural 

identification for the Kao Ping Hsi ca-
ble-stayed bridge by using ambient vibration 
testing data with the continuous wavelet 
transform. The modal parameters of the 
structural system are directly estimated from 
the coefficient matrices associated with the 
continuous wavelet transform. The first five 
modes in both vertical and transverse direc-
tions were identified for the bridge from the 
results recorded during the ambient vibration 
test. The results obtained in a field test were 
used to evaluate the rationality of the original 
design. The finite element model was revised 
by using the experimental results. Modifica-
tions on the boundary conditions of the ca-
ble-stayed bridge can be adopted to update the 
finite element model. A comparison of the 
identified results with the finite element re-
sults shows a reasonable match for the first 
five modes, leading to the conclusion that the 
proposed methodology in the structural iden-
tification of the cable-stayed bridges is appli-
cable.   
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