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Abstract: Damage in a plate in the form of a line crack contained in an element, and oriented at 
an arbitrary angle is detected using an inverse time domain formulation. The time domain 
acceleration responses need to be measured at certain locations. The crack damage is modeled 
using an equivalent orthotropic finite element scheme based on the strain energy equivalence 
principle. The principle is to minimize the difference between the measured and theoretically 
predicted accelerations. Since the computational effort of identification using the global finite 
element model of the plate proved prohibitive, the substructure method was used. The 
substructure was further condensed of the rotary DOF’s for increased computational 
improvement. In order to identify the location and magnitude of the damage variables, 
acceleration responses at the substructure interfaces and also a few selected points inside the 
substructure are required. Using numerically simulated experiments the crack was reliably 
detected using this method. The damage is identified with the addition of noise as well as at 
different forcing frequencies. The Genetic Algorithm (GA) and Particle Swarm Optimization 
(PSO) were used to solve the inverse problem. The PSO algorithm proved superior to GA in 
convergence and accuracy.  
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1. Introduction 
 
Inverse problems often occur in many 

branches of engineering fields where the 
values of certain physical model parameters 
are required to be recovered from observed 
data. System identification (SI) comes under 
the category of inverse problem. It is a 
process of determining the parameters of a 
system based on the observed input and 
output (I/O) of the system. The application of 
SI technique presented here illustrates the 
damage detection of a uniform thin plate 
based on the vibration data. Doebling et al. 

has presented a comprehensive survey of 
vibration based damage detection methods [1]. 
The development of modal analysis 
techniques for damage detections arose from 
the observation that the structural properties 
affect the natural frequencies, mode shapes 
and frequency response function (FRF) etc. 
Many researchers have used one or several of 
these characteristics to detect and locate 
damages in the structures. Young Shin Lee 
and Chung used the first four natural 
frequencies of the cantilever beam to identify 
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a designated crack [2]. Wang et al. presented 
a damage detection scheme in which static 
deformations and natural frequencies of 
planar trusses and beams are applied with an 
interactive optimization algorithm to assess 
the location and severity of specific damages 
[3]. Hwang and Kim used subset of vectors 
from full set of FRFs for a few frequencies 
measurements to detect the location and 
severity of damages [4]. Araujo et al. 
proposed damage identification method based 
on FRF sensitivities [5]. The damage 
identification was performed on a laminated 
rectangular plate, discretized using a finite 
element (FE) model.  Lee et.al  has shown 
that damage in the form of a crack in an 
isotropic small material volume can be 
represented by an equivalent continuum 
model with orthotropic properties, producing 
the same strain at the boundaries [6]. This 
model was used in a study to predict crack 
damage in a plate using frequency response 
data [7]. Surface crack detection in composite 
laminates by modal analysis and strain energy 
method was carried out in [8]. Here the FE 
model of a composite laminate was obtained 
using ANSYS and the results were validated 
using experiments. In order to deal with the 
computational effort in identifying systems 
with many unknowns which result in large 
DOF (Degree-of-Freedom) models  Koh et 
al., proposed a substructure system 
identification scheme [9]. They also present a 
summary of various substructure approaches 
used in parametric system identification in the 
time-domain. An ideal substructure method is 
one which could identify all parameters in a 
given substructure without the need to 
estimate or know any parameters outside that 
substructure. Also, all the measurement 
sensors must be confined inside that specific 
substructure. 
With recent rapid advances in computer 

hardware and improved computational 
methods, application of SI as an inverse 
problem for damage detection has grown 

rapidly. Random search intelligent algorithms 
such as Genetic Algorithms (GA) and Particle 
Swarm Optimization (PSO) have been applied 
in system identification [9, 10, 11] due to their 
robustness and ability to handle many damage 
variables. 
This paper presents a new time-domain 

damage detection scheme based on  
substructure system identification method 
using GA or PSO to filter out the correct 
parameters from a given search domain. The 
algorithm estimates the damage parameters 
through minimization of an error function 
defined by mean squared error between the 
measured and estimated accelerations at all 
time steps and all locations. The measured 
values are obtained from an experiment; this 
is numerically simulated from a known model 
in this case. Estimated values are obtained 
from a known mathematical (i.e., finite 
element) model.   
2. T me domain substructure method 

Computational effort increases with the 
n

i
 

umber of parameters to be identified. It 
therefore makes sense to divide the structure 
into smaller substructures, for which 
numerical convergence can be achieved more 
easily. The time domain substructure method 
followed here is derived from [12]. The 
equation of motion for the complete structural 
system is given by, 
 

( ) ( ) ( ) ( )M x t C x t K x t P t+ + =&& &  (1) 
 

here M, C, K and P(t) are the mass, damping w
stiffness matrices and excitation force vector, 
respectively. The Raleigh damping approach 
where C aM bK= + , where α and β are two 
coefficients decided by the user from modal 
information of two modes. 
The partitioned equations for the structure 

shown in Figure1 are written as, 
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Figure 1. Global structure and substructure (S) of the plate 
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The subscript ‘j’ denotes all interface DOFs 

(i.e. f and g included). In the above form it is 
required to calculate the substructure interface 
displacements, velocities and accelerations. 
These interface accelerations  have to be 
obtained experimentally, and thereafter 
integrated to obtain the displacements and 
velocities. We also require the experimentally 
measured acceleration response u at a few 
interior points M.                                 

ju&&

 
where subscript  ‘r’ denotes internal DOFs 
of the substructure S, subscripts ‘f ‘ and ’g’ 
represents the interface DOFs, ‘u’ and ‘d’ 
represents DOFs of the remaining structure.  
The equations of motion for substructure S 
may be extracted from the above system of 
global equations,  
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The estimated (or predicted) accelerations 
 at those M points are obtained from the 

mathematical model from the left hand side of 
eq. (4).  Here experiments are numerically 
simulated from responses generated from a 
known numerical model and may be 
artificially polluted with Gaussian noise of 
zero mean and 3% standard deviation for 
realism. Using an optimization algorithm such 
as GA or PSO we try to minimize the  
following fitness (objective) function, which 
is the sum of the square of deviations between  
the measured and estimated interior 

 
The above equation can be rearranged to 

bring the ‘interior’ partitions to the left and 
interface effects in the form of a force on the 
right , 
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tions at all locations and all time steps, 
2

1 1
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∑∑ && &&

 (5) 

 
here subscript ‘m’ and ‘e’ denote 

rpresentation of a crack using  

 
Based on continuum damage mechanics 

p

 thickness h and the 
w

w
measurement and estimated quantities 
respectively, L is the number of time steps and 
M is the number of measurement sensors used. 
Ideally it must be minimized to zero, but 
usually it approaches a small value close to 
zero. 
  
3. R

orthotropic damage model 

rinciple  it is shown in [6] that a small 
material volume (SMV) with a line crack 
behaves as effectively orthotropic in a small 
zone. A small material volume with a crack 
can be represented as an equivalent 
continuum model with orthotropic properties 
producing the same strain at the boundaries of 
that volume. Thus the material behavior of the 
SMV with a line crack is expressed in terms 
of the effectively orthotropic elastic stiffnesses, 
which are the functions of the isotropic elastic 
stiffnesses, crack orientation and the size of 
the line crack. Thus, a change in the local 
elastic stiffness from initially isotropic to 
effectively orthotropic can be considered as 
the indicator of damage.  
An elastic thin plate with
idth Lx and Ly in x- and y- directions, 

respectively (Figure 2) is considered in 
present study. The intact plate material is 
isotropic and posses Young’s modulus E and 
Poisson’s ratio ν. Assume there is line crack 
of length 2l at (xD , yD) and aligned with the 
crack coordinate ‘1’ which is oriented at θ 
with respect to the global coordinate x. The 
effective elastic stiffness D

ijQ  for the SMV 
containing a line crack d age is can be 
shown to be, 

 

am

) ( , 1, 2,6)D
ij ij ije i j =D  (6) 

 
ij are the reduced stiffness for the 

(1Q= −Q

where Q
intact is opic material in the plane stress 
state and eij are the effective material 
directivity parameters, given by 
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igure 2. (a) Initially isotropic plate with a line 

 
Thus D represents the averaged severity of 

d

F
through-crack and (b) its equivalent 
continuum damage representation in 
terms of effective orthotropic elastic 
stiffness 

amage within an SMV, which is called 
herein the effective damage magnitude. The 
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effective damage magnitude 0 <D < 1 is 
defined by, 

2 0'h lπ ⎧
=D

for intactstate                       
1 for complete material failure4xyh ⎨
⎩

 (8) 

 
here h’= depth of the crack and h= w

thickness of plate;  thus for a through crack 
h’=h. The effective orthotropic elastic 
stiffness D

ijQ given by equation (6) are all 
measured with respect to the crack 
coordinates 1 and 2. Thus, the effective elastic 
stiffness with respect to the global coordinates 
x and y can be obtained by using the 
coordinate transformation as follows: 
 

( ) ( )T DQ TQ T θ θ=  (9) 
 

here T(θ) is the coordinate transfer matrix, 

. Genetic algorithm and particle swarm  

 
Genetic Algorithms are exploration 

a

on (PSO) is a 
p

1 1( 1) ( ) ( ) [ ( ( ))]
( ))]

i i i i i

i i

v k k v k p x k
k

w
in which θ denotes the crack orientation 
(degrees) with respect to the global coordinate 
x. This approach has been implemented in a 
MATLAB based Finite Element model. 
Cracks of properties D and θ are assumed to 
be fully contained in one of the elements.  It 
is also assumed that the crack does not 
propagate and the damping behavior remains 
unchanged. The proposed damage detection 
scheme has to identify location of the 
damaged element as well as the magnitude 
(i.e., Dand θ values) of the crack contained by 
it. The range of possible values are 0<D<1 
and 0<θ<900. 
 
4

optimization 

lgorithms based on the mechanism of natural 
selection and survival of the fittest. GA 
combines the explorative ability of large 
search spaces as well as reasonable guided 
search. GA creates an initial random sample 
within the specified domain of variables, 
called ‘population’. It then ranks them in the 
order of fitness and conducts crossover 
operations from among a pool of ‘parents’ 

through the Roulette wheel selection. Parents 
having higher fitness have a greater 
probability of being selected and their 
offspring contribute to the next generation. 
GA can be programmed in the Binary or 
Continuous versions. Here, GA in the 
continuous (decimal number) version is used. 
It has been indicated in [13] and [14] that 
continuous GA is superior to binary GA in 
computational performance. 
Particle swarm optimizati
opulation based continuous optimization 

technique developed by Eberhart and 
Kennedy, inspired by the social behavior of 
bird flocking or fish schooling[15]. The 
system is initialized with a population of 
random solutions and searches for optima by 
updating generations. However, unlike GA, 
PSO has no evolution operators such as 
crossover and mutation. In PSO, the potential 
solutions, called particles, move through the 
problem space by following the current 
optimum particles. The basic PSO algorithm 
consists of the velocity and position equation: 
 

+ ϕ

2 2[ (G x
α γ

α γ
= + −

 (10) 

 
( 1) ( ) ( 1)i i ix k v k

+ −

x k + = + +  (11)          
 

 - particle index 
dex 

le 
particle/ present 

orically best position/solution found 

ly best position/solution found 

n the interval (0,1) 

An inertia term φ and acceleration constants 
α

 

i 
k  - discrete time in
v -   velocity of ith partic
x -   position of the ith 
solution 
pi -  hist
by ith particle 
G - historical
among all the particles.  
γ1,2 – random number i
applied to ith particle 
 

1,2 are also included. The inertia function is 
commonly taken as either as a constant or as a 
linearly decreasing function from 0.9 to 0.4. 
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The acceleration constants are usually set 
equal to 2.  The  values used in this paper 
for PSO parameters are referred from [16].  
There are some indications from previous 

s

. Condensation 

Model condensation, whereby the number of 
D

6. A numerical example 

A simply supported thin aluminum plate 
with the following material properties is used 
as an example: thickness h= 0.004 m, 
dimension Lx= Ly = 0.5 m, Young’s modulus E 
= 72Gpa, Poisson’s ratio ν = 0.33 and mass 
density 2800 kg/m3. The length of the line 
crack and its orientation are arbitrarily chosen. 
For example in one case the line crack is 
0.032 m is located at the center of the plate, 
and orientation angle θ is 450. To compute the 
elastic stiffness  D

ijQ  for a damaged zone 
(SMV), the dimension of the finite element is 
chosen as 2 2x y= = 0.04 m so that the 
effective dam gnitude for a crack length 
of 0.032 becomes D = 0.5. Table 1 shows the 
detailed comparison of natural frequencies of 
the intact and damaged plate at different 
damage orientations, while keeping D at 0.5. 
The natural frequencies have reduced in 
magnitude due to presence of crack damage 
and they are also dependent on damage 
orientation. 
One fourth

tudies of the superiority of PSO over GA. 
For example the parameters of a Lorenz 
chaotic system were estimated using PSO [11]. 
It was found that PSO converges to the exact 
value with a high population size and was 
more computationally efficient than GA with 
the same population. Likewise a 10-dof 
structural dynamic model was identified using 
frequency response functions by GA and PSO 
- the latter was found to be superior to the 
former in accuracy and speed [17]. 
 

age ma

 of the plate (top right corner) is 
t

100t) N 
a

5
 

OF’s in a model are reduced, is applied to 
the finite element model for faster 
computational performance. In this paper the 
rotational DOF’s in the interior of the 
substructure are condensed out. There are two 
popular schemes viz., (a) static or Guyan 
reduction scheme-GRS [18] and (b) the 
iterative improved reduction scheme-IRS [19] 
which is based on dynamic condensation 
requiring more computational effort. In GRS 
the rotational slave degrees of freedom are 
condensed out in the assumption that in the 
lower frequency modes their inertia forces are 
much less than those of the master DOFs. The 
errors in calculating the first 30 natural 
frequencies of the undamaged plate (used in 
the following numerical example) were 
calculated using both GRS and IRS and it was 
found that  GRS errors were only about 3% 
for the 30th natural frequency and were 
considered acceptable for the study. The range 
of the forcing frequency used here is also 
within the first few modes. The IRS errors 
were of course much smaller but at the 
expense of significant computational effort. 
 

aken as a substructure as shown in Figure 3. 
The full plate is divided in to 144 (12×12) 
finite elements and the substructure consists 
of 36 finite elements (6×6). Each node of the 
finite element has three DOFs, viz., one 
transverse DOF and two rotational DOFs. The 
damage identification analysis is conducted to 
determine the damage magnitudes and 
orientations of all the finite elements. 
A point harmonic force of 10sin (2π
pplied at the centre of the plate. The 

excitation frequency (100Hz) is above the 
first natural frequency of 77Hz. In the 
example considered here D = 0.5 and θ =450.  
The experiment is numerically simulated 
using a known mathematical model as 
mentioned in section 2. The synthetic 
responses of the numerical model are first 
calculated at all the interface and four interior 
points (see Figure3) in terms of displacement, 
velocity and acceleration using Newmark’s 
method with constant time step of 0.001 sec 
for 2 seconds using the harmonic force.  
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Section 6.1 discusses the case where the effect 
of noise in acceleration measurements is 
ignored, and Section 6.2 takes into account 
signals with Gaussian noise of zero mean and 

3% standard deviation, and another forcing 
frequency of 200Hz. 
 

 
Table 1. Natural Frequencies of Simply Supported plate with different crack orientations θ 

             (Damage  magnitude (D)= 0.5) 
 

Mode No. Intact θ = 00 θ = 150 θ = 300 θ = 450 
1 77.529 75.441 75.302 75.019 74.876 
2 193.24 192.09 191.83 191.24 190.83 
3 193.24 192.94 192.98 193.02 193.01 
5 386.35 370.77 368.62 364.8 362.95 

10 657.49 652.57 653.81 654.98 654.97 
20 1163.5 1162.6 1160.3 1154.1 1149.5 
30 1661.8 1653.5 1654.1 1652.9 1650.6 

 

 

(3, 4)  

 
Figure 3. Aluminium plate with damaged element (3,4) inside the substructure  

            Acceleration measurement points at substructure interface and interior 
 
6.1. Global and substructure approaches 
 
Four situations are studied here viz., 
identification with: 

a) uncondensed substructure matrix  
b) condensed substructure matrix  
c) uncondensed global matrix  
d) condensed global matrix.  

The performance of GA and PSO is also 
compared here. 
Table 2 shows the summary of DOF’s in the 

substructure. The substructure consists of 36 
elements with 147 DOFs. PSO parameters are 
set as 1000 particles (swarm size), maximum 

50 generations (iterations), a linearly 
decreasing inertia function from 0.9 to 0.4, 
and acceleration constant set to 2. GA is also 
set to 1000 particles with crossover rate of 
40% and mutation rate of 1%. These 
algorithms have to identify a total of 72 
unknowns, viz., 36 damage magnitudes and 
36 damage orientations for each finite 
element. 
First we consider the case of the 

uncondensed quarter substructure. The 
damage identification results are shown in 
Figure 4 in a three-dimensional chart form, at 
various stages of iteration (1st, 25th and finally 
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the 30th iteration after convergence occurs). 
The data for D are shown on the left hand and 
θ on the right hand side. PSO has identified 
the location of the damage i.e., element (3, 4) 
with damage magnitude, D = 0.53 and 
damage orientation, θ = 44.20 at the 30th 
generation.  The accuracy is good 
considering the exact values of D = 0.5 and θ 
= 450. 

To show the fast convergence of PSO 
algorithm compared with GA, the same 
problem has been solved by minimizing the 
fitness function by GA, as shown in  Figure 
5. The identification of damage by GA at the 
30th iteration, is far from converged to the 
final values, compared to the situation with 
PSO of the same population size and number 
of generations. 

 
Table 2. Summary of DOFS of the substructure 

 
  Substructure 
    

Full Structure 
With out condensation With condensation

Total DOFs 507 147 75 
No. of interface DOFs  --- 39 39 
No. of internal DOFs  --- 108 36 
No. of unknowns 144 36*2 36*2 
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Figure 4. (a): Damage identification-PSO 1st Generation 
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Figure 4. (b): Damage identification - PSO 25th Generation 
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Figure 4. (c): Damage identification-PSO 30th (final) Generation 
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Figure 5. Damage identification-GA at 30th generation 
 
Next, Figure 6 shows a typical example of 

convergence fitness function of PSO 
compared with GA with respect to 
generations. The trend in decrease of the 
fitness value appears to be the same for both 
algorithms until the 5th generation. Thereafter 
GA has been stuck in a local optima where as 
PSO is converging at a fast rate towards the 
global minima. GA continues to converge 
very slowly; it needs more generations to 
reach the global minima of zero. Thus, PSO 
has proved to have a good convergence and 
accuracy compared to GA. Hence in the 
examples hereafter only PSO is used to 
identify damage. 

 
 
 
 

 

Int. J. Appl. Sci. Eng., 2009. 7, 1   87 



S.Sandesh and K. Shankar 

90

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80
PSO
GA

Number of Generations

Fi
tn

es
s V

al
ue

 
 

Figure 6. Comparison of convergence of PSO and  
GA 

 
Next we compare the convergence and 

accuracy of identification when using the 
condensed substructure matrix. The same 
PSO parameters as in the previous case are 
used here. The saving in computational time 
when using this approach is shown in Table 3. 
The total time taken to identify the condensed 
structure is 1333 seconds, which includes 218 
seconds taken up by the Guyan reduction and 
the remainder by various other operations. 
This may be favourably compared to 2248 
seconds (total) for the uncondensed 
substructure, which results in about 40% 
savings of computational effort. 
Using the condensed matrix, Figure 7 (a) 

and (b) shows that PSO has identified exactly 
the location of the damage i.e., element (3,4) 
with damage magnitude D = 0.48 and damage 
orientation θ = 460, whereas actual damage 
variables are D = 0.5 and θ = 450. However it 
has taken almost 50 generations to obtain the 
same accuracy which was obtained in 35 

generations in the previous case of 
uncondensed substructure. This could be 
attributed to the Guyan approximation in 
condensation. The following Figure 8(a) and 
(b) show the  convergence of  identification 
of damage index D and orientation angle θ  
for the  damaged element (3,4) and a 
neighboring undamaged element (2,3) for 
comparison. The slower convergence of the 
orientation angle θ as compared to damage 
index D is also seen here. Both indices finally 
converge to zero for the undamaged element. 
Next the method of Global structure damage 

identification is attempted. The same PSO 
parameters are used as in above examples. 
The total numbers of unknown damage 
parameters in the uncondensed Global matrix 
is quite large: namely 144 damage magnitudes 
and 144 damage orientations (total of 288) for 
all the 144 elements (Ref Table.4). Thus there 
are 288 optimization variables in the PSO 
algorithm which would definitely appear 
beyond its numerical capabilities. Table 4 also 
gives the time taken for 50 iterations under 
these circumstances, which are 18 hours for 
the uncondensed matrix and 7.32 hours for 
the condensed matrix. 
Figure 9 shows the poor convergence of 

fitness function when using the Global model 
(condensed and uncondensed). The fitness 
function is not minimized to anywhere close 
to zero in the specified 50 iterations. 
Understandably in this case, the estimated 
values for D and θ (shown for element (3, 4) 
in Table 5) is very poor in accuracy. This 
example shows the efficiency of substructure 
methods. 

 
Table 3. Reduction in CPU time with condensing internal DOFs of the substructure 

 

Total time GRS  
Method (sec) (sec) 

Total saving in time  
(%) 

Uncondensed 2248  --  -- 
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Condensed 1333 218 40.7 
 

Table 4. Summary of DOFS of the Full Structure 
 

Full Structure   
  With out condensation With Condensation 
Total DOFs 507 169 
No. of unknowns 144*2 144*2 
Computational time (hrs) 18.16 7.32 
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(b) Identified after 50 generations 

 
Figure 7. Damage identification for condensed substructure using PSO 
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Figure 8. Convergence of (a) damage magnitude (b) orientation of elements 
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This section very briefly looks at two cases 
(a) the acceleration measurements are 
polluted by Gaussian noise of zero mean and 
3% standard deviation and (b) additionally the 
harmonic excitation is changed to a new 
frequency of 200 Hz. The cases are studied 

using the condensed substructure approach. 
The plate properties and damage case are the 
same as in section 6.1 i.e., the crack damage 
variables are D = 0.5 and θ = 450 and occur in 
element (3, 4). Figure 10 shows the 3-D 
damage identification chart using PSO at the 
50th generation for case (a). It is seen that due 
to presence of noise, D and θ are predicted as 
0.46 and 43.50 respectively (i.e., with 8% and 
5.5% error). Also quite a few other 
undamaged elements have not converged to 
zero values of D and θ. Figure 11 shows the 
slow convergence of the fitness function for 
this noisy case compared to the zero-noise 
case studied in section 6.1. 

 
Figure 9. Objective function convergence: Global   

Next Figure 12 shows the same type of 3-D 
damage identification plot for case (b) i.e., at 
200Hz excitation. Due to presence of noise, 
here D and θ are predicted as 0.55 and 48.60 
respectively (i.e., with 10% and 8% error). 
Here also quite a few other undamaged 
elements have not converged to zero values of 
D and θ. Figure 13 shows the convergence of 
the fitness function at 200Hz excitation and it 
follows the same trend as Figure 11. 

uncondensed and condensed cases. 
 
6.2. Effect of noise and different forcing  

frequency 
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Figure 10. Damage identification with 3% noise and 100Hz excitation – PSO at 50th Generation. 
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Figure 11. Convergence of fitness function (100 Hz excitation) with 3% noise 
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Figure 12. Damage identification with 3% noise and 200Hz excitation – PSO at 50th Generation. 
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Figure 13. Convergence of fitness function (200 Hz excitation) with 3% noise 
7. Conclusions 
 
A time domain response based damage 

identification scheme  is applied to a thin 
uniform plate with a crack contained in a 
finite element. The isotropic element 
containing the crack is considered as an 
equivalent element with orthotropic properties 
producing the same strain at the boundary. 
The method was able to correctly predict the 
location as well as damage magnitude and 
angle of a crack using numerically simulated 
experiments on a finite element model. 
Damage identification using a global model 
of the plate was found to be prohibitively 
computationally expensive. A quarter 

substructure was identified and significant 
improvements in computational effort were 
noted. A 40% further saving in time was noted 
when the substructure was further condensed 
of the rotary DOF’s, The crack parameters 
were correctly identified when there was zero 
noise in the acceleration measurements, and 
with about 8-10% error when 3% noise was 
introduced. The method also works well for 
different forcing frequencies.The Particle 
Swarm algorithm was found to be superior in 
convergence and accuracy compared to the 
conventionally used Genetic Algorithm. 
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