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Abstract: Optimum dimensional synthesis of the five-point double-toggle mould clamping 
mechanism for thrust saving performance has been successfully solved using a genetic algo-
rithm–differential evolution (GA–DE) method. To further validate the performances of the 
GA–DE algorithm in terms of its search ability (accuracy), efficiency, reliability and robustness 
across the widest possible range of functions, a test-suite of 20 functions of 1–20 variables dis-
cussed in the literature is performed. The premature convergence, related to the reliability per-
formance, for the optimum dimensional synthesis problem using the GA–DE algorithm has not 
been investigated and improved in the previous work. Thus, a scheme of combining certain ex-
cellent individuals as the disturbed vectors and the technique of a large initial population size is 
proposed to improve the premature convergence for the GA–DE algorithm. The results obtained 
by the GA–DE algorithm are compared with those obtained by the other four evolutionary algo-
rithms. Findings show that the GA–DE algorithm generally has very good search ability, effi-
ciency and robustness. Lastly, it can also be seen that the proposed scheme can improve the reli-
ability of the GA–DE algorithm for the test functions and the optimum dimensional synthesis 
problem. 
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1. Introduction 
 

Optimization techniques are very important in 
many fields. The well-known evolutionary 
algorithms, such as genetic algorithm (GA) 
developed by Holland [1] and differential 
evolution (DE) developed by Storn and Price 
[2], or well-known swarm intelligence meth-
ods such as particle swarm optimization (PSO) 
developed by Kennedy and Eberhart [3], have 
become increasingly popular for solving op-
timization problems. Evolutionary algorithms 
(evolutionary computation) also include evo-
lutionary programming (EP) as developed by 

Fogel [4] and evolution strategies (ES) as 
pioneered by Rechenberg and further ex-
plored by Schwefel [5]. Evolutionary algo-
rithms are based on the concepts of fitness 
and survival of the fittest. It has been shown 
that DE outperforms adaptive simulated an-
nealing and ES [2]. It also outperforms PSO 
and GA in terms of reliability and robustness 
across all the test functions except two noisy 
functions [6]. The main technique in DE is the 
perturbation vector; i.e., differential vector 
produced by two random individuals added to 
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the base vector. The differential vectors are 
self-adaptive in the search space. Furthermore, 
because the individuals are scattered 
throughout the search space in the early stage 
of searching, the magnitudes of the differen-
tial vectors are generally large. This is neces-
sary in order to be able to explore a wide 
range. However, the magnitudes of the dif-
ferential vectors generally become smaller in 
the later stage, because individuals cluster in 
certain special regions after repeated selection 
operations based on the survival of the fittest. 
In contrast, PSO is one of the swarm intelli-
gence methods that imitate swarm behavior of 
natural creatures in order to construct optimi-
zation methods. PSO may be classified as a 
generalized evolutionary algorithm, because it 
utilizes the concept of fitness. However, the 
selection operation of the survival of the fit-
test is not utilized in PSO. A comprehensive 
survey of various swarm intelligence optimi-
zation methods (bees algorithm, artificial bee 
colony algorithm, ant colony optimization, 
PSO and artificial fish swarm algorithm) and 
several evolutionary algorithms (GA, ES and 
EP) has recently been carried out by Pham 
and Castellani [7]. A comparative study 
among the improved bees algorithms, artifi-
cial bee colony algorithm, evolutionary algo-
rithm and PSO was also presented in the same 
publication.  

A parametric study based on exhaustive 
search has been proposed in references [8,9] 
to accomplish the optimization design of the 
dimensional synthesis of the five-point dou-
ble-toggle mould clamping mechanism (as 
shown in Fig. 1) with the performance of 
thrust saving for the prescribed input and 
output strokes, on condition that the overall 
horizontal length cannot exceed a prescribed 
value. The parametric study has the advantage 
that the individual influence of the geometric 
parameters and a deeper understanding of the 

mechanism might be obtained. Besides, the 
obtained results may be used to estimate the 
solutions using the other optimization meth-
ods. However, this kind of search requires a 
tremendous number of evaluations of the ob-
jective function, which amounts to 2,151,513 
for 4 design parameters. Thus, Lin and Wang 
[10] applied a more efficient optimization 
method, termed the GA–DE hybrid algorithm, 
to solve the optimum dimensional synthesis 
problem. The GA–DE hybrid algorithm is 
obtained by combining the real-valued genetic 
algorithm with the method of differential 
evolution. The only difference between the 
GA–DE hybrid algorithm and real-valued 
genetic algorithm is in the content of the 
crossover. The crossover operation in the ge-
netic algorithm is replaced by differential 
vector perturbation, with the best individual 
or some excellent individuals as the disturbed 
vectors. Thus, both the main perturbation of 
differential vectors and the minor perturbation 
of mutation are used as genetic operators in 
the GA–DE hybrid algorithm. The number of 
the disturbed vector and the definition of dis-
turbing vectors (differential vectors) are the 
two significant differences between the 
GA–DE and DE algorithms. The number of 
disturbed objects for the GA–DE hybrid algo-
rithm can be one, two, or more, while the 
number of base vectors for DE is only one. 
This may be helpful in overcoming premature 
convergence for some problems that use the 
GA–DE algorithm. On the other hand, for the 
same number of differential vectors, the range 
(or the degree of uniformity) of the differen-
tial vector distribution for the GA–DE hy-
brid algorithm may be better than that of DE, 
because of the definition of disturbing differ-
ential vectors. 
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Figure 1. Conventional five-point double-toggle mould clamping mechanism 

 
All optimization algorithms usually en-

counter the problem of premature conver-
gence (falling into local extremes or unde-
sired points) when used to solve difficult 
real-life or numerical problems such as 
high-dimensional and multimode objective 
functions (which have several local extremes). 
For example, the GA–DE hybrid algorithm 
employed by Lin and Wang [10] to solve the 
optimum dimensional synthesis of the 
five-point double-toggle mould clamping 
mechanism encountered the premature con-
vergence problem. Therefore, 20 repeated 
runs were executed to find the best result. 
However, the premature convergence problem 
for the optimum dimensional synthesis has 
not been further investigated and improved. 
Andre et al. [11] proposed an enhanced bi-
nary-coded genetic algorithm (termed the 
EBGA) to fight premature convergence and to 
enhance the performance of the BGA. They 
also introduced criteria to evaluate the per-
formances of an optimization algorithm. In-
tensive tests for the EBGA on more than 20 
test functions of 1–20 variables each have 
been performed. Hrstka and Kučerová [12] 
used 20 test functions and the test methodol-
ogy discussed by Andre et al. [11] to compare 

the performances of DE and SADE (a simpli-
fied adaptation of DE combing the features of 
DE with those of traditional genetic algo-
rithms). Although it has been confirmed that 
real-coded algorithms (DE and SADE) gener-
ally exhibit better performance on real do-
mains than binary-coded algorithms (BGA 
and EBGA), both DE and SADE also suffer 
the problem of premature convergence for 
some functions. To fight the premature con-
vergence, an alternative SADE+CERAF (ab-
breviation of the French expression CEntre 
RAdioactiF) was presented in the same pub-
lication. The strategy produces areas of higher 
level of radioactivity in the neighborhood of 
all previously found local extremes by in-
creasing the mutation probability (usually by 
100%) in these areas many times. Findings 
have shown that the SADE+CERAF method 
can be completely free from premature con-
vergence; that is, it is capable of solving all 
test functions over 100 repeated runs with a 
100% success rate. 

To further validate the performances of the 
GA–DE algorithm in terms of its search abil-
ity (accuracy), efficiency, reliability and ro-
bustness across the widest possible range of 
functions, a test-suite of 20 functions of 1–20 
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variables previously discussed in the literature 
is performed. The premature convergence, 
related to the reliability performance, for the 
optimum dimensional synthesis problem us-
ing the GA–DE algorithm has not been inves-
tigated and improved in the previous work. 
Thus, a scheme of combining certain excel-
lent individuals as the disturbed vectors and 
the technique of a large initial population size 
is proposed to improve the premature con-
vergence problem for the GA–DE algorithm. 
The results obtained by the GA–DE algorithm 
are compared with those obtained by the other 
four evolutionary algorithms. The criteria 
from Andre et al. [11] and Hrstka and 
Kučerová [12] are used to estimate the per-
formance of the optimization algorithms, 
since this methodology minimizes the influ-
ence of random circumstances and the vari-
able power of the computer used.  

 
2. GA–DE hybrid evolutionary algorithm 

 
A population with randomly generated 

chromosomes is initialized. Each chromo-
some (individual) is a candidate solution. The 
quality of the individual is estimated by the 
fitness value. Roulette-wheel selection [13] is 
employed to allow those individuals with 
higher fitness to have a higher chance of be-
ing selected. Thereafter, two individuals are 
paired randomly to be parents. Offspring are 
generated using genetic operators, differential 
vector perturbation and mutation, from either 
one or two individuals (parents). The tech-
nique of elitism [14] is employed. 

Here, genes ix  (i = n−1 ) represent n 
variables encoded in terms of real numbers 
that fall between their bounds. All genes are 
grouped in a vector X that represents a chro-
mosome. That is 

)]max(),[min( iii xxx ∈  (1) 
X =[ ,1x 2x , 3x ,……, nx ] (2) 
 
2.1. Initialization  

An initial population with pN  chromo-
somes is randomly generated. The gene in 
each chromosome is given by 

 
))min()(max()min( iiii xxrxx −+=  (3) 

where r is a random real number between 0 
and 1.  
 
2.2. Differential vector perturbations  
 

The differential vector perturbation of DE, 
with the best individual or some excellent in-
dividuals as the disturbed vectors, is em-
ployed to replace the crossover operation in 
the real-coded genetic algorithm. Therefore, 
parents are used as differential vectors, not as 
crossover. All parents are randomly divided 
into k groups corresponding to the top k indi-
viduals, denoted by 1topX , 2topX … topkX . 
These form the disturbed vectors. The value 
of k is a user-defined integer. In the i-th group, 
the offspring may be generated by  
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where 1rX  and 2rX  are the parents; 1r  
and 2r  are random real numbers between 0 
and 1 for each design variable. Random and 
different values for 1r  and 2r , in addition to 
some excellent individuals used as the dis-
turbed vectors, may be considered another 
way of maintaining population diversity. A 
main perturbation rate 1mP  is defined as the 
ratio of the expected number of offspring 
generated by differential vector perturbations 
to the total population size.  

 
2.3. Mutation 

  
Here, mutation is performed to replace an 

entire, randomly selected chromosome with 
random real numbers (that are within the lim-
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its of variables). The minor perturbation rate 
2mP , i.e., mutation rate, is defined as the ratio 

of the expected number of offspring intro-
duced by mutation to the total population size. 

 
3. Optimum synthesis problem 
 

The conventional five-point double-toggle 
mould clamping mechanism shown in Fig. 1 
is used for small- to middle-sized injec-
tion-moulding machines [15]. In Fig. 1, the 
upper portion above the centre-line (CL) il-
lustrates the mould closing state, while the 
lower portion below the centre-line illustrates 
the initial state. Numerals 1 to 8 in Fig. 1 de-
note moving-platen side links (links 1), tail-
stock-platen side links (links 2), crosshead 
links (links 3), crosshead (4), tailstock platen 
(5), moving platen (6), tie bars (7) and sta-
tionary platen (8) respectively. Points A to E 
denote the centres of pin joints. Figure 2 de-
picts a kinematic stick diagram of the lower 
half of the conventional five-point dou-
ble-toggle mould clamping mechanism. The 
solid lines denote the position during the 
mould closing operation and the dashed lines 
denote the initial position. In Fig. 2, iL  (i = 
1–5) indicate the distances between points A 
and B, B and C, D and E, C and D and B and 
D respectively; ES  and AS  are the dis-

placements of the crosshead and the moving 

platen respectively. The symbol (
~

) denotes 
that the quantity in parentheses is in the final 
position state during the mould closing opera-
tion. The symbol 0)(  denotes that the quan-
tity in parentheses is in the initial position 
state of the mould closing process. The su-
perscript * is used only for the original 
mechanism [8].  

 
3.1. Specified parameters  
 

The following geometric and mate-
rial-property parameters: 1A , 2A , cA , fd , 

2e , 1E , 2E , cE , bsEh~ , 1n , 2n , cn , Br , 

Cr , Dr , BR , DR , bsR , oR , mT , sT , 
o92~

=φ  and 39521 =+ LL  are assumed to 
be fixed and their meanings and values can be 
found in the previous works of Lin and Hsiao 
[8] and Lin et al. [9]. The friction coefficient 
in the pin joints is assumed to be 0.1 and the 
final total deformational force of the tie bars 

539~ =cF  kN is considered. The input and 

output strokes are also prescribed: *~~
AA SS = = 

180.67 mm and *~~
EE SS = =215.23 mm. 

 
 

 
Figure 2. Geometry of the conventional toggle linkage during mould closing 
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3.2. Design variables 
 

There are four design variables, 0d , Ed , 

21 LL  and 24 LL , to be optimized. The 

offset Ad  is )( **
00 Addd −− [9]. The other 

geometric parameters α~, β~ , 0α , 0β , Cγ , 

3L , 0φ  and 5L  can be determined sequen-
tially according to their kinematic relation-
ships.  
 
3.3. Design objective 
 

The design objective is to minimize the 
necessary maximum value of the thrust ap-
plied to the crosshead during the mould 
clamping process, which may be expressed by 

max,oobj Ff =  (5) 
The elasto-static model proposed by Lin 

and Hsiao [8] is used to solve the thrust that 
must be applied to the crosshead of the 
clamping mechanism. 
 
3.4. Constraints 
 

Although there are only four design vari-
ables, this optimization problem is fairly dif-
ficult due to the considerable number of con-
straints (a total of 20) appearing at different 
stage of computation. These constraints arise 
from avoiding geometric interferences, un-
sound motion characteristic and initial trans-
mission performance and the limitation of 
horizontal length of the mechanism. The de-
tailed constraints and corresponding implica-
tions can be found in the previous works of 
Lin and Hsiao [8] and Lin et al. [9]. A proper 
and natural handling of these constraints has 
been presented in the previous works of Lin 
and Wang [10]. Two cases for the initial thrust 
applied the crosshead (i.e., for strict and loose 
initial transmission performance) are consid-
ered: (1) %1.3*

max,
0 ≤oo FF  and (2) 

%0.6*
max,

0 ≤oo FF  

4. Performance indices and the scheme for 
improving the reliability performance  

 
The algorithm should be adaptable the 

widest possible range of functions (robust-
ness). Thus a test-suite of 20 functions with 
1–20 variables, as previously discussed in the 
literature, is performed. For the sake of com-
pleteness, the test suite is listed in Appendix 1. 
A brief introduction including graphical illus-
trations with one or two variables of some of 
the test functions can be found in references 
[16,17]. For the low- and middle-dimensional 
functions (dimensions n≤ 10), function F3 has 
20 minima (17 local minima and 3 global 
minima); function Shubert has 760 minima 
(742 local minima and 18 global minima); the 
PShubert 1 and PShubert 2 functions are 
similar to the Shubert function; the Shekel 3 
function has 10 minima (9 local minima and 1 
global minimum); the number of minima of 
the other functions is not more than 7.     

The criteria proposed by Andre et al. [11] 
and Hrstka and Kučerová [12] are used to es-
timate the performance of the optimization 
algorithms, since this methodology minimizes 
the influence of random circumstances and 
the varying power of different computers. 
Here, three performance indices are presented; 
that is, gf  and g

oF max,  denoted the best 
function value at the end of evolution for test 
functions and the optimum dimensional syn-
thesis, respectively, out of 100 repeated runs 
(accuracy), cN  denoted the mean number of 
evaluations of the objective function needed 
to satisfy the convergence criterion (given 
below) for successful runs, out of 100 re-
peated runs (efficiency); and sR  denoted the 
percentage of successful runs needed to sat-
isfy the convergence criterion, out of 100 re-
peated runs (reliability).  

The convergence criteria for test functions 
are as follows: 

 
stdstdr fffe )( −= < 1%  for 0≠stdf  (6) 
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fea = < 0.1  for 0=stdf  (7) 
 
and for the optimum dimensional synthesis 
problem as follows: 
 

fea = < stdf01.1  (8) 
 
where re  and ae  are the relative and abso-
lute errors, respectively; f  is the function 
value for the test function or the objective 
value ( objf ) shown in Eq. (5); stdf  is the 
exact value of the global optimum for the test 
functions or the best objective value using the 
GA–DE algorithm with 20 population sizes as 
taken from Lin and Wang [10] for the opti-
mum dimensional synthesis problem.    

Unless otherwise specified, the 
user-supplied parameters of the GA–DE algo-
rithm for the test functions are given as fol-
lows: population size is pN = 10n used by 
Hrstka and Kučerová [12] and 200 in Andre et 
al. [11]; maximum number of generations is 
500; the major perturbation rate 6.01 =mP ; 
an the minor perturbation rate 01.02 =mP .   

The differences in the success rates using 
the GA–DE hybrid algorithm for some func-
tions for different 100 repeated runs are fairly 
marked. This may be attributed the fact that 
an inappropriate or un-uniform distribution of 
the stochastic initial population and/or insuf-
ficient population size and/or the mechanisms 
of the algorithm does not prevail against the 
premature convergence for certain difficult 
cases arising from the stochastic process and 
the nature of the functions. Thus, a scheme of 
combining certain excellent individuals as the 
disturbed vectors and the techniques of a large 
initial population size 0

pN =10 pN  and/or a 
population size of more than 10n is proposed 
to account for such the phenomenon. For 
these functions, the success rate is estimated 
using 10 consecutive sets of 100 repeated runs 
each. Moreover, if the average number of 

evaluations of the function shown in Andre et 
al. [11] and Hrstka and Kučerová [12] is more 
than 5000n, the maximum number of genera-
tions does not exceed the quotient of the av-
erage number of evaluation of the function 
divided by the population size used for a fair 
comparison.  
   
5. Results and discussion 
 
5.1. Effect of the number of disturbed vec-

tors 
   

In order to show the effect that the number 
of disturbed vector (i.e., the value of k) has on 
premature convergence, a difficult problem 
(F10n) for the EBGA and SADE is tested, 
using the GA-DE hybrid algorithm with k 
=1–10. Table 1 compares the mean number 
of evaluations of the function and the success 
rate versus the number of disturbed vector. 
Out of 100 repeated runs, the success rate is 
41% for the best individual as the disturbed 
vector only and the algorithm spends very 
large iterations. In other words, premature 
convergence is encountered in 59 runs. In 
contrast, the success rate is equal to or greater 
than 98% using the GA–DE algorithm with 

4≥k . Therefore, premature convergence can 
be greatly improved for the GA–DE algo-
rithm when certain excellent individuals are 
used as disturbed vectors. It also can be seen 
that the value of cN  increases by about 50% 
between k = 5 and k = 10. This is due to the 
decrease in the number of disturbing differen-
tial vectors for k = 10 for the same population 
size. Regardless, for this function, it should be 
adequate to have five excellent individuals as 
disturbed vector. 
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Table 1. Results for 101−=k  for function F10n 
using the GA–DE hybrid algorithm 

 
k cN  sR (%) 

1 78327 41 

2 23428 87 

3 16893 93 

4 19037 98 

5 17855 99 

6 17265 98 

7 20095 99 

8 23708 100 

9 25986 99 

10 26559 98 

0
pN = pN =200 

 
5.2. Techniques of a large initial population 

size and/or increasing population size 
  

An added complication is that for some 
functions using the GA–DE algorithm with 

several excellent individuals as disturbed 
vectors, the obtained results remain unsatis-
factory. For example, the results for Brown 1 
using the GA-DE algorithm with 

2000 == pp NN  and k = 4, repeated 10 times 
consecutively, is shown in the left panel of 
Table 2. The success rate varies from 91% to 
72%. This is partly attributable to the fact that 
the GA–DE algorithm is sensitive to the dis-
tribution of the initial population when used 
with this function. Therefore, the quality of 
the solutions is dependent on the quality of 
the initial stochastic population; the mecha-
nism of the algorithm does not prevail on its 
own. Thus, a technique designed to address a 
large initial population size 
( 2000100 == pp NN ) is employed. The ob-
tained results are shown in the right panel of 
Table 2. It can be seen that the success rate is 
improved significantly and stabilized, with 
only a 3% range of variation. On the other 
hand, this technique can also reduce the 
number of evaluations of the function.     

 
 

 
Table 2. Results of 10 consecutive sets of 100 repeated runs each for function Brown 1 using the GA–DE 

hybrid algorithm with 0
pN = pN  and 0

pN =10 pN  
0
pN  cN  sR (%) 0

pN  cN  sR (%) 

200 12092 72 2000 14325 98 
200 12352 91 2000 13512 98 
200 12437 87 2000 14699 99 
200 16441 87 2000 16029 97 
200 16416 76 2000 13569 97 
200 14055 87 2000 12905 97 
200 15524 82 2000 15190 96 
200 17063 86 2000 14325 96 
200 12690 84 2000 13190 98 
200 13750 84 2000 16622 99 
Average 14282 84 

 

Average 14437 98 
pN =200, k=4 
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Unfortunately, this technique for addressing 
large initial population sizes for the GA–DE 
algorithm is not sufficient to stabilize the 
success rate of several other functions (i.e., 
Shekel 1, 2, and 3). It can be seen from the 
left panel of Table 3 that the success rate var-
ies from 84% to 100% for function Shekel 2. 
This may be partly attributable to an insuffi-
cient population size. When the population 
size pN  is increased from 40 to 80 (right 
panel of Table 3), the quality of the solutions 
can be improved. However, this also increases 
the required number of the evaluations of the 
function. 
 
5.3. Performance comparisons for test 

functions  
 

The success rate ( sR ), the mean number of 

evaluations of the function ( cN ) and the best 
function value ( gf ) for all test functions us-
ing the GA–DE algorithm and PSO with CFA 
are shown in Tables 4, 5 and 6, respectively, 
together with the results discussed in the lit-

erature. The GA–DE algorithm has very good 
robustness and can adapt to all kinds of func-
tions, as the success rates for all test functions 
exceed 90%. In addition, the GA–DE algo-
rithm generally has very good efficiency, with 
the exception that a few functions (Shekel 1, 2 
and 3) need more evaluations of the function 
using the GA–DE algorithm than they do 
when when using DE. The DE and SADE 
also have quite good robustness. CERAF has 
the best robustness; however, its efficiency 
performance is worst compared to the 
GA–DE and DE. The values of cN  using 
CERAF for functions Hosc45, Brown 1, F10n 
and Hartman 2 are approximately 11, 11, 11 
and 29 times those of using the GA–DE algo-
rithm, respectively. The values of cN  using 
the EBGA are about 9 to 222 times those of 
using the GA–DE algorithm for the 20 func-
tions evaluated. 

   
 

 
Table 3. Results of 10 consecutive sets of 100 repeated runs each for function Shekel 2 using the GA–DE 

hybrid algorithm with pN =10n and pN =20n 

pN  cN  sR (%) pN  cN  sR (%) 
40 1858 93 80 3541 100 
40 2187 90 80 3149 100 
40 1987 84 80 3415 100 
40 2164 100 80 5165 96 
40 3972 92 80 2146 100 
40 2193 86 80 3425 95 
40 2732 99 80 4365 97 
40 1348 100 80 4037 100 
40 2776 93 80 3648 99 
40 2252 100 80 2694 96 
Average 2347 94 Average 3559 98 

0
pN =400, k=10 
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Except for Brown 1, the GA–DE algorithm 
can almost find the theoretical minima for all 
test functions. The relative error for Brown 1 
using the GA–DE algorithm is about 

4108.5 −× . In contrast, the solution accuracy 
of the EBGA is relatively unsatisfactory, be-
cause the number of the functions for which 
the relative or absolute error is not less than 

410−  is 14. The solution accuracy for the 
other algorithms was not shown. The BGA is 
not the best choice for solving 
high-dimensional continuous optimization 
problems because the accuracy and the effi-
ciency conflict. If a precision of five digits 
after the decimal point is required, the length 
of the chromosome for the BGA is 420 for 
functions F5n, F10n and F15n for 20 design 
variables with domains in the range [-10,10]. 

This generates a search space of about 
12610 . 

The BGA cannot simultaneously give accu-
racy and efficiency in such a situation. It can 
also be seen in the low-dimensional problems 
that the efficiency of the BGA is the worst, 
although the accuracy is fairly good. There-
fore, it is not recommended that the BGA 
method is utilized to solve continuous opti-
mization problems. 
 
5.4. Improvement in reliability perform-

ance for the optimum synthesis prob-
lem 

 
The scheme to improve the reliability per-

formance of the GA–DE algorithm is also ap-
plied to the optimum dimensional synthesis 
problem. The success rate, efficiency and best 
objective value g

oF max,  using the GA–DE 

algorithm for %1.3*
max,

0 ≤oo FF  (case 1) 

and %0.6*
max,

0 ≤oo FF  (case 2) for the op-
timum synthesis problem are shown in Tables 
7 and 8, respectively. It can be seen that the 
success rates for case 1 using 0

pN =10 pN  

and k = 4 can increase by about 103%, 156%, 
76% and 53% for pN = 40, 80, 120 and 160, 
respectively, when compared to those using 

0
pN = pN  and k = 1. Similarly, the success 

rates for case 2 using 0
pN =10 pN  and k = 4 

can increase by about 189%, 126%, 77% and 
37% for pN = 40, 80, 120 and 160, respec-
tively, when compared to those using 

0
pN = pN  and k = 1. The combined effect of 

the two strategies not only increases the suc-
cess rate, but also decreases the mean number 
of evaluations of the objective functions ex-
cept for pN = 40 for case 1.  

A total of 32 optimum synthesized results 
for each case are obtained using the GA–DE 
algorithm and a very high degree of repeat-
ability for the 32 optimum synthesized results 
for each case is found. Representative opti-
mum synthesized results obtained using the 
GA–DE algorithm for cases 1 and 2 are 
shown in Table 9.           
 
6. Conclusions 
 

The GA–DE algorithm has a very good 
mechanism of evolution designed to exploit 
and refine the given information, and gradu-
ally to find the optimal solution (or near op-
timal solution). However, the GA–DE algo-
rithm sometimes suffers the premature con-
vergence, arising from high population ho-
mogeneity, especially for the difficult problem. 
In the GA–DE algorithm, there are six ways 
to maintain the population diversity to explore 
all feasible regions: 1. a large initial popula-
tion size; 2. increasing the population size; 3. 
using a mutation operator; 4. using random 
and different values for 1r  and 2r  in the 
disturbing vectors; 5. using certain excellent 
individuals as the disturbed vectors; 6. using 
disturbing vectors from randomly selected 
and non-repeated two individuals. The fourth 
to the sixth of these approaches also function 
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as an evolutionary mechanism, which com-
bines with the first to the sixth (provides the 
population diversity), in order to exploit and 
refine the given information and gradually to 
find the optimal solution. 

 
 
 
 

 
Table 4. Comparison of the reliability between algorithms 

 

GA–DE EBGA DE SADE  CERAF
Function n 

0
pN  pN  k sR (%) sR (%) sR (%) sR (%)  sR (%) 

F1 1 10 10 1 100 100 100 100  100 
F3 1 20 20 1 100 100 100 100  100 
Branin 2 20 20 1 100 100 100 100  100 
Camelback 2 20 20 1 100 100 100 100  100 
Goldprice 2 20 20 1 100 100 100 100  100 
PShubert 1 2 60 60 4 95 100 83 100  100 
PShubert 2 2 60 60 4 98 100 90 100  100 
Quartic 2 20 20 1 100 100 97 100  100 
Shubert 2 20 20 1 100 100 94 100  100 
Hartman 1 3 30 30 1 100 100 100 100  100 
Shekel 1 4 400 80 10 95 97 72 99  100 
Shekel 2 4 400 80 10 98 98 91 100  100 
Shekel 3 4 400 80 10 98 100 89 99  100 
Hartman 2 6 60 60 1 100 92 16 67  100 
Hosc 45 10 50 50 1 100 2 100 100  100 
Brown 1 20 2000 200 4 98 0 100 95  100 
Brown 3 20 200 200 4 100 5 100 100  100 
F5n 20 200 200 5 100 100 96 66  100 
F10n 20 200 200 5 99 49 90 47  100 
F15n 20 200 200 5 100 100 100 93  100 
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Table 5. Comparison of the efficiency between algorithms 
 

GA–DE EBGA DE SADE  CERAF
Function n 

0
pN  pN  k cN  cN  cN  cN   cN  

F1 1 10 10 1 20 784 52 72  72 
F3 1 20 20 1 40 744 98 88  88 
Branin 2 20 20 1 160 2040 506 478  478 
Camelback 2 20 20 1 60 1316 244 273  273 
Goldprice 2 20 20 1 140 4632 350 452  452 
PShubert 1 2 60 60 4 1232 8853 1342 2738  2388 
PShubert 2 2 60 60 4 835 4116 908 1033  1014 
Quartic 2 20 20 1 144 3168 313 425  425 
Shubert 2 20 20 1 234 2364 10098 585  585 
Hartman 1 3 30 30 1 60 1680 284 464  464 
Shekel 1 4 400 80 10 3230 36388 1968 61243  3942 
Shekel 2 4 400 80 10 3559 36774 1851 17078  3746 
Shekel 3 4 400 80 10 4053 36772 1752 11960  3042 
Hartman 2 6 60 60 1 540 53792 4241 2297  15396 
Hosc 45 10 50 50 1 568 126139 1174 6438  6438 
Brown 1 20 2000 200 4 14437 － 65346 163919  137660 
Brown 3 20 200 200 4 6612 106859 41760 43426  43426 
F5n 20 200 200 5 8772 99945 38045 17785  20332 
F10n 20 200 200 5 17855 113929 71631 110593  200136 
F15n 20 200 200 5 10870 102413 44248 28223  31574 
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Table 6. Comparison of the accuracy between algorithms 
 

GA–DE EBGA 
Function n Theoretical

minimum gf  gf  
F1 1 -1.12323 -1.12323 -1.12323 
F3 1 -12.03125 -12.03125 -12.03120 
Branin 2 0.39789 0.39789 0.39791 
Camelback 2 -1.03163 -1.03163 -1.03163 
Goldprice 2 3 3 3.00028 
PShubert 1 2 -186.73091 -186.73091 -186.68574 
PShubert 2 2 -186.73091 -186.73091 -186.70469 
Quartic 2 -0.35239 -0.35239 -0.35238 
Shubert 2 -186.73091 -186.73091 -186.72802 
Hartman 1 3 -3.86278 -3.86278 -3.86114 
Shekel 1 4 -10.15320 -10.15320 -10.14866 
Shekel 2 4 -10.40294 -10.40294 -10.38253 
Shekel 3 4 -10.53641 -10.53641 -10.51404 
Hartman 2 6 -3.32237 -3.32237 -3.31383 
Hosc 45 10 1 1 1.00943 
Brown 1 20 2 2.00115 8.55162 
Brown 3 20 0 0 0.67464 
F5n 20 0 4.22892 1410−× 0.00221 
F10n 20 0 6.10182 1310−× 0.04960 
F15n 20 0 4.25771 1410−× 0.00342 
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Table 7. Improvement in the reliability performance of the GA–DE for %1.3*
max,

0 ≤oo FF  for the opti-
mum synthesis problem   

 
GA–DE with 0

pN = pN  
  0

pN = pN = 40  0
pN = pN = 80 0

pN = pN = 120  0
pN = pN = 160 

  
cN  

sR  
(%) 

g
oF max,

 

 
cN  sR  

(%)

g
oF max,

 
cN  sR

(%)

g
oF max,

 

 
cN  sR

(%)

g
oF max,

 
k =1  371 39 13.94  1431 36 13.93 3260 54 13.94  2280 64 13.93

k =2  869 36 13.94  2130 48 13.94 1495 57 13.93  1783 76 13.93

k =3  385 31 13.94  2105 44 13.94 1560 72 13.93  1655 82 13.93

k =4  834 47 13.94  1209 52 13.94 2904 64 13.93  1683 71 13.93

GA–DE with 0
pN =10 pN  

  0
pN = 400, pN = 

40 

 0
pN = 800, pN = 80

0
pN = 1200, pN = 

120 

 0
pN = 1600, pN = 

160 
  

cN  
sR

(%) 

g
oF max,

 

 
cN  sR

(%)

g
oF max,

 
cN  sR

(%)

g
oF max,

 

 
cN  

sR
(%)

g
oF max,

 
k =1  772 54 13.94  1582 76 13.93 1755 80 13.93  2698 87 13.93

k =2  786 73 13.93  1206 82 13.93 1687 90 13.93  2882 93 13.93

k =3  898 73 13.93  1220 86 13.93 2003 91 13.93  2169 90 13.93

k =4  825 79 13.93  1202 92 13.93 1834 95 13.93  2121 98 13.93

stdf =13.94 kN, g
oF max,  in kN. 
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Table 8. Improvement in the reliability performance of the GA–DE for %0.6*
max,

0 ≤oo FF  for the opti-
mum synthesis problem   

GA–DE with 0
pN = pN  

  0
pN = pN = 40  0

pN = pN = 80 0
pN = pN = 120  0

pN = pN = 160 

  
cN  

sR
(%) 

g
oF max,

 

 
cN  sR  

(%)

g
oF max,

 
cN  sR  

(%)

g
oF max,

 

 
cN  sR

(%)

g
oF max,

 
k =1  1053 19 11.76  3406 35 11.75 8649 53 11.75  6096 68 11.75

k =2  842 21 11.75  3532 45 11.75 3478 69 11.75  4739 79 11.75

k =3  787 33 11.76  2057 53 11.75 4742 80 11.75  4424 86 11.75

k =4  690 28 11.75  2708 61 11.75 3279 73 11.75  4800 87 11.75

GA–DE with 0
pN =10 pN  

  0
pN = 400, pN = 40 

 0
pN = 800, pN = 80

0
pN = 1200, pN = 

120 

 0
pN = 1600, pN = 

160 
  

cN  
sR

(%) 

g
oF max,

 

 
cN  sR  

(%)

g
oF max,

 
cN  sR  

(%)

g
oF max,

 

 
cN  

sR
(%)

g
oF max,

 
k =1  1125 42 11.75  2495 61 11.75 3528 73 11.75  8249 81 11.75

k =2  620 51 11.75  2526 73 11.75 3612 88 11.75  4951 87 11.75

k =3  1033 54 11.75  1866 73 11.75 2400 85 11.75  3955 96 11.75

k =4  748 55 11.75  1961 79 11.75 2504 94 11.75  2557 93 11.75

stdf =11.78 kN, g
oF max,  in kN. 

Table 9. Synthesized results for the optimum synthesis problem 

%1.3*
max,

0 ≤oo FF  ( *~~
AA SS =  and *~~

EE SS = ) 

0d  Ad  Ed  21 LL  24 LL  Cγ ( o ) 3L  g
oF max, (kN) 

GA-DE hybrid algorithm with pN = 80 

253.654 23.6535 151.272 1.0226 1.0 20.9467 70.7017 13.9340 

%0.6*
max,

0 ≤oo FF  ( *~~
AA SS =  and *~~

EE SS = ) 

0d  Ad  Ed  21 LL  24 LL  Cγ ( o ) 3L  g
oF max, (kN) 

GA-DE hybrid algorithm with pN = 80 

273.393 43.393 178.393 0.729117 0.689197 0.0 161.195 11.7483 

39521 =+ LL  mm 
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Appendix 1: List of test functions  
 
1. Function F1 with n = 1: 

,...  1250  )405sin( )750(2)( 2 −−+−= ππxxxf  
. 1        0 where ≤≤ x  

2. Function F3 with n = 1: 

, ]] 1)( sin[ [ )(
5

1
∑
=

++−=
j

jxjjxf
 

. 10        10 where ≤≤− x  
3. Function Branin with n = 2: 

, cos )1()( ),( 22 hxfhdcxbxyayxf +−+−+−=  

.,
,,,,,.,

 15        0   10        5
 8/1  10  6  /5  4/15  1  where 2

≤≤≤≤−
======

yx
fhdcba πππ

 
4. Function Camelback with n = 2: 

,.   )44( )
3

124(),( 222
4

2 yyxyxxxyxf +−+++−=
 

.,  2        2   3        3  where ≤≤−≤≤− yx  
5. Function Goldprice with n = 2: 

,)]273648123218()32(30[

  ] )361431419()1(1[),(
222

222

yxyyxxyx

yxyyxxyxyxf

+−++−−+

++−+−+++=

 
.,  2        2   2        2  where ≤≤−≤≤− yx  

6. Functions PShubert 1 and 2 with n = 2: 

,..  ]) 800320()425131([

 } ] 1)cos[(  }{ ] 1)[( cos  {),(

22

5

1

5

1

++++

++++= ∑∑
==

yx

iyiiixiiyxf
ii

β　　　　　  
:,, 1PShubert  for    10        10   10        10 where ≤≤−≤≤− yx  

..:.  01  2PShubert  for   50 == ββ  
7. Function Quartic with n = 2: 

, 
2

    
10

    
2

    
4

),(
224 yxxxyxf ++−=

 
.,  10        10   10        10  where ≤≤−≤≤− yx  

8. Function Shubert with n = 2: 

,  }] 1)cos[(  }{ ] 1)cos[(  {),(
5

1

5

1
∑∑
==

++++=
ii

iyiiixiiyxf
 

.,  10        10   10        10  where ≤≤−≤≤− yx  
9. Function Hartman1 with n = 3: 
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,,,  ))(  exp(   )    ( 2
3

1

4

1
321 ijj

j
ij

i
i pxacxxxf −−−= ∑∑

==  

.,...,,,...,

,,...,,...,,

 )      ( )      (

 )      (3      1j   1        0  where

3 131

31

iiiii

ij

aaapp

pxxxx

=

===≤≤

　

　　

 
i  ija

 
  

ic  ijp
 

  

1 3.0 10.0 30.0 1.0 0.36890 0.1170 0.2673 
2 0.1 10.0 35.0 1.2 0.46990 0.4387 0.7470 
3 3.0 10.0 30.0 3.0 0.10910 0.8732 0.5547 
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828 
10. Functions Shekel 1, 2 and 3 with n = 4: 

∑
= +−−

−=
m

i
f

1 iii
 

) () (
1  )( ,

caxax
x T

 
.:,:,:,  10 3  Shekelfor   7 2  Shekelfor   5 1  Shekelfor   10        0  where ===≤≤ mmmx j  

.,,,a,,,,x TT  )      ()      ( 4321i 4321 iiii aaaaxxxx == 　　  
i  ija

 
   ic  

1 4.0 4.0 4.0 4.0 0.1 
2 1.0 1.0 1.0 1.0 0.2 
3 8.0 8.0 8.0 8.0 0.2 
4 6.0 6.0 6.0 6.0 0.4 
5 3.0 7.0 3.0 7.0 0.4 
6 2.0 9.0 2.0 9.0 0.6 
7 5.0 5.0 3.0 3.0 0.3 
8 8.0 1.0 8.0 1.0 0.7 
9 6.0 2.0 6.0 2.0 0.5 
10 7.0 3.6 7.0 3.6 0.5 
11. Function Hartman 2 with n = 6: 

∑ ∑
= =

−−−=
4

1

6

1

2
61  ))(  exp(  )      (

i j
ijjiji pxacxxf ,,...,

 
.,...,,  6      1   1        0 where =≤≤ jx j  

.,...,,,...,,,...,  )      ( )       ( )     ( 616161 iiiiii aaapppxxx === 　　　　  
i  ija

 
     

ic  
1 10.00  3.00 17.00  3.50  1.70  8.00 1.0 
2  0.05 10.00 17.00  0.10  8.00 14.00 1.2 
3  3.00  3.50  1.70 10.00 17.00  8.00 3.0 
4 17.00  8.00  0.05 10.00  0.01 14.00 3.2 
        
i  ijp

 
      

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886  
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2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991  
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650  
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381  
12. Function Hosc 45 with n = 10: 

,  
! 

1    2)(
1
∏
=

−=
n

i
ix

n
xf

 
.,,,...,  10           0   )      (  where 1 =≤≤= nixxxx in  

13. Function Brown 1 with n = 20: 
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14. Function Brown 3 with n = 20: 
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15. Function F5n with n = 20: 
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ii yyyxf πππ

..,,,..., T  ) 1( 2501   10        10   )      (  where 201 −+=≤≤−= iii xyxxxx  
16. Function F10n with n = 20: 
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17. Function F15n with n = 20: 
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