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1. Introduction 
 

During the last few years much progress 
has been made in the theory and in the com-
puter implementation of the numerical treat-
ment of singular perturbation problems. 
Typically, these problems arise very fre-
quently in fluid mechanics, fluid dynamics, 
elasticity, aero dynamics, plasma dynamics, 
magneto hydrodynamics, rarefied gas dy-
namics, oceanography, and other domains of 
the great world of fluid motion. A few notable 
examples are boundary layer problems, 
Wentzel, Kramers and Brillouin (WKB) 
problems, the modeling of steady and un-
steady viscous flow problems with large 
Reynolds numbers, convective heat transport 
problems with large peclet numbers, etc. The 
numerical treatment of singular perturbation 
problems has always been far from trivial, 
because of the boundary layer behavior of the 
solutions. However, the area of singular per-
turbations is a field of increasing interest to 

applied mathematicians.  Much progress has 
been made recently in developing finite ele-
ment methods for solving singular perturba-
tion problems. Several authors Eckhaus [4], 
Natesan and Ramanujam [10], Valanarasu and 
Ramanujam [14] have investigated solving 
singular perturbation problems by numeri-
cally constructing asymptotic solutions. The 
general motivation is to provide simpler effi-
cient computational techniques to solve sin-
gular perturbation problems. A wide verity of 
papers and books have been published in the 
recent years, describing various methods for 
solving singular perturbation problems, 
among these, we mention Bawa [1], Bellman 
[2], Bender [3], Hemker et. al. [5], Kadalba-
joo, Reddy [6], Kadalbajoo and Patidar [7], 
Kevorkian and Cole [9], Nayfeh [11], O’ 
Malley [12], Ramos et. al. [13], Van Dyke [15] 
and Vigo-Aguiar, Natesan [16].  Kasi 
Viswanadham et. al. [8] presented a numeri-
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cal solution of fifth order boundary value 
problems using sixth order B-Splines.  
There is a wide variety of asymptotic expan-
sion methods available for solving the prob-
lems of the above type. But there can be dif-
ficulties in applying these asymptotic expan-
sion methods, such as finding the appropriate 
asymptotic expansions in the inner and outer 
regions, which are not routine exercises but 
require skill, insight, and experimentations. In 
view of the wealth of the literature available 
on singular perturbation problems and in 
view of the specialized skills and experience 
that experts in the field deem necessary, one 
can raise the question whether there may be 
other ways to attack these problems, ways 
that are easy to use and ready for computer 
implementation, ways that are more accessi-
ble to the practicing engineers or applied 
mathematicians. The spline technique is one 
such tool to reach these goals in an optimum 
way. 

The fitted technique is one such tool to 
reach these goals in an optimum way.  There 
are two possibilities to obtain small trunca-
tion error inside the boundary layer(s). The 
first is to choose a fine mesh there, whereas 
the second one is to choose a difference for-
mula reflecting the behaviour of the solu-
tion(s) inside the boundary layer(s).  Present 
work deals with the second approach.  In 
this paper, we introduce fitting factor )(ρσ  
to the term contains perturbation parameter 
ε  affecting the highest derivative.  This 
fitting factor is determined in such a way that 
the truncation error of the corresponding 

scheme for the boundary layer function(s), in 
the case of constant coefficients, should be 
equal to zero. This procedure is known as the 
exponential fitting or the introducing of arti-
ficial viscosity. 

 
2. Numerical Method 
 
2.1. Left-End Boundary Layer Problems 

 
Consider a linearly singularly perturbed 

two point boundary value problem of the 
form: 
 

]1,0[   , )()()()()()( ∈=+′+′′ xxfxyxbxyxaxyε  (1) 
 with the boundary conditions 

  )0( α=y  (2a) 
and β=)1(y  (2b) 

We assume that a(x), b(x) and f(x) are suf-
ficiently continuously differentiable functions 
in  
[0, 1].  Further more, we assume that b(x) ≤ 
0, a(x) ≥ M > 0 throughout the interval [0, 1], 
where M is some positive constant.  Under 
these assumptions, (1) has a unique solution 
y(x) which in general, displays a boundary 
layer of width O(ε ) at x = 0 for small values 
of  ε . 
From the theory of singular perturbation s it 
is known that the solution of (1) - (2) is of the 
form (O’Malley [12]) 
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Where )(0 xy  is the solution of  

β==+′ )1(y   , )()()()()( 000 xfxyxbxyxa  (4) 
By taking Taylor’s series expansion for a(x) 
and b(x) about the point ‘0’ and restricting to 
their first terms, (3) becomes, 
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Now we divide the interval [0, 1] into N 
equal parts with constant mesh length h. Let 
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0= Nxxx ,......., 21 =1 be the mesh points.  
Then we have == iihxi : 0, 1, 2, ……, N. 
From (5), we have 
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where 
ε

ρ h
=  

 
Now we consider the difference scheme by 

Galerkin method as follows: 
Select a set of basis functions 

 ,......2,1,0 ),( Njxj =φ which will define an 
interpolation scheme for the approximate so-
lution over a grid of 
points bxxxa N =<<<= +110 ........ . 

For simplicity we use piecewise Lagrange 
polynomials )(xli of first degree as the basis 
functions  )(xjφ .  These interpolating 
polynomials are 
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in local element coordinates 11 ≤≤− ξ . 
 
The N nodal values of the approximate so-

lution y at the interior nodes Nxxx ,........,, 21  
are determined using this basis.  The given 
boundary conditions determine the value of 
y(x) at the end nodes 10   and  +Nxx . 
The Galerkin method is now employed to ob-
tain the integral equation’s (Fletcher, 1984), 
we have 
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Since y is sum of piecewise linear Lagrange polynomials, the second order derivatives appearing 
in Eq.(9) vanish except at the element boundaries ix , where they become infinite.    
By integration by parts, (9) becomes 
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The substitution of trial function  )()( )(
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for j =1, 2, …, N 
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It can be observed that all quantities on the 
right side of Eq. (11) can be computed from 
known boundary data to obtain N equations in 
the N unknown values iy  at the interior 
nodes. 
The integrals in Eq. (11) can be solved by 

taking advantage of local coordinate (ξ ) sys-
tem.  Since 
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we have by simple integration, 
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since a(x),b(x) and f(x) are constants, the 
integral equation (11) give, for a typical in-
ternal node j, 

 
since a(x),b(x) and f(x) are constants, the integral equation (11) give, for a typical internal node j, 
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the Eq. (12) when rearranged gives the following system of difference equations and we call it as 
Galerkin difference scheme 
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Now introduce a fitting factor in the Galerkin difference scheme, we get 
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with )(  where;  ; 0 ρσβα == Nyy  is a fitting factor which is to be determined in such a way 
that the solution of Eq. (13) converges uniformly to the solution of  (1), (2) & (3). 
Multiplying (13) by h and taking the limit as 0→h , we get  

( ) ( ) bounded. is )()( if  0)(
2
12)(lim 11110 iiiiiiiih

yxbxfyyihayyy −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++− −+−+→ ρ

ρσ  

( ) ( )  0)()()(
2
1)()(2)()(lim  

0
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−++−+−+∴

→
hihyhihyihahihyihyhihy

h ρ
ρσ  (14) 

Substituting (6) in (14) and simplifying, we get  
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which is a constant fitting factor. 
From eq.(13) we have 
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for 1,.....,2,1 −= Nj ; where the fitting factor σ  is given by (16). 
The equation (17) can be written as a three term recurrence relation: 
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This gives us the tridiagonal system which can be solved easily by Thomas Algorithm. 
 
2.2. Right-End Boundary Layer Problems 
 

We discuss our method for singularly perturbed two point boundary value problems with 
right-end boundary layer of the underlying interval.  To be specific, we consider a class of sin-
gular perturbation problem of the form (1) with (2a) and (2b) 
where ε  is a small positive parameter ( 10 <<< ε ) and βα  ,  are known constants.  
We assume that a(x), b(x) and f(x) are sufficiently continuously differentiable functions in [0, 1].  
Further more, we assume that  a(x) ≤ M <0 throughout the interval [0,1], where M is some 
negative constant.  Under these assumptions, (1) has a unique solution y(x) which in general, 
displays a boundary layer of width O(ε ) at x =1 for small values of  ε . 
From the theory of singular perturbation s it is known that the solution of (1)-(2) is of the form 
(O’Malley [12]) 
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Where )(0 xy  is the solution of   
α==+′ )0(y   , )()()()()( 000 xfxyxbxyxa  (20) 

By taking Taylor’s series expansion for a(x) and b(x) about the point ‘1’ and restricting to their 
first terms, (19) becomes, 
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Now we divide the interval [0, 1] into N equal parts with constant mesh length h.   
Let 0= Nxxx ,......., 21 =1 be the mesh points.  Then we have == iihxi : 0,1,2,…….N. 

From (21), we have  
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Now consider the difference scheme (13) and we will get the fitting factor as  
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Then from (13) we have the difference 
scheme (17) where fitting factor is given by 
(23) and then the three term recurrence rela-
tion (18) which gives tri diagonal system 
which can be solved easily by Thomas Algo-
rithm. 
 
3. Stability and convergence analysis 
 
  Theorem 1.  Under the assumptions 0>ε , 
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solution to the system of the difference equa-
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therefore for inequality (25) to hold, we must 
have 1,.....2,1  ,   0 −=∀= Niiwi .  This im-

plies the uniqueness of the solution of the 
tridiagonal system of difference equations 
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(18).  For linear equations, the existence is 
implied by uniqueness.  Now to establish the 
estimate, let ,iii lyw −=  where iy  satis-
fies difference equations (17), the boundary 
conditions and  
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Inequality (26), together with the condition 
on b(x) implies that 
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From Eqs. (27) – (29), we obtain the estimate 
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This theorem implies that the solution to 
the system of the difference equations (18) 
are uniformly bounded, independent of mesh 
size h and the perturbation parameter ε .  
Thus the scheme is stable for all step sizes. 

Corollary 1.  Under the conditions for 
theorem 1, the error iii yxye −= )(  between 
the solution y(x) of the continues problem and 
the solution iy  of the discretized problem, 
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( ) ( ) ( ) 1,...,2,1  ,)()( −==−= NiyLxyLxeL iihihih τ  And 00 == Nee . 
 

Then Theorem 1 implies that  

∞
−

∞
≤

,
1

,
2

hh
Me τ  (30) 

The estimate (30) establishes the conver-
gence of the difference scheme for the fixed 
values of the parameterε . 
Theorem 2. Under the assump-
tions 0>ε , 0)( <≤ Mxa and b(x)< 
0, ]1 ,0[∈∀x , the solution to the system of the 
difference equations (18), together with the 
given boundary conditions exists, is unique 
and satisfies 

( )βα ++≤
∞

−
∞ ,

1
, 2 hh fMy . 

The proof of estimate can be done on simi-
lar lines as we did in theorem 1. 

 
4. Numerical Examples 
 

To demonstrate the applicability of the 
method we have applied it to three linear sin-
gular perturbation problems with left-end 
boundary layer and two linear singular per-
turbation problems with right-end boundary 
layer.  These examples have been chosen 
because they have been widely discussed in 
literature and because approximate solutions 
are available for comparison.  The numerical 
solutions are compared with the exact solu-
tions and maximum absolute errors with and 
without fitting factor are presented to support 
the given method. 

Example 1.  Consider the following homo-
geneous singular perturbation problem from 
Bender and Orszag [3] 
 

0)()()( =−′+′′ xyxyxyε ; x∈[0,1] with y(0) = 
1 and y(1) = 1. Clearly this problem has a 
boundary layer at x = 0.  i.e., at the left end 
of the underlying interval.      
The exact solution is given by   

][
])1()1[()(

12

2112
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xmmxmm

ee
eeeexy

−
−+−

=  Where 

m1= )2/()411( εε++−               and 
m2= )2/()411( εε+−−     
The maximum absolute errors are presented 
in tables 1 for different values of ε . 
Example 2.  Now consider the following 
non-homogeneous singular perturbation 
problem 

0)()()1()( =+′++′′ xyxyxy εε ;  x∈[0,1] 
      
  with y(0) = 0 and y(1) = 1.   
     
Clearly this problem has a boundary layer at x 
= 0.  The exact solution is given by 

( )
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/11
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=
ee
eey

xx

 

The maximum absolute errors are presented 
in tables 2 for different values of ε . 
 
Example 3.  Consider the following singular 
perturbation problem   

2)()( =′+′′ xyxyε ; x ∈[0,1] with y(0) = 0 
and y(1) = 1. The exact solution is given by 

( )
( ) 1

12)( 1
−

−
+=

−

−

ε

ε

e

exxy
x

. 

The maximum absolute errors with fitting 
factor are presented in tables 3 for different 
values of ε  and the maximum absolute er-
rors without fitting factor are presented in ta-
ble 4 for comparison. 
 
Example 4.  Consider the following singular 
perturbation problem   

0)()( =′−′′ xyxyε ; x ∈[0,1] with y(0) = 1 
and y(1) = 0. Clearly, this problem has a 
boundary layer at x=1. i.e., at the right end of 
the underlying interval. 
The exact solution is given by 

( )
( )1

1)( /1

/)1(

−
−

= −

−

ε

ε

e
exy

x

 

The maximum absolute errors with fitting 
factor are presented in tables 5 for different 
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values of ε  and the maximum absolute er-
rors without fitting factor are presented in ta-
ble 6 for comparison. 
 
Example 5.  Now we consider the following 
singular perturbation problem 

0)()1()()( =+−′−′′ xyxyxy εε ; 
x∈[0,1] with y(0) = 1+exp(-(1+ε)/ε); 
and  y(1) =1+1/e.  The exact solution is 
given by  y(x) = e(1+ε)(x-1)/ ε+e-x  

The maximum absolute errors are presented 
in tables 7 for different values of ε . 
 
5. Discussions and conclusions 
 

We have described a fitted Galerkin method 
for solving a singular perturbation problem 
with layer behaviour.  We have introduced a 

fitting factor in the Galerkin difference 
scheme which takes care of the rapid changes 
that occur in the boundary layer region and its 
value obtained from the theory of singular 
perturbations.  We have presented maximum 
absolute errors for the standard examples 
chosen from the literature and also presented 
maximum absolute errors for the some of the 
examples with and without fitting factor to 
show the efficiency of the method when 

h<<ε . One can extend this method to solve 
singular-singular perturbation two-point 
boundary value problem. 
 

 
Table 1. The maximum absolute errors in solution of example 1 with fitting factor 

 
h 

ε   
32−  42−  52−  62−  72−  82−  92−  102−  

32−  2.85(-2) 2.63(-2) 2.59(-2) 2.59(-2) 2.59(-2) 2.59(-2) 2.59(-2) 2.59(-2) 

42−  1.29(-2) 1.50(-2) 1.39(-2) 1.37(-2) 1.37(-2) 1.37(-2) 1.37(-2) 1.37(-2) 

52−  1.00(-2) 6.80(-3) 7.70(-3) 7.20(-3) 7.10(-3) 7.00(-3) 7.00(-3) 7.00(-3) 

62−  1.50(-2) 5.60(-3)  3.50(-3) 3.90(-3) 3.70(-3) 3.60(-3) 3.60(-3) 3.60(-3) 

102−  2.00(-2) 1.06 (-2) 5.30(-3) 2.50(-3) 1.10(-3) 3.84(-4) 2.23(-4) 2.49(-4) 

 

Table 2. The maximum absolute errors in solution of example 2 with fitting factor 
 

h 
ε   

32−  42−  52−  62−  72−  82−  92−  102−  

32−  1.12(-1) 1.04(-1) 1.02(-1) 1.02(-1) 1.02(-1) 1.02(-1) 1.02(-1) 1.02(-1) 

42−  4.64(-2) 5.94(-2) 5.64(-2) 5.58(-2) 5.56(-2) 5.56(-2) 5.56(-2) 5.56(-2) 

52−  5.97(-2) 2.17(-2) 3.09(-2) 2.96(-2) 2.94(-2) 2.93(-2) 2.93(-2) 2.93(-2) 

62−  8.59(-2) 3.70(-2) 1.10(-2) 1.58(-2) 1.52(-2) 1.51(-2) 1.51(-2) 1.51(-2) 

102−  1.13(-1) 6.85(-2) 3.64(-2) 1.78(-2) 7.80(-3) 2.80(-3) 8.17(-4) 1.00(-3) 
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Table 3. The maximum absolute errors in solution of example 3 with fitting factor 
 

h 
ε   

32−  42−  52−  62−  72−  82−  92−  102−  

32−  0.11(-15) 0.16(-15) 0.99(-15) 0.77(-15) 0.29(-14) 0.22(-13) 0.67(-13) 0.61(-13) 

42−  0.11(-15) 0.38(-15) 0.33(-15) 0.26(-14) 0.26(-14) 0.15(-13) 0.19(-13) 0.14(-12) 

52−  0.55(-16) 0.22(-15) 0.44(-15) 0.44(-15) 0.16(-14) 0.11(-13) 0.20(-13) 0.19(-12) 

62−  0.11(-15) 0.11(-15) 0.33(-15) 0.24(-14) 0.70(-14) 0.28(-13) 0.11(-12) 0.42(-12) 

102−  0.00(+00) 0.00(+00) 0.00(+00) 0.00(+00) 0.44(-15) 0.11(-15) 0.22(-15) 0.37(-13) 

 
Table 4. The maximum absolute errors in solution of example 3 without fitting factor. 

 
h 

ε   
32−  42−  52−  62−  72−  82−  92−  102−  

32−  0.34(-01) 0.78E-02 0.19E-02 0.48E-03 0.12E-03 0.30E-04 0.75E-05 0.19E-05 

42−  0.13(+00) 0.35E-01 0.79E-02 0.19E-02 0.48E-03 0.12E-03 0.30E-04 0.75E-05 

52−  0.35(+00) 0.14E+00 0.35E-01 0.79E-02 0.19E-02 0.48E-03 0.12E-03 0.30E-04 

62−  0.62(+00) 0.35E+00 0.14E+00 0.35E-01 0.79E-02 0.19E-02 0.48E-03 0.12E-03 

102−  7.90(+00) 2.06(+00) 0.91(+00) 0.77(+00) 0.60(+00) 0.35(+00) 0.13(+00) 0.03(+00)

 
Table 5. The maximum absolute errors in solution of example 4 with fitting factor 

 
h 

ε   
32−  42−  52−  62−  72−  82−  92−  102−  

32−  1.11(-16) 1.33(-15) 1.33(-15) 1.77(-15) 7.66(-15) 5.12(-14) 2.03(-13) 9.51(-14) 

42−  1.11(-16) 3.33(-16) 2.55(-15) 1.33(-15) 6.99(-15) 1.73(-14) 7.03(-14) 3.37(-13) 

52−  3.33(-16) 2.22(-16) 2.22(-16) 3.66(-15) 4.55(-15) 6.88(-15) 2.77(-14) 1.06(-13) 

62−  6.66(-16) 2.22(-16) 2.22(-16) 3.33(-16) 3.55(-15) 6.72(-14) 1.87(-13) 1.40(-12) 

102−  0.00(+00) 0.00(+00) 0.00(+00) 0.00(+00) 6.66(-16) 2.22(-16) 2.22(-16) 3.33(-16) 
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Table 6. The maximum absolute errors in solution of example 4 without fitting factor 
 

h 
ε   

32−  42−  52−  62−  72−  82−  92−  102−  

32−  3.44(-2) 7.80(-3) 1.90(-3) 4.77(-4) 1.19(-4) 2.98(-5) 7.45(-6) 1.86(-6) 

42−  1.35(-2) 3.45(-2) 7.90(-3) 1.90(-3) 4.79(-4) 1.19(-4) 2.99(-5) 7.48(-6) 

52−  3.51(-1) 1.35(-1) 3.45(-2) 7.90(-3) 1.90(-3) 4.79(-4) 1.19(-4) 2.99(-5) 

62−  6.27(-1) 3.51(-1) 1.35(-1) 3.45(-2) 7.90(-3) 1.90(-3) 4.79(-4) 1.19(-4) 

102−  7.90(+0) 2.06(+0) 9.17(-1) 7.77(-1) 6.00(-1) 3.51(-1) 1.35(-1) 3.45(-2) 

 
Table 7. The maximum absolute errors in solution of example 5 

 
h 

ε   
32−  42−  52−  62−  72−  82−  92−  102−  

32−  5.32(-2) 4.78(-2) 4.67(-2) 4.69(-2) 4.68(-2) 4.68(-2) 4.68(-2) 4.68(-2) 

42−  2.54(-2) 2.63(-2) 2.39(-2) 2.33(-2) 2.32(-2) 2.32(-2) 2.32(-2) 2.32(-2) 

52−  1.03(-2) 1.29(-2) 1.31(-2) 1.19(-2) 1.16(-2) 1.16(-2) 1.15(-2) 1.15(-2) 

62−  1.54(-2) 5.70(-3) 6.50(-3) 6.50(-3) 5.90(-3) 5.80(-3) 5.80(-3) 5.80(-3) 

102−  2.02(-2) 1.06(-2) 5.30(-3) 2.50(-3) 1.10(-3) 3.84(-4) 4.10(-4) 4.05(-4) 
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