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1. Introduction 
 

Singular perturbation problems containing 
a small perturbation parameter ε , arise very 
frequently in many branches of applied 
mathematics such as , fluid dynamics, quan-
tum mechanics, chemical reactor theory, elas-
ticity, aerodynamics,  and the other domain 
of the great world of fluid motion.  A few 
notable examples are Boundary layer prob-
lems, the drift-diffusion equation of semi-
conductor device modelling, the modelling of 
steady and unsteady viscous flow problems 
with large Reynolds numbers, convective heat 
transport problems with large Peclet numbers, 
magneto hydrodynamics duct problems at 
high Hartman numbers, etc. These problems 
have received a significant amount of atten-
tion in past and recent years.  It is well 
known fact that the solution of singular per-

turbation problems exhibits a multi scale 
character, that is, there are thin transition 
layer(s) where the solution varies rapidly, 
while away from the layers(s) the solution 
behaves regularly and varies slowly. There-
fore, the numerical treatment of singularly 
perturbed problems presents some major 
computational difficulties. If we apply the 
existing classical numerical methods for 
solving these problems, large oscillations may 
arise and pollute the solution in the entire in-
terval because of the boundary layer behav-
iour. Thus, more efficient and simpler com-
putational techniques are required to solve 
singularly perturbed two-point boundary 
value problems. The survey paper by Kadal-
bajoo and Reddy [9], gives an erudite outline 
of the singular perturbation problems and 
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their treatment starting from Prandtl’s paper 
[14] on fluid dynamical boundary layers. This 
survey paper will remain as one of the most 
readable source on singular perturbation 
problems. 
 Natesan and Bawa [11], have considered 

singularly perturbed reaction diffusion Robin 
boundary-value problems and devised an al-
most second-order (up to a logarithmic factor) 
uniformly convergent scheme, which is a 
proper combination of the classical finite dif-
ference scheme and the cubic spline scheme. 
The proposed scheme has been applied on a 
piece-wise uniform Shishkin mess.  Andar-
gie and Reddy[1] have presented a numerical 
integration method for the solution of general 
singularly perturbed two-point boundary 
value problems with mixed conditions of left 
or right end boundary layer. In this method 
the original second order differential equation 
has been replaced by an approximate first or-
der differential equation with a small deviat-
ing argument and then using the trapezoidal 
formula, a three term recurrence relationship 
has been obtained and solved by Thomas al-
gorithm.  

For a detailed discussion on singular per-
turbation problems one may refer to the 
books and high level monographs: O’Malley 
[13], Nayfeh [12], Kevorkian and Cole [10], 
Bender and Orszag [4], Farrell et. al. [8], and 
Roos et. al. [16]. 
In this paper, Differential Quadrature Method 
(DQM) has been applied for solving singu-
larly perturbed two-point boundary value 
problems with mixed condition. This method 
is a simple and efficient numerical technique, 
which approximates the derivative with re-
spect to a coordinate direction at a grid point 
by a weighted linear sum of all the functional 
values in that direction. The key to DQM is 
the determination of weighting coefficients 
for any order derivative discretization.  

To the best of the authors knowledge, the 
Differential Quadrature Method, where ap-
proximation of the derivatives have been 
based on a polynomial of high degree, has not 

been implemented for the singularly per-
turbed two-point boundary value problems 
with mixed condition. 
This paper is organized as follows: Section 2 
presents the description of the Differential 
Quadrature Method, including the formula for 
finding the weighting coefficients for any or-
der derivative discretization and selection of 
sampling points. Section 3 presents the basic 
key procedure to solve differential equation 
with boundary conditions. Section 4 is de-
voted to the singularly perturbed two-point 
boundary value problems with mixed condi-
tions and its solution procedure by DQM in 
detail. The method of finding computational 
results at uniform grid points and the presen-
tation of results are given in the Section 5 
under the heading Numerical Illustration. In 
the Sub-section 5.1 and 5.2, we have consid-
ered four examples of linear or nonlinear na-
ture with left-end boundary layer and two 
examples of linear nature with right-end 
boundary layer, respectively and presented 
Computational results, show the accuracy and 
efficiency of the method. The conclusions are 
presented in section 6. The paper ends with 
the references.  

 
2. Description of the Differential Quadra-

ture Method 
 

The Differential Quadrature Method(DQM) 
was introduced by Bellman et al.[2, 3] in the 
early 1970s  and, since then, the technique 
has been successfully employed in finding the 
solutions of many problems in applied and 
physical sciences[5,7,17,18]. This method has 
been predicted by its proponents as a poten-
tial alternative to the conventional solution 
techniques such as the finite difference and 
finite elements methods. The basic idea of 
differential quadrature method is that the de-
rivative of a function with respect to a space 
variable at a given point is approximated as a 
weighted linear sum of the functional values 
at all discrete points in the domain of that 
variable. 
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In order to show the mathematical repre-
sentation of the method, we consider a one 
dimensional field variable ( )xf  prescribed 
in a field domain bxxxa N =≤≤= 1 . Let 

( )ii xff =  be the function values specified in 
a finite set of N  discrete points 
( )Nixi ,......,2,1=  of the field domain in 

which the end points 1x  and Nx  are in-

cluded. Next, consider the value of the func-
tion derivative rr dxfd /  at some discrete 
points ix , and let it be expressed as a linearly 
weighted some of the function values. 
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where )(r

ijA are the weighting coefficients of 

the )(thr -order derivative of the function as-
sociated with points ix . Equation (1) the 
quadrature rule for a derivative, is the essen-
tial basis of the Differential Quadrature 
Method. Thus using equation (1) for various 
order derivatives, one may write a given dif-
ferential equation at each point of its solution 
domain and obtain the quadrature analog of 
the differential equation as a set of algebraic 
equations in terms of the N  function values. 
These equations may be solved, in conjunc-
tion with the quadrature analog of the bound-
ary conditions, to obtain the unknown func-
tion values provided that the weighting coef-
ficients are known a priori. 
  In DQM, it is supposed that the solu-
tion of a one–dimensional differential equa-
tion is approximated by N -terms high de-
gree polynomial: 

∑
=

−=
N

k

k
k xcxf

1

1.)(  (2) 

where kc is a constant. 
 

The weighting coefficients may be deter-
mined by some appropriate functional ap-
proximations; and the approximate functions 
are referred to as test functions. The primary 
requirements for the choices of the test func-
tions are of differentiability and smoothness. 
That is, the test function of the differential 

equation must be differentiable at least up to 
the )(thn  derivative (here n  is the highest 
order of the differential equation) and suffi-
ciently smooth to be satisfied the condition of 
the differentiability. Although there can be 
many choices of the test functions, a conven-
ient and most commonly used choice in 
one-dimensional problems is the Lagrangian 
interpolation shape functions )(xl j , where 

∑
=

=
N

j
jj fxlxf

1
)()(  (3) 

 
)(xl j  are the monomials of the 

)()1( thN − order polynomials. Note that the 
number of test functions is equal to the num-
ber of the sampling points and for complete-
ness, the number of the sampling points 
should at least be equal to one plus the order 
of the highest derivatives. Substituting )(xl j  
of equation (3) into equation (1), it may be 
seen that the weighting coefficients can be 
easily obtained. The detailed procedures can 
be found in references (Shu and Rechards 
[18], Quan and Chang [15]). 
 
2.1. The polynomial test function-based 

weighting coefficients 
 
�The accuracy of differential quadrature so-

lution depends on the accuracy of the weight-
ing coefficients. To obtain accurate weighting 
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coefficients, Quan and Chang [15] derived 
explicit formulae of the Lagran-
gian-interpolation-function-based weighting 
coefficients for the first and second-order de-
rivatives. Shu and Rechards [18] gave a gen-
eral relationship for any higher order deriva-
tives. These formulae were obtained by con-
sidering the test function in the Lagrangian 
interpolation process as in eq.(1) and 
(3).These explicit formulae’s merit is that 
highly accurate weighting coefficients may be 
determined for any number of arbitrarily 
spaced sampling points. 
Villadsen and Michelsen[19] and Quan and 
Chang [15] have shown that the weighting 
coefficients of )(thr -order derivatives of the 
Lagrangian interpolation test functions are: 

),.......2,1,()()(
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and ix ’s are the locations of the grid points. 
N  is the number of sampling points. Note 
that the eq. (4) is valid as long as linearly in-
dependent polynomials are used as a trial 
functions and, thus, the values of the coeffi-
cients are affected only by the distribution of 
the grid points.  
Note that the lagrangian interpolation shape 
functions )(xl j  have following properties 

 
 

(5) 
 

Using  Eqs. (1), (3), and (4) based on La-
grangian interpolation shape functions, Quan 
and Chang[15]  and Shu and Rechards [18] 
obtained the following weighting coefficients: 
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2.2 Choice of sampling points 
 

A convenient and natural choice for the 
sampling points is that of the equally spaced 
points. But the Differential Quadrature solu-
tions usually deliver more accurate results 
with unequally spaced sampling points. A ra-
tional basis for the sampling points is pro-
vided by the zeros of the orthogonal polyno-
mials. A well accepted kind of sampling 
points in the DQM is the so called 
Gauss-Lobatto-Chebyshev sampling points. 
For a domain specified by bxa ≤≤ and dis-

cretised by a set of unequally spaced points 
(non-uniform grid), then the coordinate of any 
point i  can be evaluated by: 
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3. Application to differential equation 
 

The basic key procedure in the DQM is to 
approximate the derivatives in a differential 
equation by equation (1). Substituting the 
equation (1) into the governing equations and 
equating both sides of the governing equa-
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tions, we obtain simultaneous equations 
which can be solved by use of Gauss elimina-
tion or other methods. That is, DQM is com-
posed of the following procedure: 

(a) The function to be determined is re-
placed by a group of function values at 
a group of selected sampling points. 
Gauss-Lobatto-Chebyshev sampling 
points are strongly recommended for 
numerical stability. 

(b) Approximate derivatives in a differen-
tial equation by these N  unknown 
function values. 

(c) Form a system of linear equations and 
(d) Solving the system of linear equation 

yields the desired unknowns. 
The proper implementation of boundary 

condition is very important for the accurate 
numerical solution of differential equation. 
Essential and natural boundary condition can 
be approximated by DQM. Using the tech-
nique in solving differential equation, the 
governing equations are actually satisfied at 
each sampling point of the domain, so one has 
one equation for each point, for each un-
known. In the resulting system of algebraic 
equation from the DQM, each boundary con-
dition replaces the corresponding field equa-
tion. This procedure is straightforward when 
there is one boundary condition at each 
boundary and when we have distributed the 
sampling points so that there is one point at 
each boundary. 
 
4. Application to singular perturbation 

problems 
 

To show the applicability of DQM, we 
consider the singularly perturbed two point 
boundary value problems of the form: 
 

qxpxfxyxbxyxaxy ≤≤=++ );()()()(')()(''ε  (8) 
 
with  

521 )(')( cpydpyd =+  (9) 
and 

643 )(')( cqydqyd =+  (10) 
 
where ε  is a small parameter 

654321 ,,,,,,,;10 ccddddqp≤< ε  are given 
constants; ),(),( xbxa  and )(xf are as-
sumed to be sufficiently continuously differ-
entiable functions in [ ]qp, . The values of 

1d and 2d are not zero simultaneously. Simi-
larly, the values of 3d and 4d are not zero at 
the same time.  
 For finding the solution of the equation (8) 
with the boundary conditions (9) and (10) by 
DQM, we have followed the following pro-
cedure/steps: 
(i) Discritise the interval [ ]qp, , such that 

qxxxxp N =<<<<= ........321  
where, N is the number of sam-
pling/grid points. Denote )( ii xyy =  
and ).( ii xff =  

Apply the DQM to approximate the deriva-
tives in the equations (8), (9) and (10), that 
leads to the following discretized form of the 
equations: 
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Use the equation system (12) and (13) to 

solve for two unknowns 1y and Ny , which 
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can be expressed in terms of functional values 
at the interior points as 
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(iv) Apply the equation (11) at all interior 

points )1...,,.........3,2(, −= Nixi , that 
leads to a system of )2( −N  equa-
tions with N  unknowns. 

(v) Use the expression for  1y  and Ny  
from equation (14) and (15) in the ob-
tained     system of equations from 
step (iv) to get another system of 

)2( −N equations with )2( −N  un-

knowns )1,,.........3,2,( −= Niyi . 

(vi) Solve the system of equations ob-
tained in step (v). 

(vii) Use the obtained val-

ues )1,,.........3,2,( −= Niyi from step 
(v) in the equation (14) and (15) to get 
the approximate values of y at the 

boundary points 1xx =  and Nxx =  
respectively. 

We have applied the Gaussian elimination 
method with partial pivoting and employed 
the double precision Fortran, to solve the ob-
tained system of linear equations in the step 
(v), for the unknowns .,.......,, 132 −Nyyy  
 
5. Numerical illustrations 

 
To demonstrate the applicability of the 

DQM, we have applied it to six singular per-
turbation problems of linear or non-linear na-
ture and computed the results for different 
values of N and ε . These examples have 
been chosen because they have been widely 
discussed in literature and because approxi-
mate/exact solutions are available for com-
parison.  
Note that the DQM results are given at uni-
form grids )......,,2,1,0(, Kiihxi == , with 

01.0=h  and 100=K , which have been in-
terpolated through the use of natural  cubic  
spline interpolation polynomial. For the deri-
vation of this polynomial, we have used the 
DQM results ( ) Niyx ii ,......,2,1,, = , where 

Niyi ,......,2,1, =   are the value of y  at 
non-uniform grid points 
(Gauss-Lobatto-Chebyshev  points) 

Nixi ,........,2,1, = obtained from (7).  
To show the accuracy and efficiency of the 
method,  we have  also given the computa-
tional results (computed from derived cubic 
spline interpolation polynomial) in terms of  
Maximum Absolute Error (M.A.E) for  the  
examples-5.1.1 and  5.1.2,  at uniform grids 

)......,,2,1,0(, Kiihxi ==  with 
01.0,100 == hK  and 
001.0,1000 == hK , for various values of  
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grid points: N  and small parameter: ε . In 
fact, computational results can be given in 
terms of the mean absolute error or the mean 
absolute percentage error or in terms of other 
types of error.  
We have compared the DQM results at uni-
form grid points with the approximate/exact 
solution available in literature, for different 
values of N  and ε .  
 
5.1. Examples with left-end boundary layer 
  

To show the applicability of the DQM we 
have applied it to three linear and one nonlin-
ear singular perturbation problems with 
left-end boundary layer.  

 Example 5.1.1. Consider the following 
linear singular perturbation problem from 
Dorr et. al. ([6], page 80) and Andargie et. 
al.[1]: 

 
 

 
10;0)()(')('' ≤≤=−+ xxyxyxyε with 0)0(' =− y  and 1)1(')1( =+ yy ε  

For this example we have ( ) ( ) 1,1 −== xbxa and ( ) .0=xf  

The exact solution is given by: ( ) ( )221112

2112
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2

)41(1
2

+−−
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The computational results are presented in Table 5.1.1(a), in terms of Maximum Absolute Er-

ror (M.A.E.), for various values of N  and ε . The Table 5.1.1(b) shows the comparison with 
exact and Andargie  et. al.[1] solution. 
 
Table 5.1.1(a). Maximum Absolute Error in the solution (computed from derived cubic spline interpolation 

polynomial) for uniform points: )......,,2,1,0(, Kiihxi ==  with 01.0=h  and 
001.0=h , for example problem 5.1.1. 

 
N =16 N =32 N =64 N =82 ↓ε  

K =100 K =1000 K =100 K =1000 K =100 K =1000 K =100 K =1000 
10-1 .7594E-03 .7601E-03 .1783E-03 .1869E-03 .4837E-04 .4888E-04 .3183E-04 .3260E-04
10-2 .9632E-03 .9632E-03 .2010E-03 .2012E-03 .4852E-04 .4888E-04 .2766E-04 .2879E-04
10-3 .1650E-02 .1650E-02 .2784E-03 .2817E-03 .5096E-04 .5120E-04 .2962E-04 .3052E-04
10-4 .2013E-02 .2013E-02 .3660E-03 .4486E-03 .7957E-04 .8160E-04 .4524E-04 .4524E-04
10-5 .2053E-02 .2053E-02 .3797E-03 .4893E-03 .9161E-04 .1155E-03 .5478E-04 .5585E-04
10-6 .2057E-02 .2057E-02 .3811E-03 .4935E-03 .9292E-04 .1194E-03 .5609E-04 .5949E-04
10-7 .2057E-02 .2057E-02 .3812E-03 .4940E-03 .9310E-04 .1199E-03 .5627E-04 .5984E-04
10-8 .2057E-02 .2057E-02 .3813E-03 .4941E-03 .9310E-04 .1199E-03 .5627E-04 .5996E-04
10-9 .2057E-02 .2057E-02 .3812E-03 .4940E-03 .9310E-04 .1199E-03 .5633E-04 .6002E-04
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Table 5.1.1(b). Computational results for example-5.1.1 
 

x                Exact 
Sol- y(x)             
 

DQM Solution-y(x) 
  35=N , 

100=K , 410−=ε , 
M.A.E. : .259041800E-03

DQM Solution-y(x) 
  85=N , 

100=K , 410−=ε , 
M.A.E. :  
  .270605100E-04 

Andargie Solution- 
y(x), 

,10,10 24 −− == hε
0008.0=δ  

  

  .00            .3679162  
  .02            .3753103  
  .04            .3828914  
  .06            .3906255  
  .08            .3985159  
  .10            .4065656  
  .20            .4493200  
  .30            .4965704  
  .40            .5487897  
  .60            .6702798  
  .80            .8186652  
 1.00            .9999000  

.3680108 

.3751303 

.3829003 

.3905439 

.3985699 

.4063769 

.4494031 

.4965973 

.5486997 

.6701928 

.8187017 

.9998693 

.3679263 

.3753080 

.3828788 

.3906134 

.3985087 

.4065539 

.4493118 

.4965470 

.5487991 

.6702921 

.8186579 

.9998858 

.3691142 

.3757321 

.3833029 

.3910365 

.3989262 

.4069751 

.4497223 

.4969594 

.5491581 

.6705798 

.8188484 

.9999001 
 
Example 5.1.2: Consider the following singular perturbation problem from Andargie et. al. [1]: 

( ) ( ) [ ],1,0;21''' ∈−−=+ xxxyxyε  with ( ) ;10' =− y  and ( ) .0)1('1 =+ yy ε  
For this example we have ( ) ( ) 0,1 == xbxa  and ( ) .21 xxf −−=   
The exact solution is given by )])]/exp(1[(21[)1(2)( xxxxxy −−−−++−= εεε  
The computational results are presented in Table 5.1.2(a), in terms of Maximum Absolute Error 
(M.A.E.), for various values of N  and ε . The Table 5.1.2(b) shows the comparison with exact 
and Andargie  et. al.[1] solution. 
 
Table 5.1.2(a). Maximum Absolute Error in the solution (computed from derived cubic spline interpolation 

polynomial) for uniform points: )......,,2,1,0(, Kiihxi ==  with 01.0,100 == hK  and 
001.0,1000 == hK , for example problem 5.1.2. 

 
N =10 N =20 N =40 N =80 ↓ε  
K =100 K =1000 K =100 K =1000 K =100 K =1000 K =100 K =1000 

10-1 .7478E-02 .7478E-02 .1694E-02 .1694E-02 .4011E-03 .4011E-03 .8523E-04 .8523E-04 
10-2 .7467E-02 .7467E-02 .1703E-02 .1703E-02 .4052E-03 .4052E-03 .9882E-04 .9894E-04 
10-3 .7527E-02 .7527E-02 .1702E-02 .1702E-02 .4051E-03 .4051E-03 .9871E-04 .9871E-04 
10-4 .7537E-02 .7537E-02 .1704E-02 .1704E-02 .4054E-03 .4054E-03 .9871E-04 .9871E-04 
10-5 .7538E-02 .7538E-02 .1705E-02 .1705E-02 .4054E-03 .4054E-03 .9871E-04 .9871E-04 
10-6 .7539E-02 .7539E-02 .1705E-02 .1705E-02 .4054E-03 .4054E-03 .9871E-04 .9871E-04 
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Table 5.1.2(b). Computational results for example-5.1.2 
 

x        
 

Exact Sol.-  
     y(x)       

DQ  Solution-  y(x) 
  64=N , 

100=K , 
      410−=ε , 
M.A.E. : 
0.1555681E-03    

DQ  Solution-  y(x) 
128=N , 100=K , 

410−=ε , 
  M.A.E.: 
0.3826618E-04  

Andargie Solution-  y(x), 
,10,10 24 −− == hε  

0008.0=δ  
   

   .00   
   .02   
   .04   
   .06   
   .08   
   .10   
   .20   
   .30   
   .40   
   .60   
   .80   
  1.00   

2.0001000      
1.9797040      
1.9585080      
1.9365120      
1.9137160     
1.8901200      
1.7601400      
1.6101600      
1.4401800      
1.0402200      
 .5602601    
 .0003000      

2.0001000 
1.9796940 
1.9585010 
1.9365030 
1.9136700 
1.8901010 
1.7600450 
1.6100620 
1.4400320 
1.0400720 
 .5601645 
 .0002999 

2.0001000 
1.9797010 
1.9585030 
1.9365120 
1.9137090 
1.8901190 
1.7601160 
1.6101450 
1.4401460 
1.0401860 
.5602357 

 .0003000 

1.9978049 
1.9774493 
1.9562993 
1.9343493 
1.9115993 
1.8880492 
1.7582994 
1.6085494 
1.4387994 
1.0392994 
 .5597996 
 .0002997 

 
Example 5.1.3: Consider the following non-homogeneous singular perturbation problem: 

( ) ( ) [ ],1,0);21()(''' ∈+−=−+ xxxyxyxyε  with ( ) ;1)0('0 =− yy  and ( ) .01 =y  
For this example we have ( ) ( ) 1,1 −== xbxa and ( ) ).21( xxf +−=   

The exact solution is given by: 
)exp()1()exp()1(

)exp()1(5)exp()1(5
)23()(

2112

2112

mmmm
xmmxmm

xxy
−−−
−+−

++=  

where 
( )

ε
ε

2
)41(1

1

++−
=m  and 

( )
ε

ε
2

)41(1
2

+−−
=m  

The computational results are presented in Table 5.1.3(a) and 5.1.3(b), for different values of N  
and ε . 
 

Example 5.1.4: Consider the following non-linear singular perturbation problem from Dorr 
et.al.([6], page 80)  and Andargie  et. al.[1]: 
  ( ) ( ) [ ],1,0;0)(''' 2 ∈=−+ xxyxyxyε  with ( ) 00' =− y  and ( ) .1)1('1 =+ yy ε  
The linear problem (using  quasilinearisation  process) concerned to this is : 

( ) ( ) [ ],1,0;
)(

1)(
)(

2'1'' 2 ∈
+
−

=
+

−+ x
cx

xy
cx

xyxy
εεε

ε  where, 
2

)41(3 ε+−−
=c . 

For this example we have ( ) ( )
)(

2,/1
cx

xbxa
+

==
ε

ε and ( ) .
)(

1
2cx

xf
+
−

=
ε

  

The asymptotic solution is given by: )(
4

)/exp(5
2

1)( εε Ox
x

xy +
−

+
−

=   

The computational results are presented in Table 5.1.4(a) and 5.1.4(b), for different values of N  
and ε . 
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Table 5.1.3(a). Computational results for example-5.1.3 
 

x        
 

Exact Sol.-  y(x)    DQ Solution-  y(x)  
42=N , 100=K , 

      410−=ε , 
  M.A.E. : 0.5865097E-03  

DQ Solution-  y(x)  
128=N , 100=K , 

      410−=ε , 
   M.A.E. : 0.6133318E-04  

   .00   
   .01   
   .02   
   .03   
   .04   
   .05   
   .06   
   .07   
   .08   
   .09   
   .10   
   .20   
   .30   
   .40   
   .60   
   .80   
  1.00   

1.1604190         
1.1619330         
1.1632610         
1.1644010         
1.1653520         
1.1661110         
1.1666770         
1.1670480         
1.1672220         
1.1671960         
1.1669690         
1.1531750         
1.1169000         
1.0557770         
 .8482658         
 .5062645  
 .0000000         

1.1604180 
1.1619200 
1.1632390 
1.1643610 
1.1653090 
1.1660860 
1.1665970 
1.1670440 
1.1671140 
1.1671750 
1.1668390 
1.1530760 
1.1167240 
1.0555650 
 .8480017 
 .5060861 
 .0000000 

1.1604180 
1.1619320 
1.1632580 
1.1644000 
1.1653470 
1.1661060 
1.1666770 
1.1670390 
1.1672150 
1.1671840 
1.1669680 
1.1531480 
1.1168810 
1.0557310 
 .8482091 
 .5062144 
 .0000000 

 
Table 5.1.3(b). Computational results for example-5.1.3 

 
x        
 

Exact Sol.- y(x)  DQ Solution-  y(x)  
62=N , 100=K , 

      510−=ε , 
M.A.E. : 0.2585053E-03    

DQ Solution-  y(x)  
116=N , 100=K , 

      510−=ε , 
  M.A.E. : 0.7265806E-04    

   .00   
   .01   
   .02   
   .03   
   .04   
   .05   
   .06   
   .07   
   .08   
   .09   
   .10   
   .20   
   .30   
   .40   
   .60   
   .80   
  1.00   

1.1605840      
1.1620980      
1.1634260      
1.1645660      
1.1655170      
1.1662760      
1.1668420      
1.1672130      
1.1673860      
1.1673610      
1.1671330      
1.1533370      
1.1170560      
1.0559250 
 .8483864      
 .5063381      
 .0000000      

1.1605850 
1.1620960 
1.1634140 
1.1645540 
1.1655040 
1.1662550 
1.1668080 
1.1671720 
1.1673630 
1.1673310 
1.1670730 
1.1533350 
1.1168840 
1.0557150 
 .8481283 
 .5063337 
 .0000000 

1.1605850 
1.1620970 
1.1634230 
1.1645620 
1.1655120 
1.1662680 
1.1668380 
1.1672020 
1.1673860 
1.1673480 
1.1671170 
1.1533300 
1.1170080 
1.0558980 
 .8483526 
 .5063254 
 .0000000 
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Table 5.1.4(a). Computational results for example-5.1.4 
 

x       
 

Exact Sol.- y(x)  DQ Solution-  y(x)  
42=N , 100=K , 

      410−=ε , 
M.A.E. : 
 0.1478195E-03       

DQ Solution-  y(x)  
64=N , 100=K , 

      410−=ε , 
M. A. E. : 
 0.7557869E-04      

Andargie Solution- y(x), 
,10,10 24 −− == hε  

0008.0=δ  
   

   .00   
   .02   
   .04   
   .06   
   .08   
   .10   
   .20   
   .30   
   .40   
   .60   
   .80   
 1.00   

  .5000250   
  .5050505     
  .5102041     
  .5154639     
  .5208333 
  .5263158     
  .5555555 
  .5882353  
  .6250000 
  .7142857 
  .8333333  
1.0000000     

.5000733 

.5050783 

.5101702 

.5154828 

.5208430 

.5263503 

.5556289 

.5882078 

.6250905 

.7142872 

.8333221 

.9999242 

.5000203 

.5050513 

.5102203 

.5154799 

.5208271 

.5262809 

.5555524 

.5882239 

.6250163 

.7143192 

.8333632 

.9999244 

.4999691 

.5050189 

.5101719 

.5154312 

.5207999 

.5262817 

.5555178 

.5881934 

.6249532 

.7142271 

.8332582 

.9999000 
 

Table 5.1.4(b). Computational results for example-5.1.4 
 

x        
 

Exact Sol.-  
y(x)            

DQ Solution-  y(x)  
36=N , 100=K , 

      510−=ε , 
 M.A.E. : 0.2641082E-03   

DQ Solution-  y(x)  
92=N , 100=K , 

      510−=ε , 
  M.A.E. : 0.3415346E-04   

   .00   
   .01   
   .02   
   .03   
   .04   
   .05   
   .06   
   .07   
   .08   
   .09   
   .10   
   .20   
   .30   
   .40   
   .60   
   .80   
 1.00   

  .5000025     
  .5025126     
  .5050505 
  .5076142 
  .5102041     
  .5128205 
  .5154639     
  .5181347 
  .5208333     
  .5235602 
  .5263158 
  .5555555 
  .5882353 
  .6250000 
  .7142857 
  .8333333     
1.0000000     

.5001246 

.5025992 

.5050036 

.5077147 

.5102459 

.5127482 

.5155020 

.5182557 

.5209039 

.5235434 

.5262873 

.5556691 

.5882084 

.6250774 

.7145137 

.8335262 

.9999924 

.5000170 

.5025234 
 .5050616 
.5076291 
.5102120 
.5128098 
.5154731 
.5181395 
.5208350 
.5235698 
.5263174 
.5555509 
.5882525 
.6250234 
.7143076 
.8333624 
.9999924 

 
5.2. Examples with right-end boundary layer  
 

To demonstrate the applicability of the DQM, we have applied it to two linear singular pertur-
bation problems with right-end boundary layer.  
Example5.2.1. Consider the following non-homogeneous singular perturbation problem from 
Andargie et. al.[1]: 10;23)(')('' ≤≤−=+− xxxyxyε ,with 0)0(')0( =− yy ε  and 

.1)1(' =y  
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 For this example we have ( ) ( ) 0,1 =−= xbxa and ( ) .32 −= xxf  The exact solution is given by:  
( ) ))]/)1exp((1(23[)23( εεεε −−−+−−= xxxxy  
The computational results are presented in Table 5.2.1(a) and 5.2.1(b), for different values of 

N  and ε . 
 

Table 5.2.1(a). Computational results for example-5.2.1 
 

x       
 

Exact Sol.-  
     y(x)    

DQ Solution-  y(x)  
52=N , 100=K , 

      410−=ε , 
 M.A.E. : 0.2371073E-03   

DQ Solution-  y(x)  
116=N , 100=K , 

      410−=ε , 
 M.A.E. : 0.4673004E-04  

Andargie Solution- y(x),
,10,10 24 −− == hε  

0008.0=δ  
   

  .00 
  .20 
  .40 
  .60 
  .80 
  .90 
  .92 
  .94 
  .96 
  .98 
1.00 

  .0003000 
  .5602599 
1.0402200    
1.4401800    
1.7601400    
1.8901200    
1.9137160    
1.9365120    
1.9585080    
1.9797040    
2.0001000    

  .0003000 
  .5602287 
1.0400580 
1.4400180 
1.7601090 
1.8900350 
1.9136550 
1.9365040 
1.9584720 
1.9796860 
2.0001000 

  .0002999 
  .5602539 
1.0402000 
1.4401600 
1.7601340 
1.8901030 
1.9137150 
1.9365070 
1.9585020 
1.9797000 
2.0000990 

  .0002953 
  .5596657 
1.0391645 
1.4386631 
1.7581611 
1.8879100 
1.9114598 
1.9342095 
1.9561592 
1.9773091 
1.9976645 

 
Table 5.2.1(b). Computational results for example-5.2.1 

 
x        
 

Exact Sol,- y(x)  DQ Solution-  y(x)  
42=N , 100=K , 

      510−=ε , 
 M.A.E. : 0.3668070E-03    

DQ Solution-  y(x) 
116=N , 100=K , 

      510−=ε , 
M.A.E. : 0.4673004E-04    

  .00 
  .20 
  .40 
  .60 
  .80 
  .90 
  .91 
  .92 
  .93 
  .94 
  .95 
  .96 
  .97 
  .98 
  .99 
1.00 

  .0000300     
  .5600260     
1.0400220      
1.4400180      
1.7600140      
1.8900120      
1.9019120      
1.9136120      
1.9251110      
1.9364110      
1.9475110      
1.9584110      
1.9691110      
1.9796100      
1.9899100      
2.0000100      

  .0000300 
  .5599381 
1.0398660 
1.4398620 
1.7599260 
1.8898840 
1.9018920 
1.9135040 
1.9251080 
1.9363290 
1.9474850 
1.9583660 
1.9690690 
1.9795880 
1.9898970 
2.0000100 

  .0000300 
  .5600199 
1.0400020 
1.4399980 
1.7600070 
1.8899950 
1.9018980 
1.9136110 
1.9250990 
1.9364060 
1.9475020 
1.9584050 
1.9691060 
1.9796060 
1.9899080 
2.0000090 

 
Example 5.2.2. Consider the following singular perturbation problem from Dorr et. al.([[6], page 
80] with 1,1 == na ) and Andargie  et. al.[ 1]:   

10;0)()(')('' ≤≤=−− xxyxyxyε  with 1)0(')0( =− yy  and .0)1(' =y  
For this example we have ( ) ( ) 1,1 −=−= xbxa and ( ) .0=xf   
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The exact solution is given by: ( ) ( )121221

21221

exp)1()1(
))1(exp()exp(

mmmmmm
mxmmxmm

xy
−−−−

+−−
=

εε
 where 

( )
ε

ε
2

)41(1
1

++
=m  and ( )

ε
ε

2
)41(1

2

+−
=m . 

The computational results are presented in Table 5.2.2(a) and 5.2.2(b), for different values of 
N  and ε . 

Table 5.2.2(a). Computational results for example-5.2.2 
 
x     
 

Exact Sol- 
y(x)             

DQ Solution- 
y(x)  

44=N , 
100=K , 

410−=ε , 
 M.A.E. : 
0.1854897E-0
3         

DQ Solution- 
y(x)  

98=N , 
100=K , 

410−=ε , 
 M.A.E. : 
0.2855062E-04  

Andargie solu-
tion-y(x), 

10,10 24 −− == hε
 

0008.0=δ  
     

 

 .00 
 .20 
 .40 
 .60 
 .80 
 .90 
 .92 
 .94 
 .96 
 .98 
1.00 

.9999000   .8186653   .6702799   .5487897

.4493200             

.4065656             

.3985159             

.3906255             

.3828914               

.3753104             

.3679162             

.9999282 

.8188417 

.6704614 

.5488610 

.4493664 

.4065627 

.3986197 

.3906230 

.3829324 

.3754094 

.3680357 

.9999106 

.8186924 

.6702996 

.5488139 

.4493309 

.4065794 

.3985273 

.3906274 

.3828988 

.3753099 

.3679301 

.9999009 

.8188949 

.6706179 

.5491892 

.4497477 

.4069981 

.3989487 

.3910585 

.3833245 

.3757532 

.3691349 

 

 
Table 5.2.2(b). Computational results for example-5.2.2 

 
x        
 

Exact Sol- 
y(x)         

DQ Solution-  y(x) 
56=N , 100=K , 

      ,10 5−=ε  
M.A.E  : 0 .1195669E-03  

DQ Solution-  y(x) 
  86=N , 100=K , 
      510−=ε , 
 M.A.E : 0 .4959106E-04  

  .00 
  .20 
  .40 
  .60 
  .80 
  .90 
  .91 
  .92 
  .93 
  .94 
  .95 
  .96 
  .97 
  .98 
  .99 
1.00 

.9999900     

.8187242     

.6703160     

.5488095     

.4493281     

.4065693     

.4025239     

.3985187     

.3945534     

.3906276     

.3867408     

.3828928     

.3790829     

.3753110     

.3715767     

.3678831     

.9999935 

.8187792 

.6703058 

.5489030 

.4494078 

.4065762 

.4025403 

.3985990 

.3945704 

.3906401 

.3868126 

.3828625 

.3791558 

.3752779 

.3715966 

.3679643 

.9999933 

.8187711 

.6703593 

.5488055 

.4493231 

.4065806 

.4025402 

.3985339 

.3945684 

.3906351 

.3867671 

.3828840 

.3790896 

.3753292 

.3715815 

.3679164 
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6. Discussion and conclusions 
 

In this paper, the DQM has been applied to 
solve three linear and one non-linear singular 
perturbation problems with left-end boundary 
layer and, two linear singular perturbation 
problem with right-end boundary layer. The 
applications presented here showed that the 
DQM has the capability of solving general 
singularly perturbed two point boundary value 
problems with mixed condition and of pro-
ducing accurate solutions with minimal com-
putational effort. It can be observed from the 
tables that the DQM approximates the exact 
or asymptotic or approximate solution very 
well with small number of sampling points. 
This shows the efficiency and accuracy of the 
present method. We have given here only a 
few values although the solutions can be 
computed at desired number of uniform 
points.  

It has been observed that an increase in the 
number of grid points gives rise to an increase 
in the accuracy of the DQM solution, as in the 
most numerical techniques. However a small 
number of grid points in the DQM produces 
highly accurate results with the use of 
non-uniform grids. This method provides an 
alternative technique to the conventional ways 
of solving singular perturbation problems. 
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