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Abstract: In a real life situation, due to the complexity of the industrial systems and 
non-linearity of their behavior, it is very difficult to achieve optimum performance of system for 
desired industrial goals using uncertain, vague and imprecise data. Herein, an approach has been 
proposed through which the behavior of the system is analyzed in the form of well- known six 
reliability indices by using triangular fuzzy numbers which allow the consideration of expert 
opinions, linguistic variables, operating conditions in reliability information. Using their behav-
ior analysis a fuzzy multi-objective optimization problem (FMOOP) has been formulated. Due to 
the conflicting nature of the multiple objectives, the decision making is difficult and it leads to 
the Pareto optimal solutions instead of single optimal solutions. Many evolutionary algorithms 
(EAs) already exist in the literature for solving a multi-objective optimization problem (MOOP), 
and are termed as multi-objective evolutionary algorithms (MOEAs). Particle swarm optimiza-
tion (PSO) is one of such MOEA which demonstrates the ability to identity a Pareto-optimal 
front efficiently. Here, a crisp optimization problem is reformulated from FMOOP by taking into 
account the preference of decision maker (DM) and then PSO is applied to solve the resulting 
fuzzified MOOP. The presented approach is applied in order to solve the multi-objective se-
ries-parallel system reliability optimization problem for a crystallization unit of a urea plant. 
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1. Introduction 
 
  In a production plant, to obtain maximum 
output it is necessary that each of its subsys-
tem/unit should run failure free and furnish 
excellent performance to achieve desired 
goals. High performance of these units can be 
achieved with highly reliable subunits and 
perfect maintenance.  
With advances in technology and growing 
complexity of technological systems, the job 
of reliability/system analyst has become more 
challenging as they have to study, characterize, 

measure and analyze the uncertain behavior 
of system using various techniques which re-
quires the knowledge of precise numerical 
probabilities and component functional de-
pendencies, the information which is rather 
difficult to obtain. Even if data is available, it 
is often inaccurate and thus subjected to un-
certainty i. e. historical record can only rep-
resent the past behavior of the system but may 
be unable to predict the future behavior of the 
equipment.  
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  For failure analysis of these systems, vari-
ous methods available in literature are reli-
ability block diagrams (RBD's), Monte Carlo 
simulation (MCS), Markov modeling (MM), 
Failure mode effective analysis (FMEA), root 
cause analysis (RCA), Fault tree analysis 
(FTA), and Petri nets (PN) etc. These methods 
are recognized as a powerful tool for estimat-
ing the reliability of large scaled systems [27, 
28], where system success or failure is de-
scribed by the state of the top event. The 
probability of a top event is a function of the 
failure probability of a primary event. Varia-
tion in the primary event probabilities which 
contains the uncertainties may result variation 
in the top event probability. To resolve the 
uncertainties, fuzzy methodology [2, 4, 29] is 
one of the widely used technique applied to 
engineering systems e. g., in human reliability, 
software reliability, fault diagnosis and safety 
and risk engineering [3, 11, 17]. Also variety 
of methods and algorithms exists for optimi-
zation and applied in various technological 
fields, during the last three decades [6, 7, 19, 
20]. 
  The majority of the industrial systems are 
repairable one and data used for their behav-
ior analysis were collected from historical re-
cords/logbooks/ experts opinions and taken as 
crisp data because most of the industrial sys-
tems exhibit constant failure and repair rates 
after initial burn-in period. Since records are 
either not properly updated or out of date, so 
did not reflect the actual behavior of the sys-
tem. Thus, the used data were vague, impre-
cise, and uncertain. Also, the traditional ana-
lytical techniques need large amounts of data, 
which are difficult to obtain because of vari-
ous practical constraints such as rare events of 
components, human errors, and economic 
considerations for the estimation of fail-
ure/repair characteristics of the system. In 
such circumstances, it is usually not easy to 
analyze the behavior and performance of 
these systems up to desired degree of accu-
racy by utilizing available resources, data, and 
information. 

Thus, to analyze more closely the system's 
behavior, other reliability criteria should be 
included in the traditional analysis and in-
volved uncertainties must be quantified. The 
inclusion of various reliability indices as cri-
teria helps the management to understand the 
effect of increasing/ decreasing the failure and 
repair rates of a particular component or sub-
system upon the overall performance of the 
system and quantification of uncertainties 
provide results closer to the real situational 
environment's results. These ideas were high-
lighted by Knezevic and Odoom [13] and 
analyzed the behavior of a general repairable 
system by introducing the concept of Fuzzy 
Lambda-Tau technique with Petri net (PN) in 
terms of various reliability indices utilizing 
quantified data. In their approach, PN is used 
to model the system while fuzzy set theory is 
used to quantify the uncertain, vague, and 
imprecise data. The use of fuzzy set theory 
and fuzzy arithmetic to determine components 
or system reliability can be found in literature 
[1, 2, 23, 30]. Behavior analysis of the press 
unit is analyzed by [14] using FTA instead of 
PN while [8, 9, 24, 25] analyzed by using PN 
and fuzzy approach of different industrial sys-
tems. 

However, in many practical design situa-
tions, reliability apportionment is complicated 
because of presence of several conflicting ob-
jectives and imprecise cost of the components 
of the system. For instance, a designer is re-
quired to minimize the system cost while si-
multaneously maximizing the system reliabil-
ity. Therefore, multi-objective functions be-
come an important aspect in the reliability 
design of the engineering systems. In reliabil-
ity problems, it is often required to maximize 
or minimize several objectives subject to sev-
eral constraints. Such problem can be formu-
lated as a multi-objective optimization prob-
lem (MOOP). Different methods and algo-
rithms have been proposed to solve MOOPs 
can be found from [10, 16, 18, 22].  

In the present paper, a conflicting 
multi-objective non-linear programming 
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(MONLP) problem is considered in which we 
maximize the reliability and minimize the 
cost of the given system. For this, firstly the 
problem is analyzed through its behavior 
analysis by well known six reliability indices 
and then viewed as fuzzy multi-objective 
mathematical programming (FMOMP) prob-
lem with corresponding generalized triangular 
fuzzy numbers to objectives which are ap-
plied as objective coefficients to a reliability 
problem for the system. Now with the choice 
of the DM/system expert regarding the prior-
ity amongst the objectives, the problem is 
converted to a single objective optimization 
problem and then solved by PSO. The tech-
nique is explained through an example of a 
crystallization unit of a fertilizer plant. Pareto 
optimal solution of this multi-objective 
mathematical programming is established.  

 
2. Assumption 
 
  The basic assumptions used in this meth-
odology are given below: 
‧components failure and repair rates are sta-
tistically independent, constant and obey ex-
ponential distribution functions; 
‧Separate maintenance facility is available for 
each component. 
‧After repairs, required component is con-
sidered as good as new. 
‧The standby units are of same nature and 
capacity as the active units. 
 
3. Methodology 
 
  The proposed methodology is divided into 
two phase. In the phase I, a behavior of the 
system is analyzed in the form of various re-
liability indices namely fuzzy failure rate, re-
pair time, expected number of failure (ENOF), 
mean time between failures (MTBF), reliabil-
ity and availability by using the uncertain, 
vague and imprecise data while in phase II, a 
non-linear multi-objective optimization prob-
lem is formulated along with the obtained re-

sults from phase I and by using the sugges-
tions of DM/management personnel prefer-
ences/system expert and then solve it by using 
PSO. Both the phases are described in details 
as below. 
 
3.1. Phase I: Behavior analysis of the sys- 
    tem  
 
  The motive of this phase is to analyze the 
behavior of the system by utilizing quantified 
vague, imprecise and conflicting informa-
tion/data. The procedural steps used for con-
ducting the analysis of the system are given as 
follows: 
a. In this step information is extracted from 

different sources. The data related to fail-
ure rates )( iλ and repair times )( iτ of the 
main components of the unit are collected 
from present/historical records and is in-
tegrated with expertise of maintenance 
personnel. 

b. As the collected data are imprecise and 
vague due to various practical reasons as 
already given in the above discussion. To 
account for the imprecision and uncertain-
ties in the data, crisp input data is con-
verted into known triangular fuzzy num-
ber with specified spread. 

c. In this step all the minimal cut sets of the 
considered systems are obtained using 
their Petri net model.  Using these mini-
mal cut sets, expressions for systems’ sλ  

and sτ are obtained. 
d. As most of the actions or decisions im-

plemented by human or machines are bi-
nary or crisp, so it is necessary to convert 
the fuzzy output to a crisp value. The 
process of converting fuzzy output to a 
crisp value is said to be defuzzification. 
Out of the existence of the various de-
fuzzification techniques in the literature, 
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center of area (COA) method is selected 
due to its property that it has the advan-
tage to have taken the whole membership 
function into account for this transforma-
tion and therefore it is equivalent to mean 
of data [21, 30]. If the membership func-
tion )(~ xAμ  of the output fuzzy set A~  is 

described on the interval ],[ 21 xx , then 
COA defuzzification x  can be defined as 

∫
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3.2. Phase II: Formulation of the MONLP 

problem 

  A general MONLP problem is to find the 
design variable set X that optimizes a vector 
of objective functions 

)}(),.......,(),({)( 21 XfXfXfXf n=  over the 
feasible design space. The problem is mod-
eled as follow 
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where )(),.....,(),( 21 XfXfXf n  are the indi-
vidual objective functions, )(Xhi  and 

)(Xg j   are equality and inequality con-

strained functions, respectively. l
kX  and 

u
kX  are the lower and upper bounds of deci-

sion vector kX , respectively. 
  Basic definitions of the Pareto-optimal so-
lutions are given below: 
 
Definition: (Complete optimal solution): 

*X  is said to be complete optimal solution to 
the MONLP (1) if and only if there exists 

XX ∈*  such that )()( * XfXf tt ≥ , for 
nt ,.....,2,1= .  

  However, when the objective functions of 
the MONLP conflict with each other, a com-
plete optimal solution does not always exist 
and hence the Pareto optimality concept arises 
and it is defined as follows 
 
Definition: (Pareto-optimal solution): A 
vector *X  is a Pareto optimal if there exists 
no feasible vector X which would decrease 
some objective function without causing a 
simultaneous increase in at least one objective 
function. Mathematically, the Pareto optimal 
solution is expressed as below: 
  A design vector *X  is a Pareto optimum 
if and only if, for any X  and i , 

)()( *XfXf jj ≥ , ijnj ≠= ,,....,2,1  

)()( *XfXf ii ≤⇒  
  In general, there exist a number of Pareto 
optimal solutions to multi-objective optimiza-
tion problems. Thus, the designer must select 
a compromise or satisfying solution from the 
Pareto optimal solution set according to his or 
her preference. 
 
3.2.1. Methodology for solving the MONLP 

problem 
 

In practical sense, the expression of the ob-
jective functions and constraints in the opti-
mization problem (1) are not transparent. 
While determining these objectives and ob-
jective goal as well as goal of the constraints 
can be involved in many non-stochastic un-
certain factors. Thus to make model more 
flexible and adoptable to human decision 
process, the optimization model (1) can be 
expressed as fuzzy non-linear programming 
problems with fuzzy numbers.  Thus in 
fuzzy environment, the original problem (1) is 
converted into fuzzy multi-objective optimi-
zation problem (2) with fuzzy decision vari-
ables. 

Therefore in fuzzy environment the opti-
mization problem (1) becomes 
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Here ji ghf ~,~,~ are taken as generalized fuzzy 
numbers. 

In order to use the fuzzy set theory to solve 
the optimization problems, the fuzzy con-
straints have to be formed first. These con-
straints originated from the given crisp con-
straints by relaxing the bounds.  A corre-
sponding membership function is established 
to describe the fuzziness of each constraint.  
In detail, the following steps are used to solve 
the MONLP of problem (2). 

 
Step 1: Formulation of fuzzy region of sat-
isfaction: - Solve the MONLP problem (2) as 
a single objective non-linear problem  times 
for each problem by taking one of the objec-
tive at a time and ignoring the others. These 
solutions are known as ideal solutions. The 
solution to the above model is the ideal solu-
tion   of each objective function, , and the 
corresponding objective function at the ideal 
solution may be  given by 
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calculated as 
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Hence the membership functions correspond-
ing to the two constraints tt mxf ≤)(~  (i.e. for 

minimization) and tt Mxf ≥)(~  (i.e. for 
maximization) is defined as follows: 
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creasing function of )(~ xft  
 
 
Step 2: Formulation of Fuzzy multi- objec-
tive optimization problem (FMOOP): - Us-
ing the achieved objectives' membership 
functions and DM/system expert preferences 
in the form of weights, system performance 
optimization problem is formulated as a sin-
gle objective optimization problem (by using 
Huang [10] approach) in the following form 

KkXXX

w

JIjXg

Xtosubject
w

X
w

X
w

X
Maximize

u
kk

l
k

i

j

xft

n

n

t

,...,2,1,

]1,0[

,...,2,1,0)(~
)(:

)(
1...

)(
1

)(
1:

)(~

2

2

1

1

=≤≤

∈

+=≤

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧∧∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∧∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∧

μα

ααα

(5)

 

where ),(),......,(),({)( ~~~~
21

XXXX
nffff μμμμ =   

is a set of n  fuzzy regions of satisfaction 
corresponding to the objective functions, ∧  

indicates the intersection, tw  represents the 
tht  objective weight suggested by DM, tα is 

(2)



Harish Garg and S. P. Sharma 
 

266    Int. J. Appl. Sci. Eng., 2011. 9, 4 
 

the degree of satisfaction of the tht objective, 
X is the vector of decision variables. Now the 
obtained problem is solved by using PSO 
technique, which is described in the next step. 
 
Step 3: A survey of PSO algorithm: -Particle  
Swarm Optimization (PSO), first introduced  
by Kennedy and Eberhart [12], is a stochastic 
global optimization technique. The algorithm 
models the behavior of a group of particles 
whose initial values are specified by a group 
of proposed random solutions called particles. 

These particles repeatedly search the envi-
ronment of the problem to reach new solu-
tions. The position and velocity of thi particle 
at iteration t  are specified by )(txi  and 

)(tvi  respectively in the searching space. 
Each particle conserves it best ipbest  posi-
tion and global best position gbest . Then ve-
locity and position of particle i  at iteration 

1+t  are updated as follow 
 

 
))()(())()(()()1( 2211 txtgbestrctxtpbestrctvwtv iiiii −∗∗+−∗∗+∗=+    (6) 

)1()()1( ++=+ tvtxtx iii      (7) 
 
where 21,cc are the acceleration constants 
with positive values; 21,rr  are random num-
bers between 0 and 1. Also w  is the inertia 
weight factor which is decreased and varied 
linearly from initial )( 1w  to final )( 2w  w.r.t. 
iteration number [26]. The particle velocity in 
Eq. (6) is an important parameter because it 
determines the resolution about the solution 
regions. Furthermore it was necessary to set a 
control parameter maxv  for the velocity that 
is unable to exceed this value. The choice of a 
too small value for maxv  can cause very 

small updating of velocities and positions of 
particles at each iteration. Hence, the algo-
rithm may take a long time to converge and 
face a problem of getting struck to local 
minima. To overcome these situations, Clerc 
and Kennedy [5] have proposed improved 
velocity update rules employing a constriction 
factor χ  and accordingly the velocity up-
date equation is 
 
 
 

 
)))()(())()(()(()1( 2211 txtgbestrctxtpbestrctvtv iiiii −∗∗+−∗∗+=+ χ  

 
where 

φφφ
χ

42

2
2 −−−

= with 4,21 >+= φφ cc  

Clerc and Kennedy [5] found that the system 
behavior could be controlled to have the fol-
lowing features: (i) the system does not di-
verge in a real value region and finally can 
converge; and (ii) the system can search dif-

ferent regions efficiently by avoiding prema-
ture convergence. 

The whole process of the Phase I and II 
methodologies may also be explained through 
the flowchart given in Figure 1(a) and 1(b) 
along with PSO algorithm flow chart in Fig-
ure 2
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Figure 1. Flow chart of Phase I and II methodology. 

 
4. Illustrative Example 
 

The above mentioned technique for solving 
MONLP problem is illustrated through the 
problem of optimization of reliability of a 
crystallization subunit of a urea plant. The 
brief description of the system (urea plant) is 
given below. 
 
4.1. System Description 
 

The urea plant considered here is a com-
plex engineering system where the units are 
arranged in a random fashion and they run 
continuously for a longer period to produce 
the required quantity of urea [15]. The plant is 
a combination of two dependent systems 
namely ammonia production system and the 
urea production system. For the production of 

urea, liquid ammonia and Carbon dioxide are 
used as inputs which are obtained from am-
monia plant. Further, processed in a reactor at 
controlled pressure and temperature the reac-
tants (urea, ammonium carbonate, water and 
excess ammonia) are sent to decomposer for 
urea separation. In the crystallizer, the crystals 
of urea are separated by centrifuge and con-
veyed pneumatically to the prilling tower 
where they are melted, sprayed through dis-
tributors and finally fell down at the bottom 
of the tower, from where it is collected. 
Among the various functional units in the 
plant such as urea synthesis, urea decomposi-
tion, urea crystallization, urea prilling and 
urea recovery, urea crystallization is one of 
the most important and vital functional proc-
esses which is the subject of our discussion. 
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Figure 2. Flow chart of PSO algorithm. 
 
  In brief, this operating system comprises of 
five subsystems arranged in series defined as 
follows: 

• vacuum generator (A): It consists of 
two stage ejector, barometric condenser 

used to generate the pressure of 175mm 
of Hg. 

• crystallizer (B): It consists of two 
units in series, concentrator and crys-
tallizer. Failure of any one unit consid-
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ered as the complete failure of the sys-
tem. 

• centrifuge (D): It consists of five cen-
trifugal pumps arranged in series. Fail-
ure of any unit causes the complete 
failure of the system. 

• crystallizer pump (E): It consists of 
two pumps one is operative and other 
in cold standby. Failure of both at a 
time will cause complete failure of the 
system. 

• slurry feed pump (F): It consists of 
two pumps arranged in parallel. The 
urea slurry is removed from the crystal-
lizer through slurry feed pumps and is 
sent to centrifuges which are arranged 
in parallel. 

The systematic diagram of the system is 
given in Figure 3. 
 
4.2. Behavior Analysis 
 

Under the information extraction phase, the 
data related to failure rate )(λ  and repair 
time )(τ of the components is collected from 
present/historical records of the urea plant and 
is integrated with expertise of maintenance 
personnel as presented in Table 1.  The 
equivalent Petri net model of the system is 
shown in Figure 4. Based on that, the minimal 
cut sets obtained by using matrix method are  

,}{},{ 2,1=iiBA  5,...,2,1}{ =iD  },{, 21 EE  and 
},{ 21 FF  

For mission time t=10(hrs), the expressions 
of failure rate )( sλ  and repair time )( sτ of 
the system are obtained using results given in 
Table 2. The remaining reliability indices’ ex-
pressions of the system are evaluated (those 

given in Table 3) by using the expressions of 
sλ  and sτ  
Following the basic steps as described in 

section 3.1, the reliability indices for the sys-
tem have been plotted in Figure 5 for %15± , 

%25±  and %50±  uncertainties whereas 
crisp and defuzzified values for the system is 
tabulated in Table 4. From Table 4, it is evi-
dent that defuzzified values change with 
change of spread but crisp values do not 
change. For instance failure rate first in-
creases by 0.19%, when spread changes from 

%15±  to %25± , and further increases by 
0.93%, when spread changes from 

%25± to %50± . Similarly, for repair time 
and MTBF, the change in defuzzified values 
is observed with change of spread. On the 
other hand, reliability decreases by 0.03%, 
when spread changes from %15±  to %25± , 
and further decreases by 0.15%, when spread 
changes from %25± to %50± . Thus, it is 
observed that the maintenance action should 
be based on defuzzified values will be more 
appropriate than the one based on crisp value, 
as a safe interval between maintenance action 
can be established and inspections can be 
conducted to monitor the condition or status 
of various equipments constituting the system 
before it reaches to crisp value. Mainte-
nance/plant personnel using this approach 
may change their targeted goals to achieve 
higher profit. 
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Figure 3. Systematic diagram of the Crystallization unit. 

 
 

 
Figure 4. Petri-Net model of the crystallization unit. 
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Table 1. Data for failure rate ( iλ  in per hrs) and repair time ( iτ  in hrs) 
 

Subsystems A 
(i = 1) 

B 
(i = 2,3) 

D 
(i = 4,...,8) 

E 
(i = 9,10) 

F 
(i = 11,12) 

s'λi  0.001 0.003 0.002 0.005 0.005 
s'τi  2 2 3 5 5 

 
 

Table 2. Basic Expressions of Lambda-Tau Methodology  
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Table 3. Some Reliability parameters 
 

Parameters  Expressions 

Mean Time to Failure 
s

s =MTTF
λ
1  

Mean Time to Repair s
s

s τ==MTTR
μ
1  

Mean Time Between Failures sss MTTR+MTTF=MTBF  
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(a)Fuzzy Failure Rate            (b)Fuzzy Repair Time 

 
(c)Fuzzy MTBF                 (d)Fuzzy Availability 

 
(e)Fuzzy Reliability               (f)Fuzzy ENOF 
 

Figure 5. Various reliability indices at %15± %25±  and %50±  spreads. 
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Table 4. Crisp and defuzzified values at different spreads for crystallization unit 
 
Defuzzified values at (spread) Reliability 

parameters 
Crisp values

%15±  %25±  %50±  

Failure rate  0.017550  0.017568  0.017602  0.017757  
Repair time 2.594017  2.738773  3.017784  4.857207  
MTBF 59.574074 59.658419  59.830316  61.172424 
Reliability 0.839037  0.838881  0.838603  0.837301  
Availability 0.957231  0.955092  0.951099  0.929082  
ENOF 0.169721  0.169682 0.169605  0.169103  

 
4.3. Mathematical Model of the multi-ob- 

jective optimization problem of the sy- 
stem 

 
Let jR  and jC  be the reliability and cost 

of thj  component of the system while sR and 

sC  denote the total reliability and cost of the 
system. Then in addition to maximization of 
system reliability, it is also oftenly required 
that the cost be minimized simultaneously. 
Incorporating both these requirements the 
MOOP of the system may be expressed 
mathematically as 
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where sλ is the system failure rate whose 

expression is given by 
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and u
s

l
s λλ ,  are the lower and upper bound of 

the system failure rate taken from the Figure 
5(a) at the considered uncertainty level corre-
sponding to 0=α .  

The different values for the parameters 
)12,...,2,1( =ja j  are 8, 24, 24, 8.75, 8.75, 

8.75, 8.75, 8.75, 7.14, 7.14, 3.33, 3.33 respec-
tively and for )12,...,2,1( =jb j  are 80, 60, 60, 
70, 70, 70, 70, 70, 50, 50, 30, 30 respectively. 

 
5. Computational Results 
 
5.1. Parameter setting 
 

The optimization method is implemented in 
Matlab (MathWorks) and the program has 
been run on a T6400 @ 2GHz Intel Core(TM) 
2 Duo processor with 2GB of Random Access 
Memory (RAM). In order to eliminate sto-
chastic discrepancy, 30 independent runs were 
made involving 30 different initial trial solu-
tions with population size 100 and maximum 
number of generation as 150 along 
with 05.221 == cc . 
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5.2. Results and Discussion 
 

The FMOOP as given by optimization 
problem (2) is formulated for the system and 
the obtained FMOOP is converted into 
equivalent crisp optimization problem by us-
ing [10] approach. Corresponding to each 
computed fuzzy objective function; a fuzzy 
region of satisfaction is to be constructed. 
Using the constructed membership functions 
for fuzzy region of satisfactions (as objectives) 
and their weight vector as suggested by 
DM/system expert corresponding to the two 
objective functions, the following equivalent 
crisp optimization problem is formulated. 
 For the solution of the optimization problem 
(9), PSO is used with the parameter given in 
section 5.1. The results corresponding to 
weight sets W1=[1  1], W2 =[1  0.5], W3 
=[0.8 0.2], W4 = [0.2  0.8], W5 = [0.5  1 ] 

which are suggested by DMs / system experts 
are given in Table 5. 
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Table 5. Pareto results for different weight sets suggested by decision maker  

 
Sub 

components Reliability W1 W2 W3 W4 W5 

A  
(i = 1) 

iR  0.988715 0.990147 0.989751 0.989080 0.988565 

B  
(i = 2, 3) 

iR  0.966881 0.971042 0.974103 0.966948 0.966088 

D  
(i = 4, ...,8) 

iR  0.983144 0.983144 0.983108 0.978984 0.981145 

E  
(i = 9, 10) 

iR  0.944122 0.944122 0.947004 0.944321 0.944122 

F  
(i = 11, 12) 

iR  0.944122 0.944122 0.461822 0.947707 0.944122 

System sR  0.844229 0.852746 0857839 0.826835 0.834190 
System sC  1168.475639 1176.007236 1181.966702 1159.674539 1162.334966 

1α  0.601520 0.784256 0.892526 0.228321 0.386121 

2α  0.601520 0.392128 0.226444 0.846207 0.772242 
 
6. Conclusion 
 
  A real life reliability optimization problem 
of a crystallization system in a fertilizer plant 

(situated in the Northern part of India) has 
been discussed here. A behavior analysis as 
well as multi-objective reliability 
optimization (maximize reliability and 
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minimize cost) of the considered plant has 
been analyzed. Based on the behavior analysis 
of the system, a multi - objective optimization 
problem is constructed. A mutual conflicting 
nature of the objectives are resolved with the 
help of fuzzy after constructing the fuzzy 
region of satisfication by taking linear 
membership functions.  A very interactive 
fuzzy satisficing method for deriving a biased 
Pareto-optimal solution preferred by the DM 
is presented in this paper. Resulting FMOOP 
has been solved using one of the 
meta-heuristic technique namely as PSO. In a 
practical point of view, PSO enables the trade 
- off between the system reliability and 
desigining cost while the widely used single - 
objective approaches tend to optimize the 
system reliability without saving any 
designing cost. Since reliability decision is 
usually made in the earliest stage of system 
design and the information at this stage is 
incomplete and imprecise, it is necessary to 
rely on the experience of decision-makers and 
experts. The proposed approach can 
efficiently deal with the vagueness and 
subjectivity of expert information. Through 
this approach, a decision support system has 
been developed which helps the plant 
maintenance personnel in deciding his/her 
future strategy to gain optimum performance  
of the system. 
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