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Abstract: The objective of current work is to show the effectiveness of using wavelet transform 
for detection and localization of small damages. The spatial data used here are the mode shapes 
and strain energy data of the damaged plate. Because the wavelet coefficients are performed with 
various scale indices, local perturbations in the mode shapes and strain energy data can be found 
in the finer scale that are positioned at the locations of the perturbations. The continuous wavelet 
transform (CWT) using complex Gaussian wavelet with four vanishing moments is used to get 
the spatially distributed wavelet coefficients so as to identify the damage position on a square 
plate. The mode shape and strain energy data of the square plate with damage of different sizes 
are obtained by using ANSYS 9.0. The damage is simulated by reducing the thickness of one 
element out of 625 elements used for modeling. It is observed that by using modal data as input, 
damage can be identified if the reduction in thickness in one of the elements is at least 10%. Use 
of strain energy data as input to the wavelet analysis provides detection up to less than 10% 
damage. Lipschtiz (Hoelder) exponent (α) and Intensity factor (K) is derived from the coeffi-
cients to quantify the relation between damage and change in wavelet coefficients derived from 
modal and elemental strain energy data. The variation of maximum absolute wavelet coefficients 
versus percentage of damage for different mode shapes and scales are studied Influence of 
boundary conditions of the plate on damage identification has been studied, especially for dam-
age near boundaries. Another objective of this paper is to apply wavelet transform to highlight 
the detection and localization of damage in beam and stiffened panel using experimental modal 
data as input to the wavelet analysis.  This in real time has potential to be used in structural 
damage monitoring.   
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1. Introduction 
 
  Damage in a mechanical (or) structural 
system may be contributed by various factors, 
such as excessive response, accumulative 
crack growth, wear and tear of working parts, 
and impact by a foreign object. Structural 
Health Monitoring (SHM) has emerged as a 

reliable, efficient and economical approach to 
monitor the system performance, detect such 
damage, asses/diagnose the structural health 
condition, and make corresponding mainte-
nance decisions; consequently, structural 
safety and functionality will be significantly 
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improved and a condition based maintenance 
procedure can be developed. Due to localiza-
tion of damage in structures techniques using 
global averaging procedures, applied to 
changes in eigen frequencies are less sensitive 
to initial or small changes. Hence recent tech-
niques that process the local changes in the 
structural parameters based on wavelets have 
emerged recently. An application of spatial 
wavelet theory to damage identification in 
structures was proposed by Liew and Wang 
[1]. They calculated the wavelet coefficients 
along the length of the beam based on the 
numerical solution for the deflection of the 
beam, the damage location was then indicated 
by a peak in the coefficients of the wavelets 
along the length of the beam. Wang and Deng 
[2] described a method for detecting the loca-
tion of localized defects. Quek, Wang, Zhang 
and Ang, [3] also used wavelet analysis for 
crack identification in beams under both sim-
ply supported and fixed–fixed boundary con-
ditions. Abdo and Hori [4] made numerical 
study of the relation between damage charac-
teristics and changes in the dynamic proper-
ties. It is found the rotation mode shape has 
the characteristic of localization at the dam-
aged region even though the displacement 
modes do not localize damage. Hong, Kim 
and Lee [5] used the Lipschitz exponent for 
the detection of singularities in beam modal 
data. The Mexican hat wavelet was used and 
the damage extent was related to different 
values of the exponent. The correlation, how-
ever, of the extent of damage to the Lipschitz 
exponent is sensitive to both sampling dis-
tance and noise resulting in limited accuracy 
of prediction. Recently, an interesting com-
parison between a frequency-based and mode 
shape-based method for damage identification 
in beam like structure has been published by 
Kim, Ryu, Cho, and Stubbs [6]. Douka, Lout-
ridis and Trochidis [7] presented a method for 
crack identification in plate structures based 
on wavelet analysis is presented. The vibra-
tion modes of plate having a crack parallel to 
the one edge are wavelet transformed and 

both the location and depth of the crack are 
estimated. Later Chang and Chen [8] used 
Gabor wavelet transform for spatially distrib-
uted modes so that the distributions of wave-
let coefficients could identify the damage po-
sition on a rectangular plate by showing a 
peak at the position of the damage. Chang and 
Chen [9] also presented both the positions and 
depths of multi-cracks can be estimated from 
spatial wavelet based method. Rucka and 
Wilde [10] demonstrated  estimating the 
damage location in beam and plate structure 
using wavelet analysis using both experimen-
tal and analytical mode shape data. 

Despite the extensive studies of vibration 
analysis on damaged plates, only few effec-
tive and practical techniques are found for 
very small damaged identification. This paper, 
therefore, focuses on study of a practical 
method using Lipschitz (Hoelder) exponent 
on spatial wavelet data for effective identifi-
cation of damages in plate structure by com-
bining numerical modal analysis (using AN-
SYS) with continuous wavelet transform. The 
sensitivities of two spatial inputs namely dis-
placement mode shape and strain energy data 
to damage identification are found to be 
markedly improved. Influence of boundary 
conditions of the plate on damage identifica-
tion has been studied, especially for damage 
near boundaries. Also shown the crack identi-
fication in plate structure for different modes 

 
2. Formulation 
 
2.1. Numerical Simulation 

 
The dimension of plate under consideration 

is 0.25m x 0.25m x 0.003 m with Fixed – 
Fixed support condition as shown in Figure 1. 
The material properties used in modeling the 
plate is listed in Table 1. E (68.9 GPa), ν (0.33) 
and ρ (2710 Kg/m3) refer to Young Modulus, 
Poisson ratio and Mass Density respectively. 
The Element type selected for modeling plate 
is Shell Elastic 4 node 63 which has six de-
grees of freedom in ANSYS 9.0.  
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Figure 1. Damaged plate model from ANSYS 9.0 

with element reduced thickness. 
 

The Length and width of plate is equally 
divided into 25 elements so the simulated 
model has total of 625 elements. Damage is 
simulated by reducing the thickness of one 
element at location shown (0.1, 0.1m) shown 
in Figure 1. The mode shape and elemental 
strain energy data of the square plate with 
damage of different sizes are obtained 

 
2.2. Fundamentals of wavelet analysis 
 

As an extension of traditional Fourier trans-
form, the advantage of wavelet analysis lies in 
its characteristics to provide the time and fre-
quency information simultaneously. The 
wavelet analysis for such application was 
proposed by Grossman and Morlet [11]. 
However, due to its mathematical complexity, 
the study of wavelet theory was not fully ex-
plored. It is the work done by Mallat [12], 
Daubechies [13] that built up the relationship 
between the theory and the application of 
wavelet analysis. 

Wavelets are usually used to analyze sig-
nals in the time domain. However, by replac-
ing time variable t with a spatial coordinates, 
spatially distributed mode shapes can be also 
analyzed. For square-integrable one dimen-
sional signal f ( x ) , the Continuous Wavelet 
Transform Wf is defined as  

1* *
u,s

x uf ( x ) ( x )dx f ( x ) dx
ss

Wf (u,s ) ψ ψ
+∞ +∞

−∞ −∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

= ∫ ∫

 (1) 
Where *( )xψ  is the conjugate of the mother 
wavelet ( )xψ . The function , ( )u s xψ  is 
dilated by the scaling parameter‘s’ and trans-
lated by the translation parameter ‘u’ of the 
mother wavelet ( )xψ . Considering a two di-
mensional spatial signals to distribute over [0, 
Lx] in the x direction and [0, Ly] in the y di-
rection, the wavelet coefficients for the signal 
then can be written as [6] 

( ) ( ) ( ), ,
0 0

, * *
Ly Lx

u s u sW s x y x dx y dyψ ψ ψ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫ ∫   (2) 

So for the wavelet analysis in the x direction 
we have 

( ) ,
0

, , ( , ) * ( )
Lx

u sW u s y s x y x dxψ ψ= ∫   (3) 

Similarly in y direction we have  

( ) ,
0

, , ( , ) * ( )
Ly

u sW u s x s x y y dyψ ψ= ∫    (4) 

The family of wavelets used, the Complex 
Gaussian wavelets, generated from the com-
plex Gaussian function. It is defined as de-
rivatives of the complex Gaussian function. 

2
( ) (exp( ) exp( ), )cgau x c diff i x x nn= ∗ − ∗ ∗ −  (5) 

Where ‘diff’’ denotes the symbolic derivative 

and where nc is a constant. 
The procedure of the damage detection is as 
follows: 
(1) Find the analytical mode shapes of the 
structure. 
(2) Calculate the spatial wavelet coefficients 
of the mode shapes. 
(3) Plot the value of wavelet coefficients in 
the full region for each scale of wavelets. 
(4) Examine the distributions of wavelet coef-
ficients at each scale. A sudden change in the 
distributions of the wavelet coefficients iden-
tifies the damage position. 
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2.3. Lipschitz (Hoelder) exponent and In-
tensity factor 
 

An important property of the CWT is the 
ability to characterize the local regularity of 
functions. The Hoelder exponent α often 
measures this local regularity. A func-
tion f ( x )  is said to be Hoeldor α ≥ 0 at x=v 
if there exists constant K>0 and a polynomial 

vp   of degree m (where m is the largest in-
teger satisfying m≤α) such that [14] 

vf (x) (x) K x vp α≤ −−  (6) 
By examining the decay of wavelet maxima 

coefficients as scale s tends to zero it is 
proved [9] that, for isolated singularities, the 
wavelet maxima obeys an exponential law 
with an exponent equal to Hoelder exponent α, 
given by 

( / )KsWf (u,s) 1 2α+≤  (7) 
In order to estimate α numerically, rewriting 

Eq (7) in logarithmic form gives  

W f (u , s) log K log slog 2 2 2
1
2

⎛ ⎞≤ + α +⎜ ⎟
⎝ ⎠

(8) 

The Hoelder exponent and Intensity factor 
K are estimated by linear interpolation so that 
the squared error is minimized. The Hoelder 
exponent gives information about differenti-
ability of a function more precisely. The value 
of Hoelder exponent at a point depends on, 
the more regular is the function at that point. 
By knowing the slope α  and Intensity fac-
tor K the size of damage can be estimated. 
 
3. Results and discussions 
 

The mode shapes and strain energy data of 
the damaged plate with the region of reduced 
stiffness are analyzed by the wavelet trans-
form to see if local perturbations can be ob-
served at the damage position. Table.1 gives 
the natural frequencies of first three modes 
before and after damage. 

 
 

Table 1. Comparison of natural frequencies (Hz) 
for undamaged and damaged cases 

 
Panel  
details 

Frequencies (Hz) of mode shapes 
 1       2         3 

Undamaged 423.41 863.09 863.12 
Damaged  423.30 861.79 862.76 

 
The variations in frequencies shown are 

quite small and hence processing of mode 
shape data using wavelet transform has been 
attempted. The first mode shape of the dam-
aged plate with thickness reduced from 
0.003m to 0.002m is shown in Figure 2 lo-
cated at 0.1m in x direction and 0.1m in y di-
rection. It is observed the mode shape data of 
Figure.2a does not indicate damage position. 
Figures 2b show plot of wavelet coefficients 
in x direction at scale s = 2 giving clear indi-
cation of a peak at point of damage location. 
Figure 2c shows the variation of two dimen-
sional wavelet coefficients plot that include 
the damaged region along the length of the 
plate. In order to detect the damage position, 
the mode shape is wavelet transformed using 
complex Gaussian wavelet with four vanish-
ing moments. High value of s corresponds to 
broad wavelets, so that low frequencies can 
be looked through, while a low value of s 
corresponds to narrow wavelet suitable for the 
analysis of high frequency components. Since 
Damages corresponds to high frequency 
components scales, wavelet scales of 1, 2 and 
3 are used in present analysis. 

It is shown that the values of wavelet coef-
ficients at the damaged region shows distinct 
changes in slope compared to other undam-
aged region. The reason is that there is the 
geometric discontinuity at that position so the 
changes of deflection are larger at that region 
and local perturbations can also be detected 
by wavelet analysis. 
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(2a) 

 
       (2b) 

 
(2c) 

Figure 2. (a) The first mode shape of the (33.33%) 
damaged plate. (The boundary condi-
tions are clamped at four edges), (b) 
The distributions of wavelet coefficients 
in x direction for scale parameter (s = 2) 
respectively based on the first mode 
shape, (c) Two dimensional wavelet co-
efficients plot (s = 2, x direction) along 
the length of the plate including the 
damaged element 

 
(3a) 

 
(3b) 

 
      (3c) 

Figure 3. (a) The second mode shape of the 
(33.33%) damaged plate. (The bound-
ary conditions are clamped at four 
edges), (b) The distributions of wavelet 
coefficients in x direction for scale pa-
rameter (s = 2) respectively based on 
the second mode shape, (c) Two di-
mensional wavelet coefficients plot (s = 
2, x direction) along the length of the 
plate including the damaged element 
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(4a) 

 
(4b)     

 
(4c) 

Figure 4. (a) The third mode shape of the (33.33%) 
damaged plate. (The boundary condi-
tions are clamped at four edges), (b) 
The distributions of wavelet coefficients 
in x direction for scale parameter (s = 2) 
respectively based on the third mode 
shape, (c) Two dimensional Wavelet 
coefficients plot (s = 2, x direction) 
along the length of the plate including 
the damaged element 

Similar set of data for the second and third 
mode shapes are presented in Figure (3a – 3c), 
(4a – 4c) respectively. It is also observed that 
wavelet analysis can be used to detect the 
damage position. The modal amplitude at the 
damage location is highest for second mode 
(Figure 3a) and lowest for third mode (Figure 
4a) because the damage location lies at the 
antinodes location in second mode where as 
in third mode lies on nodal line i.e. nodal 
point where there is no displacement. There-
fore the maximum wavelet coefficients plot-
ted using the second mode shows higher valve 
at damaged location Figure 3c compare to 
first and third mode. 
  Since the damaged location at the mode of 
the third mode the value of maximum wavelet 
coefficients is marginal. It is observed that by 
using modal data as input, damage can be 
identified reasonably well if the reduction in 
thickness is not less than 10% (equivalent 
stiffness reduction by 27.1%). Figure 5a 
shows wavelet distributions plot at scale 2 for 
10% damage and Figure 5b show the corre-
sponding two dimensional wavelet plot along 
the length of the plate at damaged element. It 
is observed that there is no clear distinct 
change in slope at damaged region for 10% 
damage. 

Figure 6a shows wavelet distribution plot 
given elemental strain energy as input for the 
10% damage case for same scale. The corre-
sponding wavelet coefficient plot clearly in-
dicates increase in slope at damaged site as 
shown in Figure 6b. It is observed that the 
method using strain energy data is much more 
sensitive to damage than the method which 
uses mode shape as input to the wavelet. 
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(5a)                               (5b) 
Figure 5. (a) The distributions of wavelet coefficients in x direction only for first mode shape for 10% dam-

age case with scale parameter (s = 2) based on the first mode shape, (b) Two dimensional 
Wavelet coefficients plot (s = 2) along the length of the plate at damaged element 

 

 
(6a)                               (6b) 

Figure 6. (a) Elemental Strain Energy data first mode based wavelet coefficients plot with damaged loca-
tion, (b) The trend of two dimensional wavelet coefficients plot (s = 2) at damage location long 
the length of plate 

 
3.2. Damage quantification 
 
  To investigate the relation between per-
centage of damage extent and lipschitz expo-
nent, plot of estimated lipschitz exponent as 
function of percentage of damage values is 
shown in Figure 7. Figure 7a, and 7b shows 
plot of estimated lipschitz exponent for mode 
shape data and elemental strain energy data 
respectively to quantify damage severity.   
   It is evident from plots that as damage se-
verity increases the lipschitz exponent ‘(α)’ 
decreases .which indicates that the smooth-
ness of curve decreases at the damaged loca-

tion. Similar way In order to quantify the re-
lation between percentage of damage and 
change in wavelet coefficients derived from 
modal data, a factor called Intensity factor is 
derived from the coefficients is shown in Fig-
ure 8.  
  The intensity of factor is the inverse of 
Hoelder (Lipschtiz) exponent which varies 
with increase in damage. Figure 8a, and 8b 
shows plot of estimated Intensity of factor for 
mode shape data and elemental strain energy 
data respectively to quantify damage severity. 
It is evident from plot that as damage severity 
increases the Intensity of factor ‘K’ decreases. 
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               (7a)                       (7b) 
Figure 7. Variation of Lipschtiz (Hoelder) exponent (α) at damage site for different damage cases (a) using 

mode shape data, (b) using elemental strain energy data 
 
 

            
(8a)                                   (8b) 

Figure 8. Variation of Intensity factor K at damage site for different damage cases (a) using mode shape 
data, (b) using elemental strain energy data 

 
For the quantification of damage and also 

to ascertain the sensitivity of particular mode 
used, the variation of maximum absolute 
wavelet coefficients versus percentage of 
damage for different mode shapes and scales 
is plotted as shown in Figure 9. It is observed 
that the absolute wavelet coefficients increase 
with increase in damage severity. For some 
modes by comparing the sensitivity of differ-
ent modes it is found that the first mode at 
scale 1, 2 is much more sensitive to damage 
for the chosen damage location than other 
modes and scales. 
 

3.3 Multiple damage identification 
 

The proposed method can clearly locate the 
multiple damage locations on the plate struc-
tures. Figures 10a show plot of wavelet coef-
ficients in x direction at scale s = 2 for first 
mode shape giving clear indication of a peaks 
at point of damage locations. 
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                            (9a)                             (9b) 

            
(9c)                                      (9d) 

Figure 9. Variation of maximum absolute wavelet coefficients versus percentage of damage for mode 1, 2 
and 3 at scale (a) 1, (b) 2, (c) 3, (d) 5 

      
(10a)                                   (10b) 

Figure 10. (a) The distributions of wavelet coefficients in x direction only for first mode shape for 33.33% 
(Reduction in stiffness 96.2%) damage case with scale parameter (s = 2) based on the first 
mode shape, (b) Two dimensional Wavelet coefficients plot (s = 2) along the length of the plate 
at damaged elements
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Figure 10b shows the variation of two di-
mensional wavelet coefficients plot that in-
clude the damaged region along the length of 
the plate. From this analysis easily identify 
the small and large damages by comparing the 
variation of wavelet coefficients. 
 
4. Influence of boundary conditions on 

damage identification 
 
4.1. Using displacement mode shape and 

strain energy data 
 

Effectiveness of using a three dimensional 
plot of wavelet coefficients is strongly de-
pendent on type of boundary conditions. As 
certain boundary conditions of plate can cause 
coefficients to be extremely high at the 
boundaries plotting coefficients on the whole 
domain of the plate may cause the true dam-
age invisible when plotted in the relative 
scale. 

 
(11a) 

 
(11b) 

 
(11c) 

Figure 11. (a) and (b) 3-D Wavelet plots where 
coefficients plotted in x and y directions 
respectively on whole domain of plate 
(Fixed -Fixed boundary) for damage at 
four locations along four edges, (c) 
Elemental strain energy data first mode 
based wavelet coefficients plot (s = 2) 
with damaged location at boundaries 

 
4.1.1. Fixed - fixed condition 
 

This depends upon convolution operated by 
CWT which assumes the input spatial signal 
spread over infinite space. Because of input 
data having finite interval as in the present 
case with mode shape, the CWT gives higher 
value of coefficients at the boundary due to 
presence of discontinuing slope In Figure 11a, 
11b show the wavelet coefficients plotted 
along x and y directions at scale s = 2 respec-
tively for first mode shape and elemental 
strain energy data for damage near the 
clamped edges of plate respectively with clear 
indication of peak at point of damage location. 
Plotting wavelet coefficients in both x and y 
directions are necessary to find out damages 
near boundaries. It is seen that the wavelet 
coefficients at the boundaries are less that it is 
possible to locate damage. 
 
4.1.2. Free - Free boundary condition 
 

Similar analysis has been repeated for the 
same plate with free-free condition. The 
damage is simulated by reducing the thick-
ness of two elements at centre of the all four 
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edges of plate. Processing of mode shape data 
and strain energy data using wavelet trans-
form has been attempted. Figure 12a shows 
the first bending mode shape of plate. Figure 
12b shows corresponding plot of three dimen-

sional wavelet coefficients. Figure .12c show 
the wavelet coefficients plot at scale s = 2 for 
mode shape in logarithmic scale so as to im-
prove damage detection. 

 
 

            
   (12a)                                 (12b)   

   
           (12c)                                 (12d) 

Figure 12. (a) The first bending mode shape of the damaged plate. (The boundary conditions are free at 
four edges, (b) The distributions of wavelet coefficients for scale parameter (s = 2) based on the 
corresponding mode shape, (c) The distributions of wavelet coefficients in logarithmic scale for 
scale parameter (s = 2), (d) Elemental strain energy data first mode based wavelet coefficients 
plot (s = 2) with damaged location at boundaries 

 
Figure 12d shows plot of elemental strain 

energy data with clear indication of peak at 
point of damage location. It is seen that the 
coefficients at the free boundaries are so high 
that it is impossible to identify influence of 
damage. To improve visibility of damage to 
some extent, plotting the wavelet coefficients 
in logarithmic scale seems to help as shown in 
Figure 12c, which distinctly indicate the 

damage area even when there are high coeffi-
cients values in the neighborhood at the free 
boundaries. Figure 12d shows wavelet coeffi-
cients of elemental strain energy data, without 
logarithmic plot, with clear indication of 
pecks showing at damage at boundaries. 

The damage is simulated by reducing the 
thickness of two elements at centre of the all 
four edges of plate. Processing of mode shape 
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data and strain energy data using wavelet 
transform has been attempted. Figure 12a 
shows the first bending mode shape of plate. 
Figure 12b shows corresponding plot of three 
dimensional wavelet coefficients. Figure .12c 
show the wavelet coefficients plot at scale s = 
2 for mode shape in logarithmic scale so as to 
improve damage detection. Figure 12d shows 
plot of elemental strain energy data with clear 
indication of peak at point of damage loca-
tion.  

It is seen that the coefficients at the free 
boundaries are so high that it is impossible to 
identify influence of damage. To improve 
visibility of damage to some extent, plotting 
the wavelet coefficients in logarithmic scale 
seems to help as shown in Figure 12c, which 
distinctly indicate the damage area even when 
there are high coefficients values in the 
neighborhood at the free boundaries. Figure 
12d shows wavelet coefficients of elemental 
strain energy data, without logarithmic plot, 
with clear indication of pecks showing at 
damage at boundaries. 

 
5. Experimental verification  
 

In order to test the feasibility of applying 
proposed wavelet based damage identification 
method to experimental data (mode shape), 
experimental modal analysis is carried out on 
a simple steel beam with free-free boundary 
condition. This is particularly necessary be-
cause the experimentally obtained mode 
shape is distorted with noise. Hence the effec-
tiveness of the method with noisy mode shape 
as input can be investigated. 
 
 
 
 
5.1. Experimental modal analysis 
 

For experimentation, a steel beam with rec-
tangular cross section of dimension 700 x 30 
x 20 mm is considered. The schematic dia-
gram showing the experimental setup is 

shown in Figure 13. The beam is supported by 
a thin nylon rope with flexible springs to 
simulate free-free boundary conditions. In 
order to acquire fundamental mode shape ac-
curately the beam is supported at the nodal 
points of first mode shape.  

 

 
Figure 13. Schematic diagram of experimental set 

up 
 

A miniature accelerometer used to measure 
the response is firmly fixed near the middle of 
the beam with a bee wax. The beam is excited 
by using impact hammer and the resulting 
data has been acquired by Dynamic Signal 
Analyzer. The acquired signal has been aver-
aged twice in frequency domain.  Acquired 
frequency response functions at different lo-
cations from Dynamic Signal Analyzer are 
given as input to modal analysis software 
(LMS CADA PC MODAL) to get natural 
frequencies and mode shape. The vibration 
data is acquired at 31 discrete points with a 
spatial distance of 25.4 mm as shown in Fig-
ure 14. The damage is artificially introduced 
by a symmetric wide slot in 13th element (at 
304 mm from left end) of the beam as shown 
in Figure (14b), the width (w) of  which is 
25.4 mm. Experimental mode shapes are 
measured for three different cases of damage 
with damage c/h =0.1, 0.15 and 0.2. 
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Figure 14. Beam dimension and damage geome-

try used in experiment 
 
5.2. Results and Discussions 
 

First the undamaged beam is considered 
and the natural frequencies is compared to the 
numerically results obtained by using the 
same dimension, material property and 
boundary condition. Table 2 shows the first 
four natural frequencies for undamaged beam 
which shows that there slight acceptable dif-
ference between the numerical and experi-
mental results. 

 
Table 2. First four natural frequencies of undam-

aged beam 

Mode No Natural frequencies 
FEM(MATLAB)     Ex-
perimental 

1 180.88 181.70 
2 498.61 498.48 
3 977.49 970.02 
4 1615.9 1592.0 

 
Table 3. Comparison of experimentally obtained 

first four natural frequencies for un-
damaged and damaged beam 

Mode No Experimental results 
Undamaged       c/h=0.1 

1 181.70 179.079 
2 498.89 496.201 
3 970.02 968.010 
4 1592.0 1579.0 

 

  Table 3 shows the first four natural fre-
quencies for beam with damage c/h of 0.1 
obtained as output from LMS CADA modal 
analysis software. The fundamental mode 
shape as shown in Figure 15 has 31 spatial 
sampling points one at each discrete points. 
Because of sparse sampling, the wavelet 
transform if implemented directly would de-
tect many points of sampled data as singulari-
ties. Therefore, to smooth the transition from 
one point to another an, a cubic spline inter-
polation has been used to obtain 301 equally 
spaced points along the length. This mode 
shape with increased spatial sampling points 
is wavelet transformed and the 3-D plot of 
wavelet coefficients is shown in Figure 16(b). 
 

 
 
Figure 15. First fundamental mode shape obtained 

from LMS CADA modal analysis soft-
ware 

 
It is found from Figure 16(b) that, there are 

high wavelet coefficients at the damaged 
element (13th element) indicating damage. But 
there are many points of high wavelet coeffi-
cients all along the length giving false indica-
tion of damages.  This indicates that the 
measured mode shape signal does not contain 
the perturbation in curvature caused due to 
damage, because of which wavelet transform 
method failed to detect damage correctly. 
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(16a)                                  (16b) 

Figure 16. Damage identification with damage c/h=0.1 at 13th element (a) Fundamental mode shape from 
damaged beam (c/h=0.1), (b) 3-D wavelet plot 
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Figure 17. Damage case c/h=0.15 (a) Experimental mode shape, (b) 3-D Wavelet plot 
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          (18a)                                 (18b) 

Figure 18. Damage case c/h=0.2 (a) Experimental mode shape, (b) 3-D Wavelet plot 
 

Figure 17(a) shows the experimentally ob-
tained fundamental mode shape for c/h of 

0.15 and corresponding wavelet plot is shown 
in Figure 17 (b). Even though there are many 
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points of high wavelet coefficients other than 
damaged point, there is high relatively coeffi-
cients at the damage element as indicated in 
Figure 17 (b).  
Figure 18 shows similar plots for higher 
damage (c/h=0.2). It is observed from the 
Figure 18 (b) that is single points at which 
there is relatively large wavelet coefficients at 
the damage location.  
 It is found that the method is able to cor-
rectly locate damage in case of c/h of 0.2 and 
0.15 for damage at single element number 13. 
This method failed to identify damage in case 
of c/h=0.1 because the mode shape measured 
did not contain information of damage in 
terms of changes in curvature at the damage 
location. Hence this wavelet based damage 
identification method strongly depends on the 
measurement methods used to acquire spatial 
data, the accuracy and the measurement noise. 
This method is particularly suitable, when the 
vibration data is obtained from laser vi-
brometer or optic fiber sensor (non-contact 
type) which provides data with high accuracy 
and high spatial density. 
 
6. Experimental based damage localization 

in a stiffened panel using wavelet ap-
proach 

 
 In this paper a novel method for damage 

identification in stiffened panel based on 
wavelet analysis is presented. This method 
only needs the spatially distributed displace-
ments or mode shapes. First the natural fre-
quencies and mode shapes of healthy and 
damaged panel are obtained experimentally. 
Then, the mode shape that is very sensitive to 
the damage as indicated by considerable dif-
ference in measured undamaged and damaged 
frequencies is analyzed using continuous 
wavelet transform. The position of the crack 
is located by sudden change in the spatial 
variation of the transformed response. This 
damage detection technique serves the pur-
pose of structural health monitoring. 
 

6.1. The experimental panel and data cap-
ture 

  
 The first stage of the work was to fabricate 

the stiffened panel (Figure 19) of size 
(adopted from reference K. Worden et al. 
(2003) 750x500x3mm, by the addition of two 
ribs composed of lengths of C-channel riveted 
to the short edges. Two stiffening stringers 
composed of angle section with section width 
of 25 mm run along the length of the sheet. 
Damage was simulated by the introduction of 
a saw cut depth‘d’ in the stringer at 250mm 
from the edge of the panel. For different val-
ues of d = 6mm and 12mm investigation was 
carried out. The forced vibration tests were 
conducted with free-free boundary conditions 
for the panel, which was suspended using 
springs and nylon line. The length of the 
panel was equally divided into eight elements 
and width was divided into six elements to 
give 8x6 meshes. For the undamaged and 
damaged panel frequency response functions 
were acquired l. As shown in Figure (19) AB 
is along the line of the damaged stringer. 
 

 
 

Figure 19. Details of the test panel 
 

The system was excited at a distance of 
107mm from the edge of the panel using an 
Electro dynamic shaker with force link driven 
by broad band white noise and response was 
picked up by piezo electric accelerometer and 
sampled by a Data Acquisition System (Dac-
tron). FRF’s were acquired at each point of 
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the mesh i.e. 48 points with exciter location 
fixed. The frequency range over which Fre-
quency Response Functions between the ac-
celerometer and exciting force were taken 
was 0-300 Hz.  
 The FRF’s for the typical location before 
and after damages are plotted as shown in 
Figure 20. It shows a clear shift in frequencies. 
Also observed that zoomed view of in the 
frequency range from 100 to 150 Hz corre-
sponding to the sixth mode (bold letters in 
Table 4). This shows that orders decrease in 
frequencies with respect to increase in dam-
age.  The acquired FRF’s at 48 different lo-
cations were input to the LMS CADA PC 
MODAL software to get the experimental 
natural frequencies and mode shapes.  
The mode shape data corresponding to sixth 
mode was analyzed using wavelet transform. 
Because of sparse sampling the wavelet 
transform if implemented directly would de-
tect many points of sampled data as damage. 
Therefore to smooth the transition from one 
point to another over, sampling procedure was 

necessary for that purpose a two dimensional 
cubic spline interpolation resulting in finer 
mesh of 15x21 points. 
 

 
Figure 20. FRF’s for undamaged and damaged 

panel 
 

 
Table 4. Comparison of natural frequencies (Hz) for undamaged and damaged cases 

 

 

Frequencies (Hz) for the Mode number Panel details 
1 2 3 4 5 6 7 

Undamaged 19.61 33.62 62.58 65.09 104.66 117.27 159.05 

6mm damage 19.72 33.52 63.16 65.58 104.65 117.05 153.16 

12mm damage 18.74 33.32 62.60 65.24 104.40 115.64 156.76 
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     (21a)                               (21b) 

Figure 21. (a) Mode shape of the undamaged panel, (b) Three-dimensional plot of wavelet coefficients for 
undamaged case at scale 0.01 

  
(22a)                                    (22b) 

Figure 22. (a) Mode shape of panel with damage level 6mm, (b) Three dimensional plot of Wavelet coeffi-
cients at scale 0.01 

         
   (23a)                                (23b) 
Figure 23. (a) Mode shape of the panel with damage level 12mm, (b) Three dimensional plot of wavelet 

coefficients at scale parameter s = 0.01 
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In order to detect the damage position, the 
mode shape was wavelet transformed using 
complex Gaussian wavelet with four vanish-
ing moment with scale 0.01.Figure 21a and 
21b shows the undamaged mode shape of 
(sixth mode) plot, three dimensional wavelet 
coefficients plot respectively.  

Similarly Figure 22a and 22b and Figure 
23a and 23b, show similar plot for 6mm and 
12mm case of damage. It can be seen that 
there is a small peak region of high wavelet 
coefficients with bright area which indicates 
the existence of damage. Comparing Figure 
22(b) and Figure 23(b) it can be concluded 
that as the damage level increases for 6mm to 
12mm the maximum value of wavelet coeffi-
cients also increases at the damage location 

 
6. Conclusions 

 
The objective of this paper is to apply spa-

tial wavelet transform to highlight the sensi-
tivity for detection and localization of damage 
in a plate structure with all boundaries fixed, 
using mode shape and strain energy data as 
input. It is observed that by using modal data 
as input, damage can be identified exactly if 
the reduction in thickness is more than 10%. 
Below 10% reduction in thickness strain en-
ergy data input to wavelet is more sensitive.  
Lipschtiz (Hoelder) exponent (α) and Inten-

sity factor (K) is derived from the coefficients 
to quantify the relation between damage and 
change in wavelet coefficients derived from 
modal and elemental strain energy data. 
The variation of maximum absolute wavelet 

coefficients versus percentage of damage for 
different mode shapes and scales are studied.  
For damages near the boundaries with all 
edges free as boundary conditions the identi-
fication of damage is very difficult due to 
high wavelet coefficients near boundaries. In 
such cases the sensitivity of identifying dam-
age can be increased by plotting the wavelet 
coefficients in logarithmic scale instead of 
using linear scale, where as in fixed boundary 
condition the method is able to identify dam-

age directly with out the need to plot coeffi-
cients in logarithmic scale.  
In order to test the feasibility of applying 

proposed wavelet based damage identification 
method to experimental data (mode shape), 
experimental modal analysis is carried out on 
a simple steel beam and a stiffened panel with 
free-free boundary condition. This is particu-
larly necessary because the experimentally 
obtained mode shape is distorted with noise. 
Hence the effectiveness of the method with 
noisy mode shape as input can be investigated.  
Three dimensional plots were clearly able to 
locate damage by increase in amplitude coef-
ficients at the damage location for damage 
level. By plots conclude that this wavelet 
based damage identification method strongly 
depends on the measurement methods used to 
acquire spatial data, the accuracy and the 
measurement noise. This method is particu-
larly suitable, when the vibration data is ob-
tained from laser vibrometer or optic fiber 
sensor (non-contact type) which provides data 
with high accuracy and high spatial density. 
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