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Abstract: A new system identification (SI) method based on Transfer Matrix (TM) concept is 
proposed here to identify structural stiffness. Transfer matrices based on lumped mass and the 
more accurate consistent mass models are used here, based on displacement measurements in the 
time domain. The consistent mass based TM is derived from the dynamic stiffness matrix of a 
beam element. The state vector at a location is the sum of the internal and external contributions 
of displacements, forces and moments at that point - when multiplied with the (TM), we obtain 
the adjacent state vectors. The method of identification proposed here involves predicting the 
displacements at certain locations using the TM, and comparing them with the measured 
displacements at those locations. The mean square deviations between the measured and 
predicted responses at all locations are minimized using an optimization algorithm, and the 
optimization variables are the unknown stiffness parameters in the TM. A non-classical heuristic 
Particle Swarm Optimization algorithm (PSO) is used, since it is especially suited for global 
search.  Different strategies for calculating the initial state vector, as well as two identification 
processes viz., simultaneous and successive methods, are discussed. Numerical simulations are 
carried out on four examples ranging from a simple spring mass system to a nine member framed 
structure. The speed and accuracy of identification using this method are good. One main 
advantage of this method is that it can be applied at any portion of the structure to identify the 
local parameters in that zone without the need to model the entire global structure. 
 
Keywords: Structural identification; transfer matrix; simultaneous identification; successive ide- 

 ntification; particle swarm optimization. 
 

                                                                                                                                                       
* Corresponding author; e-mail: skris@iitm.ac.in      Received 19 December 2011 
© 2012 Chaoyang University of Technology, ISSN 1727-2394                  Revised 6 February 2012 
                                                            Accepted 8 February 2012 

1. Introduction 
 

System Identification (SI) is usually an 
inverse process by which structural 
parameters are identified from input 
excitation and its output responses. SI plays 
an important role in updating the model so 
as to better predict structural response. For 
structural control applications, identification 
of actual parameters is also essential for 
effective control.  

 

 
It can be used for structural health 

monitoring and damage assessment in a 
non-destructive way by tracking changes in 
structural parameters such as buildings and 
bridges, in assessment of these structures 
after natural disasters, and in evaluation of 
effectiveness of retrofitting/repair measures. 
From computational point of view, structural 
identification presents a challenging prob- 
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lem particularly when the system involves a 
large number of unknown parameters. 
Besides accuracy and efficiency, robustness 
is an important issue for selecting the 
identification strategy. Research interest in 
this subject area has increased steadily over 
the years, mainly due to rapid enhancement 
in computer power and development in new 
algorithms. A review of up-to-date literature 
is presented here as per the following frame 
work. a) existing SI methods. b) time 
domain methods (classical and non-classical 
approaches) c)  application of Particle 
swarm and Genetic Algorithm, d) 
substructure and global approaches, e) 
Transfer Matrix method and its relation to 
substructure method. All these areas are 
relevant to the proposed topic of this paper, 
which is a non-classical time domain 
method with some features of substructure 
identification. 

SI algorithms are classified as static or 
dynamic (i.e., vibration based) [1,2]. Due to 
the non-uniqueness of identification and the 
difficulty in measuring static displacements 
under small loads, vibration based methods 
are usually preferred.  Hence either 
frequency domain or time domain SI is 
widely used. Frequency domain SI 
algorithms have been developed more 
widely in last three decades, since the data 
are conveniently transformed from time 
domain to natural frequencies, mode shapes 
and frequency response functions. Maia and 
Silva [3] have presented some modal 
analysis techniques for identification. Ma 
and Eric [4] identified damage on structures 
like cantilever, ten story steel frame and 
plates by comparing natural frequencies of 
the undamaged and damaged structures. 
Jinhee [5] identified cracks in a cantilever 
using vibration amplitudes in the frequency 
domain. But comparison of limited sets of 
modal parameters reduces the accuracy of 
identification of complex structures in the 
frequency domain. 

A few time domain methods are reviewed 

here. They use the measured accelerations or 
velocities or displacements of the structure 
directly without  transformation to the 
frequency domain. Time domain algorithms 
are also categorized as based on Classical or 
Non-classical methods of convergence, for 
minimizing the errors between the measured 
responses and predicted responses from an 
analytical model which is iteratively updated. 
A few classical methods are presented here 
as follows. Ghanem and Shinozuka [6] have 
reported a few classical SI techniques such 
as Recursive Least Square method (RLS), 
Extended Kalman Filter method (EKF), 
maximum likelihood method, recursive 
instrumental variable. Petsounis and Fassois 
[7] have compared some stochastic 
algorithms like Prediction Error Method 
(PEM), two stage LS method, Instrumental 
Variable method with a few deterministic 
algorithms like Prony method, Eigen system 
Realization Algorithm (ERA), LS methods 
based on identification results of a linear 
two-dimensional model of one-half of a 
railway structure.  Studies such as Caravani 
et al. [8], Masaru and Etsuro [9], Shinozuka 
et al. [10] used some of the above classical 
methods. Lus et al. [11] and Angelis et al. 
[12] identified modal damping and structural 
parameters using  a two stage approach of  
OKID (Observer Kalman-Filter 
Identification)  and ERA method. In 
general, the classical methods such as above 
work appear to well when the number of 
unknowns is few and measurement noise 
level is negligible. They are also 
computationally intensive. 

The non-classical methods in time domain 
identification are briefly discussed next. The 
shortcomings of the classical methods are a) 
they require the calculation of first and 
higher derivatives of its objective function, 
and b) there is a possibility of converging to 
the local optima and c) some classical 
methods require a good initial guess of the 
unknown parameters to start the iterations. 
When the system involves a large number of 
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unknown parameters, non-classical 
algorithms such as Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) 
algorithm produce better results in 
minimizing the deviation between measured 
and predicted values. A non-classical 
method is usually based on heuristic 
concepts such as Evolutionary principle (GA) 
or Behavioral principle (PSO), without the 
requirement to calculate any derivatives. 
PSO was developed more than a decade 
later than GA and proved to be simpler, 
more accurate and faster. Kennedy and 
Eberhart [13] developed the PSO algorithm 
for optimization of problems with many 
variables. Mouser and Dunn [14] have 
compared performance of PSO and GA, 
proved that PSO is much superior to GA and 
easy to configure. Qie et al [15] used PSO 
and GA for parameter estimation and proved 
that PSO is better than GA. Perez and 
Behdinan [16] also used PSO for a structural 
identification problem of 72 bar truss with 
good accuracy. Koh et al [17] identified a 
maximum of 52 structural parameters using  
GA with a hybrid local search method. GA 
directs the search toward the global optima 
and the local search improves the 
convergence. Begambre and Laier [18] 
detected damage in a truss and a free-free 
beam using Particle Swarm Optimization 
(PSO) with a simplex hybrid strategy. 
Hesheng et al [19] applied Differential 
Evolution (DE) to a 20 DOF system and 
observed improvements when compared 
with GA and PSO. 

A recent improvement in time domain 
identification is the substructure approach, 
as opposed to identifying the complete 
global model. Koh et al. [20,21]  explained 
a divide-and-conquer strategy based on 
sub-structure approach. The whole structure 
is divided into many small sub-structures, 
and identification is done on only one 
substructure at a time; thus the number of 
unknowns involved is fewer and hence the 
numerical accuracy is better than the global 

approach. Sandesh and Shankar [22] 
identified crack damage in a thin plate with 
the sub-structure approach using GA and 
PSO hybrids. Tee et al. [23] identified 
damage in a 50 DOF structure with 
sub-structure approach using Condensed 
Model Identification and Recovery (CMIR) 
method based on OKID/ERA method and 
GA where fixed sensor and repositioned 
sensor approaches are adopted. 

A novel Transfer Matrix method of 
system identification is proposed here as an 
alternative to the time domain method using 
substructures i.e., it is a local method of 
identification where only the local properties 
need to be known. Transfer matrices and 
state vectors are introduced here for system 
identification which are independent of the 
number of DOF of the global structure. 
Hence there is a significant saving in 
computational effort using this method.  
Transfer matrix method of SI can be applied 
at a point anywhere in the structure once the 
initial state vector at a nearby point is 
known. 

A brief review of Transfer matrices, their 
origins and application is presented here. 
Steidel [24] derived the transfer matrix for a 
spring mass system with one DOF and a 
beam element. The transfer matrix for the 
beam element is derived by assuming that 
the mass is concentrated only at end nodes 
and the beam element is mass less 
throughout its length. Using the transfer 
matrix natural frequencies of a two DOF 
spring mass system and a cantilever with 
end mass are determined. Meirovitch [25] 
determined the natural frequencies and 
mode shapes of a non-uniform 
pinned-pinned beam with ten elements using 
transfer matrix by assuming the lumped 
mass at the end nodes of the beam element.  
Nandakumar and Shankar [26] used a 
transfer matrix and state vectors for the first 
time for an inverse problem in the time 
domain and identified stiffness of a 
cantilever by assuming mass is concentrated 
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at the end nodes, however this 
approximation results in the agreement of 
only the first few natural frequencies. Khiem 
and Lien [27] carried out natural frequency 
analysis on a beam with arbitrary number of 
cracks using transfer matrix method. Tuma 
and Cheng [28] derived an improved 
transfer matrix for beam element with an 
assumption of the mass of the beam element 
is concentrated at its mass center and the 
element is mass less at both sides of the 
mass center. It is found that there is a good 
improvement in natural frequencies when 
the above suggestion is adopted. But still 
there is a considerable error in natural 
frequencies at higher modes. Walter and 
Walter [29] explained the derivation of 
transfer matrix from stiffness matrix for 
static applications. Based on this, a new 
transfer matrix is derived from dynamic 
stiffness matrix (using consistent mass 
matrix) of the beam element which results 
the natural frequencies of the structure are 
very close to its exact value. 

In this paper, both lumped mass transfer 
matrix and consistent mass transfer matrix 
are used for structural system identification. 
Based on the author’s literature survey of 
existing SI methods, no studies using 
transfer matrix and state vectors for inverse 
problems have been found. Hence in this 
paper a new method based on the Transfer 
matrix and State vectors is proposed to 
identify stiffnesses of the structure. 

 
2. Transfer matrices and state vectors 
 

A state vector at a point in the structure 
contains the output responses such as 
displacement, and rotation (angular 
displacement) and the net forces and 
moments, which is the summation of 
internal and external contributions.  The 
Transfer matrix (TM) is a square matrix 
which contains the structural parameters 
such as mass, stiffness and also the circular 
frequency of vibration. When the state 

vector at one location is multiplied by the 
TM of an element of length l, we obtain the 
state vector at the new location distance l 
from the starting vector. 
 
2.1. Spring-mass system 
 

The TM of simple spring mass system is 
discussed in [24] and is briefly presented 
here (see Figure 1). The spring mass system 
is divided into the spring (a-b) and mass 
(b-c). The plane ‘c’ is considered at the free 
end of the mass, the plane ‘a’ is considered 
at the fixed end of the spring and the plane 
‘b’ is considered at the connecting point of 
mass and spring. The system is excited by a 
harmonic force F(t)with a circular frequency 
of  at the plane c. The mass vibrates with a 
displacement xc(t). If k and m are the 
stiffness and mass of the spring, the state 
vector at plane c is given by {Xc} = {Xci} + 
{Xce} where {Xci} = {xc(t); fc(t)}T the 
internal component vector and {Xce} = {0; 
F(t) }T is external component vector. The 
transfer matrix which transfers the state 
vector from the plane ‘c’ to plane ‘b’ is 
known as Point transfer matrix [M] and 
obtained by applying the Newton's second 
law on the mass element. 

 
Figure 1. Spring mass system 

 
Displacement at plane b )()( txtx cb     (1) 
Force at the plane b 

)()()()( tFtftxmtf ccb            (2) 
Where  is acceleration of the mass at 
the plane c, also ; 
Writing the above Eq.1 and 2 in matrix 
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form, 
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Eq.3 can be written as {Xbi}=[M]{Xc}, 
where {Xbi} is internal response vector at the 
plane b. and the point transfer matrix [M] is 
given by, 
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The transfer matrix which transfers the state 
vector from the plane ‘b’ to plane ‘a’ is 
known as field transfer matrix [K] and 
obtained by writing the static equilibrium 
equation for the spring element. 
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Writing Eq.5 and Eq.6 in matrix form 
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Eq.7 can be written as {Xai} = 
[K]{Xbi},where [K] is field transfer matrix 
which is given by 
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The overall transfer matrix which transfers 
state vector from the plane c to a can be 
obtained by substituting Eq.3 in Eq.7 
{Xai}=[K][M]{Xc}                  (9) 

{Xai}=[T]{Xc} where [T]=[K][M] is overall 
transfer matrix for the system. 
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2.2. Transfer matrix for beam elements 
 
  As explained in section.1 the transverse 
vibration of beams can be studied using 
transfer matrices. Steidel [24] and 
Meirovitch [25] derived transfer matrices for 

a beam element by assuming that the mass is 
concentrated at the two end nodes (two point 
mass representation) and the beam element 
is assumed to be mass-less throughout its 
length. There is appreciable error in 
predicting the natural frequencies of 
continuous systems using this method. Tuma 
and Cheng [28] derived an improved 
transfer matrix for a beam element with the 
assumption that the mass of the beam 
element is concentrated at its mass center 
(single point mass representation) and the 
element is mass-less on either sides of the 
mass center as shown in Figure 2 (a). It is 
found there is an improvement in the 
prediction of natural frequencies using this 
approach but there is a significant error in 
the higher frequencies. A new transfer 
matrix formulation is derived here from the 
dynamic stiffness matrix of a beam element 
based on its consistent mass matrix 
(Consistent Mass Transfer Matrix - CMTM) 
which gives more improved results. The 
single point transfer matrix and consistent 
mass transfer matrix are used in this paper 
for structural stiffness identification, and 
their derivation is very briefly discussed 
here. 
 
2.2.1. TM with single point mass 
 
The beam element with mass lumped at its 
mass center (Single point mass) is shown in 
Figure 2 (a) and the TM has been calculated 
in [28]. Let y1(t)be the vertical displacement, 
1(t)be the angular displacement, M1(t) be 
the bending moment, μ1(t) be the external 
moment,V1(t)be the shear force and F1(t)be 
the external force at the node 1. The state 
vector for the node1 is {X1} = {X1i}+{X1e} 
where {X1i} = {y1(t), 1(t), M1(t), V1(t)}T is 
internal response vector and {X1e} = {0; 0; 
μ1(t); F1(t)}Tis external force vector. The 
field transfer matrix [K] for a beam element 
shown in Figure 2 (b) of length le without 
con-sidering mass is determined first; then 
the effect of the lumped mass element is 
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considered. The responses at the node 2 of 
the beam element can be written in terms of 
the same at the node 1 as shown below. 

 
 

 
Figure 2. Beam element (a) Single point mass (b) Consistent mass 
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Where le is the length of the element, E is Young’s modulus of the beam material and I is area 
moment of inertia of the beam section. The system of Eq.11 can be written in matrix form, 
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Eq.12 can be written as {X2i} = [K]{X1}, where the field transfer matrix [K] is given by 
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The point transfer matrix [M] of the point mass can be obtained as explained in section 2.1, 
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The beam element (single point mass) shown in Figure 2 (a) is divided into three elements such 
as two mass less spring elements (2-k) and (j-1) and one mass element (k-j). The field transfer 
matrix [K’] for the half length of the element is given by substituting the element length as le/2. 
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It is assumed that state vector at node 1 is known and then the following relations can be 
obtained. 
{Xji}=[K’]{X1}; {Xki}=[M]{Xji} and {X2i}=[K’]{Xki}, hence, the state vector at the node 2 in 
terms of node 1 can be directly obtained by {X2i}=[K’][M][K’]{X1}, from this, the overall 
transfer matrix for the beam element is obtained as [T]=[K’][M][K’]. 







































EI
lm

EI
lmlm

m

EI
lm

l
EI

lmlmlm
EI
l

EI
lm

EI
l

EI
lm

EI
lm

EI
lm

EI
l

EI
lm

EI
l

EI
lm

EI
lm

l
EI

lm

T

eee

e
e

eee

eeeeee

eeeee
e

e

48
1

82

9616
1

42

2)(384)(6416
1

8

6)(23042)(3849648
1

][

32222
2

4232222

2

2

52

2

423222

3

2

622

2

524232










               

(16)

 
Usually the subscript i is omitted from the state vector representations and the form {X2}=[T] {X1} 
is frequently used in literature. 
 
2.2.2. Consistent mass transfer matrix (CMTM) 
 

The CMTM is newly derived in this paper and used for accurate identification of beams and 
frames. The characteristic equation of a linear dynamic system is given by 

)}({)}(]{[)}(]{[)}(]{[ tftxKtxCtxM                                         (17) 
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Where [M] is consistent mass matrix, [C] is damping matrix, [K] is stiffness matrix, )(tx , )(tx , 
x(t)and f(t) are acceleration, velocity, displacement and external force vectors respectively. For 
lightly damped structures/materials, the damping force is negligible when compared with other 
forces. Hence, 

)}({)}(]{[)}(]{[ tftxKtxM                                                   (18) 
also )()( 2 txtx  where  is frequency of excitation in r/s. Substitute in Eq.18, 

)}({)}(]){[]([ 2 tftxMK                                                    (19) 
Let [D] = [K] - 2[M] called dynamic stiffness matrix. The Eq.19 becomes, 
[D]{x(t)}={f(t)}                                                             (20) 

Consider an one dimensional Euler-Bernoulli beam element with two end nodes as shown in 
Figure 2 (b), the elemental stiffness matrix is 
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and elemental consistent mass matrix is 
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Since the beam element is in dynamic equilibrium, the Eq.20. is written as, 
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Where [D]=[K] - 2[M]. The state vector at node 1 {X1i} = {y1(t); 1(t); M1(t); V1(t)}T is known 
which can be obtained by rearranging the force and displacement vectors of Eq.21. Since the 
external forces are zero, {X1}={X1i}. 

Let 
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Rearranging the Eq.22, 
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Where [I] is an identity matrix of size 2 × 2 and [0] is null matrix of size 2 × 2. 
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From the Eq.24 the consistent mass transfer matrix (CMTM) is obtained 























]0[][
][][

][][
]0[][

][
1

C
IA

IE
B

T
                                                 

(25)
 

The elements of the CMTM are given below. 
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2.3. Transfer matrix and state vector for 

the global structure 
 

Calculation of state vector at any node of 
a global structure, from one known initial 
state vector at a given node using transfer 
matrices is illustrated here. For example, a 
cantilever is considered with ‘n’ nodes 
subjected to arbitrary point loading as 
shown in Figure 3. 
  It is assumed that the state vector at the 
node 1is known (the initial state vector 

{X1}). The state vectors at other nodes can 
be calculated by successive multiplication of 
elemental transfer matrices. Let {X1i} and 
{X1e} be the internal response vector and 
external force vector respectively at node 1, 
[T1,2] is transfer matrix which transfers the 
state vector {X1}={X1i}+{X1e}into internal 
response vector {X2i} at node 2. For the first 
element formed by nodes 1 and 2, the 
relation between state vectors and transfer 
matrix can be written as follows. 

 
Figure 3. Cantilever with arbitrary point loading 

 
}){}]({[}{ 112,12 eii XXTX          (26) 

In general, for (n-1)th element, the state vector at the node n can be obtained as follows. 
}){}]({[}{ )1()1(,1 eninnnni XXTX          (27) 

From the above equations, the internal response vector {Xni} at the node ‘n’ can be calculated 
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from initial state vector {X1i} and external force vectors at all nodes as follows. 
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For free vibration of cantilever i.e without any external forces, as a special case the Eq.28 can be 
deduced as  
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In the above equation, 
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n TT  is known as global 

transfer matrix of the structure which is 
obtained by progressive pre-multiplication 
of elemental transfer matrices. 
 
3. Comparison of various TM’s for beam 

elements 
 
  The accuracy of TM’s based on two point 
lumped mass method, single point lumped 
mass method and consistent mass are 
compared by checking the accuracy of the 
natural frequencies predicted by them, and 
verifying these with the analytically predict- 
 

ed natural frequency based on distributed 
mass (continuous system) model.  A steel 
cantilever of size 24.6 × 5.7 × 350 mm, 
flexural rigidity (EI) 75.93 N.m2 and fixed at 
its one end as shown in Figure 3. For free 
vibration of cantilever the external force 
vector is zero, the global transfer matrix and 
the relation between free end to fixed end 
state vectors can be obtained from the Eq.29. 
Since no external force is applied, the shear 
force and bending moment at the free end is 
zero. The displacement and rotation 
responses at the fixed end are zero. The 
forcing and boundary conditions are applied 
on the state vectors. Then Eq.29 becomes 

 
 
 

 
Table 1. Natural frequencies of cantilever in Hz 

 

Exact Values Two point Lumped 
mass TM 

Single point Lumped 
mass TM 

Consistent 
mass TM 

38.33 
240.21 
672.60 

1318.02 

33.53 
212.24 
599.14 
1179.12 

38.51 
244.17 
690.39 
1361.97 

38.33 
240.24 
673.29 

1322.89 
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Figure 4. Variation of percentage of error in natural frequencies 
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The Eq.30 consists of four equations, out of 
which first two equations can be written as 
shown in Eq.31.  
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The Eq.32 is solved and gives natural 
frequencies of the system. The calculated 
natural frequencies for the first four modes 
by different methods are tabulated in Hz in 
Table 1 and the error variation for different 
types of TM is shown in Figure 4. From the 
graph, it is clearly seen that the natural 
frequencies determined by consistent mass 
transfer matrix (CMTM) have errors close to 
zero. The error is largest for the two point 
mass TM and moderate for the single point 

mass TM. Hence it is concluded that the 
consistent mass transfer matrix is much 
superior in accuracy to other transfer 
matrices in the literature. 
 
4. Parameter identification by transfer 

matrix method  
 

The proposed TM algorithm is used for 
identifying the unknown stiffnesses of the 
structure assuming the masses are known, 
with negligible damping. The structure is 
excited at a node with a known harmonic 
force, and the output responses (acceleration 
responses) are measured at selected nodes 
and converted into displacement responses. 
The initial state vector must be known at 
one location, preferably near the zone where 
the stiffness has to be identified. Various 
strategies of estimating the initial state 
vector is discussed in the numerical 
examples given in later sections in this paper. 
Starting from the known state vector it is 
possible to predict the displacements at any 
location in the structure using successive 
multiplication of the TM’s, as discussed in 
section 2.3. The mean square deviation 
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between the predicted and measured 
displacements at a few locations in the 
structure can be minimized by Particle 
Swarm Optimization algorithm (PSO) [16]; 
with the unknown elemental stiffness in the 
TM as the optimization variables. The TM 
method of identification can be applied 
using complete or incomplete set of 
measurements. “Complete measurement” 
implies measurement of translational 
responses at all nodes of the structure (as 
opposed to a few points in “incomplete 
measurement”). It is obvious that the 
numerical accuracy of identification is better 
with the complete measurement, but due to 
requirement of large number of sensors it 
may not be always practical. It is found from 
numerical examples in the later section that 
the TM method is capable of satisfactorily 
identifying parameters from incomplete 
measurements.  The numerical accuracy of 
identified parameters is reduced, however it 
is within acceptable bounds; there is also the 
obvious advantage of speed in this method 
since identification is carried out in a small 
locality. 
 
4.1. Simultaneous structural dentification 
 

The entire set of unknown parameters in 
the structure (or locality near the starting 
vector) is estimated simultaneously. The 
mean squared error function between the 
measured and predicted responses for 
simultaneous SI is given by 
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where um(i,j) and ue(i, j) are measured and 
estimated displacement responses 
respectively  at ith measurement location 
and  j th time step. M is the number of 
measurement locations and L is the number 
of time steps. The mean squared error 
function is minimized by optimization 
algorithm. Since all the unknown elemental 

stiffnesses in the zone of interest are 
identified simultaneously, more 
computational effort is required and there is 
a possibility of increased difficulty in 
convergence to optimal solution. This 
method may be suitable for small structures 
with a set of fewer unknowns. This strategy 
can be implemented using complete and 
incomplete measurements. 
 
4.2. Successive structural identification 
 

Here the stiffness of only one (or a few 
elements) are identified at a time. These 
elements lie between the initial state vector 
at one node and the nearest predicted state 
vector at another node. The optimization 
algorithm minimizes the error function at 
only one measurement location at a time. 
The error function is obtained from Eq.33 
by substituting M=1and is shown in Eq.34 
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Then the cycle is repeated for all the pairs of 
adjacent measured responses and identify all 
unknown parameters successively. Since the 
number of unknown parameters to be 
identified is one or few for one identification 
cycle, the convergence is very fast, the 
overall computational time is very small 
when compared with simultaneous strategy. 
This strategy is promising in the 
identification of local parameters in a 
structural member. There is of course the 
question of error propagation in successive 
identification, however this appears to be 
balanced out by the superior accuracy per 
parameter because of smaller size of the 
problem. 
 
5. Particle swarm optimization (PSO) 

algorithm 
 

Particle swarm optimization (PSO) is a 
population based stochastic optimization 
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technique developed by Eberhart and 
Kennedy [13]. It is based on the social 
behavior reflected in flock of birds, bees, 
and fish that adjust their physical 
movements to avoid predators, and to seek 
the best food sources. It is a population 
based algorithm, in which each particle 
(unknown stiffnesses or flexural rigidities) is 
initially positioned randomly over the search 
space and the number of particles is known 
as swarm size. The fitness values are 
calculated using the error function for each 
particle in the swarm and the particles are 
ranked according to their fitness values. 
Particle wise best is known as particle best 
(Pbest,k

i) is selected and is updated at each 
iteration at each particle. Pbest,k

i means till kth 
iteration the best in ith particle.  After the 
update of all particle best at every iteration, 
best of the swarm is called global best 
particle till kth iteration (Pgbest,k) is selected 
and is updated. Each particle is attracted 
toward the best solution found by the 
particle's neighborhood and the best solution 
found by the particle. The position of each 
particle is adjusted by a stochastic velocity 
vector which is updated based on the 
particle best, as well as the best of the 
swarm is called as Global best as shown in 
Eq.35 and Eq.36.If xk

i and vk
i are the 

position and velocity of ith particle at kth 
iteration, then the position and velocity of 
the same particle at the next iteration can be 
updated as follows 
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where w is linearly varying inertia weight 
which varies from 0.9 to 0.4 as shown in 
Eq.37, c1 is cognitive parameter, c2 is social 
parameter both are equal to 2, r1and r2 are 
random number in the range of [0; 1][16]. 

N
kw )1(5.09.0 


       

(37)
 

Where k is the current iteration and N is the 

total number of iterations. The updated 
positions of the particles form the new 
swarm for the next iteration and the 
procedure is repeated until the convergence 
or total number of iterations is completed. 
PSO records the past history in each particle 
(Pbest) as well as swarm (Pgbest) in each 
iteration. Linearly varying inertia term 
escapes the algorithm from the convergence 
on local minima and directs toward global 
minima. The parameters of a Lorenz chaotic 
system were estimated using PSO [15]. It 
was found that PSO converges to the exact 
value with a high population size and was 
more computationally efficient than GA. 
Likewise a 10-dof structural dynamic model 
was identified using frequency response 
functions by GA and PSO, the PSO was 
found to be superior to the former in 
accuracy [14]. Hence the PSO is the good 
choice as minimizing tool for this SI 
problem. 
 
5.1. Application of PSO to the current 

problem 
 

PSO is a heuristic method and superior to 
classical optimization methods because of 
its ability to find the global optima. Hence, 
in this paper PSO is used as the optimizing 
algorithm. The sequence of operations 
involved in this problem is illustrated in 
Figure 5 (a). The objective function here is 
to minimize the difference between 
experimentally measured responses and the 
predicted responses using TM applied to a 
finite element model.  The optimization 
variables are the unknown stiffness 
parameters. Each stiffness variable is given 
a search range of ±50% of its nominal value. 
Typically 50 particles with 100 iterations are 
used by PSO to solve the unknown 
stiffnesses. The detailed flowchart which 
illustrates the PSO based TM algorithm is 
shown in Figure 5 (b). 
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Figure 5. (a). Sequence of operations 

 

 
Figure 5. (b). Block diagram for PSO based TM method 
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6. Numerical examples and results 
 

The TM method is applied on four 
structures with known forcing and boundary 
conditions; the last example involves the 
identification of one member of a nine 
member framed structure where the strategy 
of finding the initial state vector is based on 
strain gauge measurements rather than 
known boundary conditions. All four are 
numerically simulated experiments.  The 
structure is excited by a harmonic force at a 
node and the acceleration responses are 
measured at selected nodes and converted to 
displacement responses by numerical 
integration. In all examples, measured 
responses are numerically simulated using 
Newmark’s constant acceleration method. 
The unknown stiffness parameters are 
searched by PSO algorithm within the 
search range of ±50% of the nominal 
stiffness values provided by the user. The 
displacement responses at all measured 
nodes are predicted using TM from the 
initial state vector. The measured and 
predicted responses are compared and the 
mean squared error is calculated using Eq.33 
or Eq.34 and is the objective function which 
must be minimized with the unknown 
elemental stiffnesses in the TM as the 
optimization variables in PSO. In order to 
simulate the effect of noise in experiments 
and also modeling errors, Gaussian random 
noise with 5% standard deviation and zero 
mean is added to the measured signals, as is 
usual in the literature in this area. 
 
6.1. Example-1: 10 DOF lumped mass 

system 
 

A 10-DOF lumped mass system is first 
considered which was used by Koh et al.[20] 
with the following parameters as shown in 
Figure 6. Masses at nodes are m1 = 600 kg; 
m2 = m3 = m4 = m5 =400 kg; m6 = m7 = m8 = 
m9= m10 = 300 kg.  Stiffness of springs are 
k1 = 700 kN/m; k2= k3 = 650 kN/m; k4 = k5 = 

600 kN/m; k6 = k7 = k8 = 400 kN/m; and k9 
=k10 = 300 kN/m. The first natural frequency 
is 1Hz (1= 6.28r/s). Rayleigh damping is 
adopted with the modal damping ratio of 1%. 
The system is excited at the tenth mass level 
by a sinusoidal input force of F10(t)=10sin 
(5.8t)N. Numerically simulated acceleration 
responses are obtained for 3s at a time step 
of 0.001s using Newmark's constant 
acceleration method and are converted into 
displacement responses. The node 10 is 
chosen for forming initial state vector which 
is given by {X10} = {x10(t), F10(t)}T. where 
x10(t) is the displacement response and F10(t) 
is the external force, both can be measured 
using accelerometer and force transducer 
respectively. Both simultaneous and 
successive strategies of the TM algorithm 
are applied on this simple structure with 
complete and incomplete measurements of 
responses at selected measurement locations 
(nodes). 
 

 
Figure 6. Ten DOF lumped mass system 
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6.1.1. Simultaneous identification 
 

Responses are measured at all 10 DOF 
(complete measurement set). The10 
unknown stiffnesses are solved 
simultaneously by the PSO algorithm with a 
swarm size of 50. Displacement responses at 
all 10 DOF are predicted from the initial 
state vector {X10} using the transfer 
matrices according to the Eq.28. The mean 
squared error between measured and 
predicted responses at all DOF and each 
time step is calculated using Eq.33.and is 
minimized. Since all stiffnesses are 
identified simultaneously convergence has 
taken place in 150 iterations and total 
computational time taken is 17.93s. 

It is obvious that the complete 
measurement of responses at all DOF 
identifies parameters with very good 
numerical accuracy, but it is impractical due 
to large number of sensors. Hence the 

algorithm should have the capability to 
identify parameters with incomplete 
measurement of responses. The 
simultaneous SI strategy is also applied on 
the lumped mass system with responses 
measured at nodes 1, 3, 5, 7, 9 and 10 only. 
The mean squared error is minimized by 
PSO only at the above nodes. Since 
simultaneous identification has 10 unknown 
parameters to solve, it was necessary to have 
at least 6 displacement responses for good 
convergence of solution. About 100 
iterations were required for convergence, 
which took a computational time of 12s (less 
than that of the complete measurement case). 
The errors are significantly higher, but fewer 
sensors are needed and computational effort 
is less. The percentage of error in identified 
values of stiffness with zero and 5% noise 
level, from complete and incomplete 
measurements are shown in Table 2. 
 

 
Table 2. Percentage of error in identified values of stiffnesses of 10 DOF lumped mass system by 

simultaneous SI 
 

Element % of error 
 Complete measurement Incomplete measurement 
 Without Noise With 5% Noise Without Noise With 5% Noise 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-0.08 
-0.02 
-0.05 
-0.03 
-0.12 
0.04 
-0.07 
-0.29 
-0.97 
3.87 

-0.03 
0.21 
-0.63 
0.64 
0.56 
-0.47 
-0.33 
-0.45 
-0.19 
-3.29 

-0.92 
0.71 
-2.68 
7.10 
-8.81 
6.76 
-9.27 
-6.31 
6.11 
0.19 

-0.11 
-3.59 
4.13 
-4.52 
4.01 
-7.19 
8.08 
-9.47 
11.68 
-5.25 

Mean absolute 
error 

0.55 0.68 4.89 5.80 

 
6.1.2. Successive identification 
 

This strategy is tested with both complete 
and incomplete response measurements. 
First with complete set of measurements, al- 

 
 
 
gorithm starts from where the initial state 
vector {X10} is formed. The displacement 
response at the node 9 is first predicted 
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using Eq.38 and stiffness k10 evaluated. 
}]{[}{ 109,109 XTX i         (38) 

PSO was used with a swarm size of 50, 
30 iterations for each step of identification. 
In next cycle {X9} becomes known state 
vector which is used for identification of 
stiffness k9. Thus the identification cycle is 
repeated successively measured responses 
until all the parameters are identified. For all 
ten identification cycle 300 iterations are 
required but takes the computational time is 
only 3.95s since only one element is solved 
at a time. This algorithm is suitable for large 
structures also. 
Next, the successive SI is also tested with 
incomplete set of measurements of 
responses measured at the nodes 3, 6 and 10 
only. From the initial state vector {X10}, the 
state vector at the next nearest measured 
location (i.e. node 6) {X6} is predicted by 
taking stiffnesses k7, k8, k9 and k10 as the 
unknown parameters and using global 
transfer matrix for the sub-structure (6-10) 
of lumped mass system using Eq.29. The 
mean squared error between measured and 
predicted responses at the node 6 is 

minimized by PSO with parameters set in 
the complete measurement case. This cycle 
is repeated for the sub-structures (3-6) and 
(0-3) to identify all the stiffnesses. The total 
number of iterations would be 90 but the 
time taken is only 1.58s due to only three 
measurements/cycles. The percentage of 
error in identified values of stiffness from 
complete and incomplete measurements is 
shown in Table 3. The successive 
identification method with incomplete 
measurement (which requires the smallest 
number of sensors and computationally fast) 
has an error of about 3.4% compared to 
4.89% for simultaneous identification. It is 
clear that the errors can be reduced to 0.3% 
when using complete set of measurements 
but it may be impractical with a large 
number of sensors. Thus the er rors 
produced by successive identification with 
incomplete measurements are within a 
reasonable range, especially when compared 
to other methods of SI (discussed in the next 
section).  

The following numerical examples use 
only successive identification strategy. 

 
Table 3. Percentage of error in identified values of stiffnesses of 10 DOF lumped mass system by 

successive SI 
 

Element % of error 
 Complete measurement Incomplete measurement 
 Without Noise With 5% Noise Without Noise With 5% Noise 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-0.29 
-0.16 
-0.28 
 0.46 
 0.13 
-0.73 
-0.14 
-0.06 
-0.45 
-0.44 

0.69 
0.13 
-0.15 
 0.83 
 0.41 
-0.31 
-0.44 
-0.20 
-1.46 
0.93 

0.80 
1.39 
2.34 
1.16 
7.62 
-3.35 
0.92 
-7.73 
5.84 
2.76 

1.76 
6.43 
-5.13 
-0.55 
-0.96 
1.24 
-7.42 
16.88 
2.95 
-7.95 

Mean absolute 
error 

0.31 0.56 3.39 5.13 
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6.1.3. Comparison of results with other 
time domain methods 

 
Koh et al.[20] identified stiffnesses for 

this problem by using the time domain CSI 
method as explained in Section.1 from three 
acceleration responses measured at 2nd, 5th 
and 10th nodes. GA was used for searching 
the parameters with population size of 50 
and total number of generations was 10,000; 
stiffnesses were identified with a mean error 
of 12.5% without noise. It took a total 
computational time of 220min. Even taking 
into account the computer hardware, the 
error is too large compared to the TM 
method. The TM algorithm with successive 
identification strategy with known input 
force identifies stiffnesses from acceleration 
measurements at 3rd, 6th and 10th nodes only 
with an error of 5.13% with 5% I/O noise 
level. It takes 30 trials for each measurement 
(total 90 trials) and a computational time of 
1.58s. It shows that this algorithm gives 
results with improved accuracy at less 
computational effort from noisy 
measurement. OKID/ERA [12], another 
time domain algorithm proposed by Angelis 
et al. which requires complete 
measurements was applied to this example 
with the same forcing conditions and time 
step. The modal damping assumed is 1% of 
critical damping for first two modes. In 
noise free condition with complete 
measurement the stiffnesses were identified 
with 2.14% mean error which required a 
time of 97.56s. In comparison the TM 
algorithm with successive strategy produced 
results with accuracy of 0.31% (Table 3) 
from complete measurements without noise 
and the time was 3.95s. Hence there appears 
to be a strong case for the superiority of the 
TM method. 
 
6.2. Example-2: fixed-fixed beam 
 

A steel beam of Young’s modulus 200GPa, 
length 350mm with uniform cross section, 

width 24.6mm and thickness 5.7mm, fixed 
at both the ends, the flexural rigidity (EI) of 
each element is 75.93 N.m2 with first natural 
frequency of 243.93Hz ( 1=1532.6r/s) is 
discretized into eight elements as shown in 
Figure 7.  The unknown elemental flexural 
rigidities EI (where E is the modulus of 
elasticity and I the moment of inertia of the 
section) have to be identified. It may be 
noted that although a uniform cross-section 
beam is assumed, the algorithm makes no 
assumption of uniform flexural rigidity 
during identification. The beam is excited by 
a sinusoidal force of 1.5sin (1250t)N at its 
midpoint node, the output acceleration 
responses are simulated numerically at many 
locations with a time step of 0.001s for 3s 
using Newmark’s constant acceleration 
method. The damping effect is taken into 
account by adopting Rayleigh damping with 
the modal damping ratio of 1%.The 
translational and rotational responses at both 
fixed ends are zero due to clamped boundary 
condition, the support reactions of the fixed 
support is found by principle of 
superposition technique, hence, all the 
elements of state vector at any fixed end is 
known. The initial state vector{X9} = {0, 0, 
M9(t), V9(t)}T is formed at the fixed end 
(node 9)where M9(t)is the bending moment 
and V9(t)is the shear force at the right fixed 
end, calculated using statically determinate 
force/moment equilibrium conditions. The 
parameters are identified by successive 
identification strategy of TM algorithm 
using single point lumped mass TM and 
consistent mass TM from both complete and 
incomplete measurements. Only 
translational acceleration responses are 
measured at all nodes for complete 
measurement. The TM algorithm starts from 
right end (node 9) and predicts the 
displacement responses at the node 8 and 
solves for the EI value in-between. The 
mean squared error is calculated between 
measured and predicted responses at the 
node 8 and is minimized by PSO with 
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swarm size 50and linearly varying inertia 
weight (0.9-0.4) is used for 50 iterations at 
each parameter identification cycle. The 
identification cycle is repeated for other 
elements. The total computational time is 
5.48s for complete measurement. The 
percentage error in identified EI values by 
both single point lumped mass TM and 
consistent mass TM from complete 
measurements are tabulated in Table 4. Then 
the parameters are identified with 
translational acceleration responses 
measured at nodes 2, 5 and 7 only. The 
parameters are identified successively by 
dividing the beam into four sub-structures 
such as (7-9), (5-7), (2-5) and (1-2) starting 

from node 9. Now the total time requirement 
is reduced to 3.12s at the same time the 
accuracy of the identified results has not 
reduced significantly. The percentage of 
error in identified EI values by both single 
point lumped mass TM and consistent mass 
TM from incomplete measurements are 
tabulated in the Table 5. The percentage of 
error in identification using lumped mass 
TM is 2.36% with complete measurement 
and 8.34% with incomplete measurement. 
The same is 2% with complete measurement 
and 3.13% with incomplete measurement 
when CMTM is used. In both the cases 
CMTM produced more accurate results than 
single point lumped mass TM. 

 
 

 
Figure 7. Beam with fixed fixed end 

 
Table 4. Percentage of error in identified values of EI of fixed beam from complete measurement 

 

Element % of error 
 Lumped mass TM Consistent mass TM 
 Without Noise With 5% Noise Without Noise With 5% Noise 

1 
2 
3 
4 
5 
6 
7 
8 

0.09 
-3.44 
1.33 
0.14 
0.19 
-0.09 
0.26 
0.19 

3.84 
1.40 
-1.38 
0.29 
2.43 
-6.19 
-2.81 
0.57 

0.02 
-3.29 
1.50 
0.12 
0.21 
-0.09 
0.26 
0.19 

3.01 
-7.44 
2.86 
-0.09 
-0.39 
1.73 
-0.31 
0.16 

Mean absolute 
error 

0.72 2.36 0.71 2.00 
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Table 5. Percentage of error in identified values of EI of fixed beam from incomplete measurements at 
nodes 2, 5 and 7 only 

 

Element % of error 
 Lumped mass TM Consistent mass TM 
 Without Noise With 5% Noise Without Noise With 5% Noise 

1 
2 
3 
4 
5 
6 
7 
8 

9.36 
-1.93 
-1.82 
4.43 
-2.83 
-3.87 
-7.29 
1.36 

17.45 
19.95 
-3.01 
-1.49 
4.14 
6.26 
13.04 
-1.40 

1.13 
-6.72 
-1.19 
-3.89 
5.44 
-2.59 
-0.27 
0.27 

-8.38 
0.62 
-7.49 
-2.98 
-2.57 
1.48 
1.47 
0.02 

Mean absolute 
error 

4.11 8.34 2.69 3.13 

 
 

6.3. Example-3: cantilever 
 

A cantilever which is used in section.3 is 
considered for parameter identification as 
shown in Figure 8. The natural frequencies 
of the cantilever are shown in Table 1. The 
beam is excited by a sinusoidal force of 
1.5sin(62.83t) N at its free end node. The 
damping effect is taken into account by 
adopting Rayleigh damping with the modal 
damping ratio of 1%. The translational 
accelerations are measured at all nodes; at 
the free end both translational and rotational 
response is measured to define the initial 
state vector. The bending moment at the free 
end is zero and the shear force there is equal 
to input excitation force hence, all the 
elements of state vector at free end are 
known, {X8}={y8(t); 8(t);0; F(t)}T . Note 
that y8(t) and8(t) have to be measured from 
accelerometers at the free end. From the 
initial state vector the unknown parameters 
are identified using single point lumped 
mass TM and consistent mass TM 
successively as explained in the above 
example with PSO parameters of 50 

iterations in each identification cycle; hence 
the total number of iterations is 350. The 
identification algorithm is repeated with 
translational responses measured at nodes 3, 
5, 7 and 8. The cantilever is divided into 
four substructures from nodes (1-3), (3-5), 
(5-7) and (7-8) and parameters are identified 
as explained in the Example.2. The total 
computational time is 4.8s with complete 
measurements and the computational time is 
3.12s with incomplete measurements. The 
percentage of mean absolute error of 
identified values from complete and 
incomplete measurements is tabulated in 
Table 6. The error in case of incomplete 
measurement is more (3.07%) when 
compared to that of complete measurements 
(0.83%) using CMTM, but it is not 
significantly large. When the lumped mass 
TM is used for identification, the error is 
2.66% for complete measurement case and 
5.48% for incomplete measurement case. In 
this example also it has been proved that the 
consistent mass TM is superior to single 
point lumped mass TM. 
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Figure 8. Cantilever with seven elements 

 
 
 

Table 6. Percentage of mean absolute error in identified values of EI of cantilever 
 

Measurement % of error 
Type Lumped mass TM Consistent mass TM 

 Without Noise With 5% Noise Without Noise With 5% Noise 
Complete 

Incomplete 
0.21 
2.35 

2.66 
5.48 

0.06 
1.78 

0.83 
3.07 

 
 
6.3.1. Variation of error with respect to  

variation of frequency ratio 
 

The dependence of percentage of mean 
absolute error of identified flexural rigidities 
of the cantilever on the ratio of frequency of 
excitation to the first natural frequency 
(ω/ω1) is shown in Figure 9. It is seen that 

the error slowly increases with high 
frequency ratio. This could be probably due 
to the error in neglecting the angular 
displacements at higher frequencies.  It 
may be recalled that only the translational 
displacements are predicted and matched 
against measured observations. 

 
Figure 9. Variation of error with respect to ratio of exciting and first natural frequencies 
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6.4. Example: 4 – identification of 
member stiffnesses of a frame 
structure 

 
A frame steel structure made of nine 

members is rigidly fixed at two supports as 
shown in Figure 10 (a) and it taken from 
Prashanth and Shankar [30].  Each member 
has a cross section of 12 × 6 mm and a 
flexural rigidity (EI) of 43.2 N.m2. The first 
natural frequency is 11.9 Hz. It is proposed 
to identify the stiffnesses of the top 
horizontal member 4, which has a length of 
1m. The zone of identification is indicated 
by a box in Figure 10 (a) covering 0.875m. 
The structure is excited by a sinusoidal input 
force of 10sin(62.83t) N  at the midpoint of 
the member 6.  The damping effect is taken 
into account by adopting Rayleigh damping 
with the modal damping ratio of 1%. 
Member 4 of the structure is separated is 
divided into seven elements as shown in 
Figure 10 (b). The initial state vector need 
be formed at any arbitrary node in member 4 
which requires measurement of translational 
and angular responses, as well as shear force 
and bending moment responses at that node. 
The first two responses can be measured 
directly by accelerometers and last two 
responses have to be measured by strain 
gauges i.e, by measuring strain responses 
[31] as explained below. 
 
6.4.1. Measurement of shear force and 

bending moment responses 
 

For a rectangular section beam, the 
bending strain response is given by 

EI
ytMtB

)()( 
       

(39)
 

Where, M(t) is the bending moment, EI is 
the flexural rigidity and y = h/2, h is the 
depth of the beam section. 

h
tEItM B )(2)( 


      

 (40)
 

The shear force in the section is given by 

)1(
)(8)( 2 





h

tEItV S

      
 (41)

 
Where, S is the shear strain and  is 
Poisson’s ratio. Bending moment and shear 
force could be measured through strain 
gauges. From Eq.40 and 41, it is understood 
that calculating the bending moment and 
shear force responses at the starting node 
require knowledge of the flexural rigidity 
(EI) at that portion. There are two options 
here (a) assume that the EI at the starting 
node is known in which case (b) estimate 
the EI value in the vicinity of the starting 
node using a simple shear strain test as is 
presented here. In this case strain gauges are 
fixed close to each other at A and B (Figure 
11) in a small zone; point B coincides with 
node-8 where the initial state vector is to be 
obtained. For shear measurement, 4 strain 
gauges with 900 orientation between them 
[31] could be used and it is capable of 
measuring minute strains. At a point C, in 
between A and B, a static load W=10 kN is 
applied and the corresponding shear strains 
at the sections A and B are measured (in the 
numerically simulated example, these shear 
strains are generated from a known finite 
element model of the frame).  It is assumed 
that the flexural rigidity is uniform between 
the points A and B also the self-weight of the 
portion AB is negligible compared to W. The 
change in shear force at sections A and B is 
equal to the applied load W at C. From 
Eq.41, 

)1(
)(8

2 






h

EIVV SBSA
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)(8
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(43)
 

From Eq.43 the flexural rigidity in the 
vicinity of the starting node-8 can be 
calculated; and using this value in Eq.40 and 
41 shear force and bending moment can be 
readily obtained for any strain values at 
node-8. After this initial estimation of EI, 
the strain gauge A is not necessary anymore; 
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only strain gauge B at node-8 is required to 
calculate the dynamic strains  from which 
bending moment and shear forces can be 

calculated and used in the initial state vector 
at node-8. 

 
 
 

 
 

Figure 10. (a). Global structure (b). Member of the global structure 

 
Figure 11. Strain gauge arrangement for identification of initial EI 

 
6.4.2. Successive identification 
 

The eighth node on the member 4 
inFigure 10 (b) is chosen for the initial state 
vector. The translational and angular 
displacements, bending moment and shear 
force responses are measured at that node as 
explained previously and initial state vector 
{X8} = {y8(t); 8(t); M8(t);V8(t)}T is formed . 
The translational acceleration at all other 
nodes in Figure 10 (b) are also measured. 

Using PSO with a swarm size of 50, 
successive EI values are obtained 
sequentially as mentioned in the previous 
examples. Number of iterations per cycle 
was 50; the total time of identification for 
seven EI values with complete measurement 
was 5.55s. 

The same example is identified with 
incomplete measurements also. 
Translational displacement measurements at 
nodes 1, 3, 5 and 8 are used here. The 
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structure is divided into three portions 
between nodes (1-3), (3-5) and (5-8). The SI 
algorithm starts from the initial state vector 
at the node 8 and identifies parameters of 
each portion successively. PSO used a 
swarm size of 50 and 100 iterations in each 
cycle. The total computational time is 7.56s. 
The percentage of mean absolute error in 
identified parameters is tabulated in Table 7 
for both complete and incomplete 
measurements. It is seen that the error 
incurred when using non-noisy incomplete 
measurement (3.13%) is higher than with 
the complete measurement (0.14%); but still 
in the acceptable range compared to other SI 
methods. Incomplete measurement requires 
only 5 sensors and produced results with 
acceptable error. This shows that the TM 
algorithm is suitable for the identification of 
local parameters of complex structure. It 
may be noted that Prashanth and Shankar 
[30] had identified this problem with a 2 

stage neural network trained with time 
domain acceleration signals at two nodes; 
the mean error of identification incurred in 
that method was about 2% for non-noisy 
signal but the computational effort of 
training the network and the complexity of 2 
stage network has to be contrasted with the 
simplicity of the TM method. 

Although the TM for only lumped mass 
systems and beams  are presented here, it 
could be derived for truss element, plate 
element etc., Hence the method can be 
readily extended to many type of 
engineering structures. The advantage of the 
TM method is that we can locally identify 
the damage without analyzing the entire 
structure. This method can also be used to 
detect cracks by deriving the TM for 
cracked structural elements for which finite 
element formulation is available. These are 
the some of the potential areas of future 
application of this method.

 
Table 7. Percentage of mean absolute error in identified values of EI of inner member of structure 

 

% of error 
Complete measurement Incomplete measurementa 

Without Noise With 5% Noise Without Noise With 5% Noise 
0.14 2.20 3.13 5.09 

a responses measured at nodes 1, 3, 5 and 8 only 
 

7. Conclusion 
 

A novel structural identification technique 
using transfer matrix (TM) and state vector 
has been presented.  An accurate TM based 
on consistent mass representation (CMTM) 
has been developed. In the identification 
process the initial state vector has to be 
provided, and displacement at any node in 
the structure is predicted using TM, and the 
deviations from the measure values are 
minimized with the unknown stiffnesses as 
the optimization variables. Two different 
strategies such as simultaneous and 
successive structural identification are 

investigated with complete and incomplete 
measurements of responses; the accuracy is 
studied with four numerically simulated 
experiments. The successive identification 
scheme is shown to give good accuracy 
coupled with small computational effort, 
compared with other time domain methods 
in the literature. In some examples the initial 
state vector is readily obtained from simple 
boundary conditions. But in a nine member 
frame structure, the initial state vector is 
derived from strain gauge measurements. It 
is concluded that the TM algorithm with 
successive identification using CMTM is a 
promising method for structural 
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identification. It has the ability of 
identification of local parameters in a 
portion of a big structure, without the 
requirement of knowing the global 
properties. 
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