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1. Introduction 
 

The numerical methods for second-order 
singularly perturbed differential equations 
have been extensively analysed in the last 
twenty years, whereas only few results on 
higher-order problems are found in the 
literature.  Analytical treatment for 
higher-order non-linear ordinary differential 
equations, which have important 
applications in Fluid Dynamics, are 
available in [1-5].  The classification of 
singularly perturbed higher-order problems 
depends on how the order of the original 
differential operator is affected if one sets 

0 .  When the order is reduced by one, 
we say the problem is of 
convection-diffusion type and of a 
reaction-diffusion type if the order is 
reduced by two.  Here   is a small 
positive parameter multiplying the highest 
derivative of the differential equation. 

In the literature only very few works have 
been reported for higher order problems. 

 

 
 Howes [4] has considered a class of third 

order singular perturbation problems and 
discussed existence and asymptotic 
behaviour of the solution.  An iterative 
method for higher order problems is 
discussed in [3].  A. Ramesh babu and N. 
Ramanujam [8] considered singularly 
perturbed boundary value problems for third 
and fourth order ordinary differential 
equations with discontinuous source term 
and a small positive parameter multiplying 
the highest derivative and presented a 
computational method named as an 
asymptotic finite element method for 
solving these systems. 
  In this paper, a class of third order 
singularly perturbed boundary value 
problems with suitable boundary conditions 
is considered.  The third order boundary 
value problem is transformed to 
asymptotically equivalent second order 
boundary value problem.  
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This problem is solved efficiently by 
using fitted Numerov method.  Linear and 
non-linear examples are solved to illustrate 
the method and relative errors with 

2L -norms are presented to support the 
method. 

 
2. Description of the method 
 

We consider a third order boundary value 
problem of the type 

BbyCayAay
bxayxgyyfy



) ,(  ,) ,(  ,) ,(
,  ),,()(2




 (1) 

where f(y) and g(x, y) have a sufficient 
number of continues derivatives and   is 
small positive constant.  Since   is small, 
in order to study the behavior of solutions of 
(1) as  0 , we should first examine the 
solution of the corresponding reduced 
problem 

Aaybxayxgyyf  )(  ,  ,0),()(    (2) 
Let )(0 xy be the smooth solution of this 

problem and that )(0 xy  is stable in the 
sense that  bamxyf   ,in   0))(( 2

0   for a 
positive constant m.  This function )(0 xy  is 
our candidate for an approximate solution of 
the problem (1). 

We now proceed to replace (1) with an 
asymptotically equivalent second order 
problem. 

We write the problem (1) as 
  ))(,()( 0

2 xyxgyFy          (3) 
We integrate this equation to obtain the 
corresponding second-order problem 

,) ,(  ,) ,(
,    ),,()()(2

BbyCay
bxayxHxGyFy







  (4) 

where G(x) is an antiderivative 
of ))(,( 0 xyxg . 

In order to ensure that )(0 xy  is a 
solution of the reduced equation, 

,0)())(())(,( 00  xGxyFxyxH  of the 
problem (3), we choose F and G so that 

))(()( is,  that ,0)()( 0 xyFxGaGAF   
and so )).(()())(,( 00 xyFyFxyxH   

In terms of the function H, we have (by 
assumption) that 

    b][a,in  0)(
)(,

 and  0))(,( 2
0

0
0 




 mxyf
y

xyxHxyxH
. 

If in addition, we have that 
    0, 2 


 myf
y

yxH for all values of y 

between y(b) and B, then it is known [5, part 
II]) that the problem (3) has a solution 

),( xyy  for each sufficiently small  .  
This problem exhibits two layers at x = a 
and x = b. 

Using quasilinarization equation (3) can 
be written in the form 

]1 ,0[      ; )()()(2  xxfxyxby    (5) 
with boundary conditions 

 )1(  and  )0( yy  
Assume b(x) > 0 for ]1 ,0[ x .  This 
problem exhibits two layers at x = 0 and x = 
1. 

The solution of the reduced problem is 

)(
)()(0 xb

xfxy           (6) 

which does not satisfy both the boundary 
conditions.  The solution of (5) will be of 
the form 

000)( wvyxy           (7) 
where 0v  is the left boundary layer function 
(or solution) and 0w  is the right boundary 
layer function (or solution). 

00 , wv  satisfy the differential equations 

) ,0(          ; 0)()0(
)(

02
0

2








vb

d
vd

 (8) 

) ,0(         ; 0)()1(
)(

02
0

2







 wb
d

wd  (9) 

with )0()1()0( 000 ywv    

     )1()0()1( 000 ywv    

     0)()( 00   wv  
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Where  )1(  and  xx   

Solutions of (8) and (9) are given by 
 )0(

0 )( bAev           (10) 
 )1(

0 )( bBew           (11) 
Therefore, solution of  (5) becomes 

)1(
 )1(

 
 )0(

 

0 )()(
x

b
x

b

BeAexyxy


    (12) 
where A and B are given by 

   
 




)1()0(

 )0(

00

1

)0()1(
bb

b

e

eyyA









      (13) 

   
 




)1()0(

 )1(

00

1

)1()0(
bb

b

e

eyyB









      (14) 

Now we describe the fitted Numerov 
method for solving the differential equations 
of the form (5) as follows: 
We rewrite the differential equation 

)()()(2 xfxyxby    as 
)()()(),(   where),()(2 xfxyxbyxgyxgxy 

  We divide the interval [0, 1] into N equal 
parts with constant mesh length h.  Let 

1,.......,,,0 210  Nxxxx  be the mesh points.  
Then we have Niihxi ,.....1,0 ;  .  We 
choose n such that

2
1

nx .  In the interval 







2
1,0

the boundary layer will be in the left hand 

side i.e., at 0x  and in the interval 




 1,
2
1  the 

boundary layer will be in the right hand side 
i.e., at 1x . 

At ixx  the above differential equation 
can be written as 

)()()(),(   where),()(2
iiiiiiii xfxyxbyxgyxgxy 

By Numerov method, we have 

 112
112 10

12
12


 






 
iii

iii ggg
h

yyy
  

12
12

2
112 





  

h
yyy iii  iiiii ybfyb 10111    

                   11110   iiii fybf  

12
12

2
112 





  

h
yyy iii  1111 10   iiiiii ybybyb  

 11 10
12

1
 


 iii fff   (15) 

In the interval 





2
1,0 , we introduce a 

fitting factor   in the above difference 
scheme since the boundary layer is at x = 0 
as: 

12
12

2
112 





  

h
yyy iii  1111 10   iiiiii ybybyb  

 11 10
12

1
 


 iii fff    (16) 

for  i = 1,2,…,n-1 
To find   on the left boundary layer we 

use the asymptotic solution 

ix
b

ii Aeyxv 
)0(

0 )(


         (17) 
and A is given by (13).  We assume that 
solution converges uniformly to the solution 
of (5), then 11 10   iii fff  is bounded. 
As 0h  equation (12) becomes 

   11
0

112
0

10
12

)0(2 limlim 





 iii
h

iii
h

yyybyyy

  (18) 

where 


 h
  Substituting (17) in (18) and 

simplifying, we get the fitting factor as 
 
















2
)0(

48

10)0(

2

)0()0(2






b
Sinh

eeb bb         (19) 

which is a constant fitting factor. 
Substituting the fitting factor (19) in (16), 

we have the three term recurrence relation as 
iih HyL ][ , for  i = 1,2,…,n-1       (20) 

where the difference operator ][ ih yL  given 
by 11][   iiiiiiih yGyFyEyL . 
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Here 

 11

1
2

2

2

2

1
2

2

10
12

1

12

12
102

12


















iiii

i
i

ii

i
i

fffH

b
h

G

b
h

F

b
h

E







 

Similarly, for the boundary layer at the right 
hand side, i.e., at x=1.  We introduce a 
fitting factor 1  in the difference scheme 
(15) as 

12
12

2
11

1
2 






  

h
yyy iii  1111 10   iiiiii ybybyb  

 11 10
12

1
 


 iii fff (21) 

for i = n+1,n+2,…..N-1. 
To find 1  on the right boundary layer 

we use the asymptotic solution 
)1(

)1(

0 )( ix
b

ii Beyxw


         (22) 
where B is given by (14).  Assume that 
solution converges uniformly to the solution 
of (5), then 11 10   iii fff  is bounded. 

As 0h  equation (21) becomes 
   11

0
112

1

0
10

12
)1(2 limlim 










iii

h
iii

h
yyybyyy (23) 

where 


 h
  

Substituting (22) in (23) and simplifying, 
we get the fitting factor as 

 














2
)1(

48

10)1(

2

)1()1(2

1





b
Sinh

eeb bb            (24) 

which is a constant fitting factor. 
From (21), we have the three term 

recurrence relation as 
iih HyL ][ , for i = n+1,n+2,…N-1    (25) 

Here the difference operator ][ ih yL  
given by 11][   iiiiiiih yGyFyEyL  

Where 

 11

1
2

1
2

2
1

2

1
2

1
2

10
12

1

12

12
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
















iiii

i
i

ii

i
i

fffH

b
h

G

b
h

F

b
h

E







 

Note that the value of 





 

2
1xyyn

 is 

obtained by the solution of the reduced 
problem. 

We solve the tridiagonal system given by 
(20) and (25) along with the value of  







 

2
1xyyn  by Thomas algorithm. 

Remark: When b(0) = b(1), both the fitting 
factors become equal and the constant fitting 
factor is 

 














2
)0(

48

10)0(

2

)0()0(2






b
Sinh

eeb bb  

Since b(x) > 0, the difference operator hL  
in (20) and (25) is positive type and hence 
there exists a unique solution for each set of 
given data and for each 0 ,0  h .  That is, 
the difference operator hL  of the form 

11][   iiiiiiih yGyFyEyL  satisfies the 
following: 
(i) and , allfor  0  ,0 iGE ii   
(ii) . allfor  0 iGFE iii   

With this restriction on b(x), hL  satisfies 
a discrete maximum principle. 
 
3. Truncation error 
 

From the finite differences, we have 
)6(

4
)4(

2

2
11

36012
2

iii
iii yhyhy

h
yyy


   (26) 
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and )6(
4

)4(2
11 12

2 iiiii yhyhyyy     (27) 

dividing equation (27) by 12, adding and 
subtracting iy   to it, we get 

)6(
4

)4(
2

11

1441212
2

iii
iii

i yhyhyyyyy 


   (28) 

From equations (26) and (28), we have 
)6(

4

2
11)6(

4
11

360
2

14412
2

i
iii

i
iii

i yh
h

yyy
yhyyy

y 





   (29) 

This equation can be written as 

  )6(
4

112
11

240
10

12
12

iiii
iii yhggg

h
yyy





 (30) 

which is a Numerov finite difference scheme 
for the differential equation ),( yxgy  . 

The equation (28) can be written as 
)6(

4

2
11

2

240
2

12 i
iiii

i yh
h

yyyyy 





 
 

 
)6(

4

2
2

2

240
12

1
i

i
i yh

h

yy 














        (31) 

 
If we substitute (31) in differential equation ),(2 yxgy  , we have the difference scheme 

    )6(
42

1111112
112

240
10

12
110

12
12

iiiiiiiiii
iii yhfffybybyb

h
yyy 

 








 


  

Here 11
2 2   iiii yyyy . 

Hence the fitted Numerov method for ),( yxgy   is )6(
42

2
2

2

240
),(

12
1

i
i yhyxg

h

y 



 











 

and the truncation error in the method is 









 

)(
240

max )6(
42

11

xyh
ii xxxi


  

 
4.  Numerical experiments 
 

In this section we present two linear and one non-linear singularly perturbed third order 
boundary value problems to illustrate the method described in this paper. We presented the 
relative errors with 2L -norm and compared with the relative errors with 2L -norm by the 
classical finite difference method to support the method for different values of . 
 
Example 1. Consider the boundary value problem [9] 

1)1()0()0(  with  2  yyyxyyy  
The uniform asymptotic solution of the problem is given by 

    








































4
78/339

8
11

48
1

2
3

4
1)(

22)1(

24
22

2

eexxexxee

exxexy

x

xx










 

The relative errors with 2L -norm are presented in table 1. 
 
Example 2. Consider the boundary value problem  
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1)1( ,1)0( ,1)0(  with  22  yyyyymy  with m = 2 
The asymptotic solution of the problem is given by [4] 

)(1)1()0()(~),( 2
)1(

000   OeyOeyOxyxy
xmmx



























  

where 2)(0
m
x

exy  is the solution of the reduced problem. 
The relative errors with 2L -norm are presented in table 2 and the relative errors with 2L -norm 
by classical finite difference method are presented table 3 for comparison. 
 
Example 3. Consider the non-linear boundary value problem  

2)1( ,1)0( ,1)0(  with  22  yyyyyy  
The solution of the problem is given by [5] 


















)1(

1~),(
x

eOxy  for a constant  .2 ,0in    

The relative errors with 2L -norm are presented in table 4. 
 

Table 1. The relative errors with 2L -norm of example (1) 
 

h 
2  

 
32  

42  52  62  72  82  92  102  

32  7.92(-2) 8.19(-2) 8.07(-2) 7.99(-2) 7.95(-2) 7.92(-2) 7.91(-2) 7.90(-2) 
42  1.03(-1) 1.05(-1) 1.05(-1) 1.04(-1) 1.04(-1) 1.04(-1) 1.04(-1) 1.04(-1) 

52  9.86(-2) 1.01(-1) 1.01(-1) 1.01(-1) 1.01(-1) 1.01(-1) 1.01(-1) 1.01(-1) 
82  4.91(-2) 5.15(-2) 5.22(-2) 5.24(-2) 5.24(-2) 5.25(-2) 5.25(-2) 5.25(-2) 
102  2.61(-2) 2.78(-2) 2.84(-2) 2.86(-2) 2.86(-2) 2.87(-2) 2.87(-2) 2.87(-2) 
202  2.80(-3) 6.89(-4) 8.46(-4) 9.37(-4) 9.63(-4) 9.71(-4) 9.73(-4) 9.73(-4) 

 
 

Table 2. The relative errors with 2L -norm of example (2) for m = 2 
 

h 
2  

32  42  52  62  72  82  92  102  

32  5.83(-2) 4.63(-2) 4.20(-2) 4.02(-2) 3.94(-2) 3.90(-2) 3.88(-2) 3.87(-2) 

42  4.19(-2) 2.93(-2) 2.51(-2) 2.35(-2) 2.28(-2) 2.25(-2) 2.23(-2) 2.22(-2) 
52  3.31(-2) 1.98(-2) 1.56(-2) 1.40(-2) 1.34(-2) 1.31(-2) 1.30(-2) 1.29(-2) 
82  2.24(-2) 1.01(-2) 5.10(-3) 3.50(-3) 3.00(-3) 2.80(-3) 2.70(-3) 2.70(-3) 
102  1.66(-2) 8.00(-3) 3.60(-3) 3.00(-3) 1.20(-3) 1.10(-3) 9.44(-4) 9.44(-4) 
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202  9.80(-3) 3.60(-3) 1.30(-3) 5.07(-4) 2.08(-4) 9.35(-5) 4.45(-5) 1.98(-5) 

Table 3. The relative errors with 2L -norm of example (2) for m = 2 by classical finite difference scheme 
 

h 
2  

32  42  52  62  72  82  92  102  

32  1.42(-1) 1.37(-1) 1.38(-1) 1.39(-1) 1.41(-1) 1.42(-1) 1.42(-1) 1.42(-1) 

42  9.27(-2) 8.96(-2) 9.08(-2) 9.28(-2) 9.43(-2) 9.53(-2) 9.59(-2) 9.62(-2) 
52  6.18(-2) 5.90(-2) 6.08(-2) 6.30(-2) 6.47(-2) 6.58(-2) 6.63(-2) 6.66(-2) 
82  2.58(-2) 1.69(-2) 1.74(-2) 1.94(-2) 2.11(-2) 2.21(-2) 2.27(-2) 2.31(-2) 
102  2.14(-2) 9.50(-3) 7.20(-3) 8.20(-3) 9.50(-3) 1.05(-2) 1.10(-2) 1.14(-2) 
202  2.00(-2) 7.00(-3) 2.40(-3) 8.64(-4) 3.21(-4) 2.62(-4) 4.27(-4) 3.41(-4) 

 
 

Table 4. The relative errors with 2L -norm of example (3) 
 

h 
2  

32  42  52  62  72  82  92  102  

32  4.47(-2) 3.96(-2) 3.76(-2) 3.68(-2) 3.64(-2) 3.62(-2) 3.62(-2) 3.61(-2) 

42  2.85(-2) 2.30(-2) 2.10(-2) 2.03(-2) 1.99(-2) 1.97(-2) 1.97(-2) 1.96(-2) 

52  2.13(-2) 1.51(-2) 1.30(-2) 1.22(-2) 1.19(-2) 1.17(-2) 1.16(-2) 1.16(-2) 
82  1.38(-2) 6.90(-3) 4.10(-3) 3.20(-3) 2.80(-3) 2.70(-3) 2.60(-3) 2.60(-3) 
102  8.80(-3) 5.30(-3) 2.60(-3) 1.50(-3) 1.20(-3) 1.00(-3) 9.79(-4) 9.57(-4) 
202  2.81(-4) 2.18(-4) 1.62(-4) 1.18(-4) 8.49(-5) 5.88(-5) 3.28(-5) 1.51(-5) 

 
5. Conclusions 
 
  In this paper, we presented a 
asymptotic-numerical method for a class of 
third order singularly perturbed boundary 
value problems with suitable boundary 
conditions.  The third order boundary value 
problem is transformed to asymptotically 
equivalent second order boundary value 
problem.  This problem is solved 
efficiently by using fitted Numerov method.  
Two linear and one non-linear example are 
solved to illustrate the method and relative 
errors with 2L -norms are presented to 
support the method.  To show the 

efficiency of the method we compare results 
of one of example by the classical finite 
difference method for the given third order 
singular perturbation problem. 
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