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1. Introduction 
 
  A singularly perturbed delay differential 
equation is an ordinary differential equation 
in which the highest derivative is multiplied 
by a small parameter and containing delay 
term. In the recent years, there has been a 
growing interest in the numerical treatment 
of such differential equations.  This is due 
to the versatility of such type of differential 
equations in the mathematical modeling of 
processes in various application fields, for 
e.g., the first exit time problem in the 
modeling of the activation of neuronal 
variability [11], in the study of bistable 
devices [2], and variational problems in 
control theory [6] where they provide the 
best and in many cases the only realistic 
simulation of the observed.  Lange and 
Miura [11, 12] gave an asymptotic approach 
for a class of boundary-value problems for 
linear second-order singularly perturbed 
differential-difference equations. 
 

 
  Kadalbajoo and Sharma [9, 10], presented 
a numerical approaches to solve singularly 
perturbed differential-difference equation, 
which contains negative shift in the 
derivative term or in the function but not in 
the derivative term. 
  In [5], the authors Gabil M. Amiraliyev, 
Erkan Cimen had given a numerical method 
for singularly perturbed boundary value 
problem for a linear second order delay 
differential equation with a large delay in 
the reaction term. The authors presented an 
exponentially fitted difference scheme on a 
uniform mesh which is accomplished by the 
method of integral identities with the use of 
exponential basis functions and interpolating 
quadrature rules with weight and remainder 
term in integral form. In [7], the authors 
Jugal Mohapatra, Srinivasan Natesan 
constructed a numerical method for a class 
of singularly perturbed differential-differen- 
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ce equations with small delay. The 
numerical method comprises of upwind 
finite difference operator on an adaptive grid, 
which is formed by equidistributing the 
arc-length monitor function.  In[13], the 
authors M.K. Kadalbajoo, Devendra Kumar 
presented a numerical method for singularly 
perturbed boundary value problem for a 
linear second order differential-difference 
equation of the convection-diffusion type 
with small delay parameter. Taylor series is 
used to tackle the delay term. The fitted 
mesh technique is employed to generate a 
piecewise-uniform mesh, condensed in the 
neighbourhood of the boundary layers. 
B-spline collocation method is used with 
fitted mesh. 
  There are wide varieties of asymptotic 
expansion methods for solving singular 
perturbation problems.  But there can be 
difficulties in applying these asymptotic 
expansion methods, such as finding the 
appropriate asymptotic expansions in inner 
and outer regions, which are not routine 
exercise but require skill, insight and 
experimentation.  Even the matching of the 
coefficients of the inner and outer solution 
expansions can be a demanding process.  
Hence, we require the other ways to attack 
singular perturbation problems; ways that 
are very easy to use and ready for computer 
implementation. 
  In this paper, we present a numerical 
integration method to solve singularly 
perturbed delay differential equations. In 
this method, we first convert the second 
order singularly perturbed delay differential 
equation to first order neutral type delay 
differential equation and employ the 
numerical integration. Then, linear 
interpolation is used to get three term 
recurrence relation which is solved easily by 
discrete invariant imbedding algorithm. The 
method is demonstrated by implementing 
several model examples by taking various 
values for the delay parameter and 
perturbation parameter. 

2. Description of the method 
 
2.1. Layer on the left side 
 
  Consider singularly perturbed delay 
differential equation of the form 

1,x0    ),(
)()()()()(




xf
xyxbxyxaxyLy

　　



         (1) 
with boundary conditions 

0-  , )0(  xy         (2a) 
and 

)1(y         (2b) 
where   is small parameter, 10    
and   is also small shifting parameter, 

10   ; a(x), b(x), f(x) are bounded 
continuous functions in (0, 1) and  ,  are 
finite constants.  Further, we assume that 

0)(  Mxa throughout the interval [0, 1], 
where M is positive constant. This 
assumption merely implies that the 
boundary layer will be in the neighbourhood 
of x = 0. 

By using Taylor series expansion in the 
neighbourhood of the point x, we have 
  )()( xyxyxy          (3) 

and consequently, equation (1) is replaced 
by the following approximate first order 
differential equation with a small deviation 
argument: 

)()()()()()( xfyxbxyxaxyxy  
         (4) 

The transition from equation (1) to 
equation (4) is admitted, because of the 
condition that   is small.  This 
replacement is significant from the 
computational point of view.  Further 
details on the validity of this transition can 
be found in Elsgolt’s and Norkin [4]. 

Now we divide the interval [0, 1] into N 
equal subintervals of mesh size h=1/N so 
that  iihxi   , 0, 1, 2, …, N. 

Integrating eq. (4) with respect to x 
from 1  to ii xx , we get 
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By using Trapezoidal rule to evaluate the integral, we get 
)]()([)()( 1111    iiiiiiii xyaxyaxyxyyy   
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2   iiiiiiiiii ffybybxyaxyah       (5) 

Again, by means of Taylor series expansion and then by approximating )(xy by linear 
interpolation, we get, 
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  By making use of the above equations in (5) we obtain 
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Rearranging the above equation as three term recurrence relation, we get 
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which can be written as 
iiiiiii HyGyFyE   11 , for i = 1, 2, …, n-1.       (6) 
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Equation (6) is a tridiagonal system and we solve it by using method of discrete invariant 
imbedding. 
 
2.2. Right - end boundary layer problem 
 

We now assume that 
0)(  Mxa throughout the interval [0, 1], 

where M is negative constant. This 
assumption merely implies that the 
boundary layer will be in the neighbourhood 
of x = 1. 

By using Taylor series expansion in the 
neighbourhood of the point x, we have 
  )()( xyxyxy           (7) 

and consequently, equation (1) is replaced 
by the following approximate first order 
differential equation with a small deviation 
argument: 

)()()()()()( xfyxbxyxaxyxy  
          (8) 
Now we divide the interval [0, 1] into N 
equal subintervals of mesh size h=1/N so 
that  iihxi   , 0, 1, 2, …, N. 

 
Integrating eq. (8) with respect to x from ii xx   to1 , we get 
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By using Trapezoidal rule to evaluate the integral, we get 
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Again, by means of Taylor series expansion and then by approximating )(xy by linear 
interpolation, we get, 
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  By making use of the above equations in (9) we obtain 
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Rearranging the above equation as three term recurrence relation, we get 
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which can be written as 
iiiiiii HyGyFyE   11 , for i = 1, 2, …, n-1.      (10) 
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Equation (10) is a tridiagonal system and we solve it by using method of discrete invariant 
imbedding. 
 
3. Discrete invariant imbedding algorithm 
 

We now describe the Thomas algorithm 
which is also called Discrete Invariant 
Imbedding Angel & Bellman [1] to solve the 
three term recurrence relation: 
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Let us set a difference relation of the form 
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From (12), we have 
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substituting (13) in (11), we have 
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By comparing (12) and (14), we get the 
recurrence relations 
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To solve these recurrence relations for i = 
2,3, … ,N-1, we need the initial conditions 
for 0W and 0T .   If we choose 00 W , 
then we get 00 T .  With these initial 
values, we compute iW  and iT for i = 2, 
3, … , N-1 from equations (15) and(16) in 
forward process, and then obtain iy  in the 
backward process from (12). 

The conditions for the discrete invariant 
imbedding algorithm to be stable are, see [1, 
8]: 

,0iE  ,0iG  iii GEF   
and ii GE          (17) 

In our method, one can easily show that if 
the assumptions a(x) > 0, b(x) < 0 and 
  0)(  xa  hold, then the above 
conditions (17) hold and thus the invariant 
imbedding algorithm is stable. 
 
4. Numerical experiments 
 

To demonstrate the efficiency of the 
method, we consider two numerical 
experiments with left-end boundary layer and 
two numerical experiments with right-end 
boundary layer. We compare the results with 
the exact solution of the problems.  Also we 
have plotted the graphs of the exact and 
computed solution of the problem for 
different values of   and for different 
values of  of  )(o , which are represented 
by solid and dotted lines respectively.  The 
maximum absolute error for the examples not 
having the exact solution is calculated using 
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Example 1. Consider an example of 
singularly perturbed delay differential 
equation with left layer: 

[0,1]    x; 0)()()(  xyxyxy   
with  y(0) = 1 and y(1) = 1. 
Here a(x) = 1, b(x) = -1 and f(x) = 0. 

The exact solution is given by 
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From equation (4), the corresponding first 
order neutral type delay differential equation 
is )()()()( xyxyxyxy   .  We 
solve this problem by the present method and 
the maximum absolute errors are presented in 
Table1 and Table 2 for  = 0.1, 0.01 and for 
different values of   and compared with 
results of paper [9].  Also we have plotted 
the graphs of the exact and computed 
solution of the problem for  = 0.1, 0.01 and 
for different values of   as shown in Figure 
1 and 2 respectively. 
 
Example 2. Now we consider an example of 
variable coefficient singularly perturbed 
delay differential equation with left layer: 

1,(0)  with 0)()()( 5.0   yxyxyexy x   
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The exact solution of the problem is not 
known.  From equation (4), the 
corresponding first order neutral type delay 
differential equation is 

)()()()( 5.0 xyxyexyxy x    . 
We solve this problem by the present method 
and The maximum absolute errors by the 
double mesh principle are presented in Table 
3 for  = 0.1 and for different values of  .  
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Also we plot the graphs of the computed 
solution of the problem for  = 0.1, 0.01 and 
for different values of   as shown in Figure 
3 and 4 respectively. 
 
Example 3. Consider a singularly perturbed 
delay differential equation with right layer: 

[0,1]    x; 0)()()(  xyxyxy   
with y(0) = 1 and y(1) = - 1. 
Here a(x) = -1, b(x) = -1 and f(x) = 0. 
The exact solution is given by  

)(
))1()((1 )(

12

2112m

mm

xmmxm

ee
eeeexy




  

where )(2
) )(411(

1 



m  

and )(2
) )(411(

2 



m . 

From equation (8), the corresponding first 
order neutral type delay differential equation 
is )()()()( xyxyxyxy   .  We 
solve this problem by the present method and 
the maximum absolute errors are presented in 
Table 4 and Table 5 for  = 0.01, 0.001 and 
for different values of   and compared 
with results of paper [9].  Also we have 
plotted the graphs of the exact and computed 
solution of the problem for  = 0.1, 0.01 and 
for different values of   as shown in Figure 
5 and 6 respectively. 
 
Example 4. Now we consider an example of 
variable coefficient singularly perturbed 
delay differential equation with right layer: 

1,y(0)  with   ,0)()()(  xxyxyexy x   
 1y(1)   

Here .0)( and )( ,)(  xfxxbexa x  The 
exact solution of the problem is not known.  
From equation (8), the corresponding first 
order neutral type delay differential equation 
is 

)()()()( xyxyexyxy x   . 
We solve this problem by the present method 
and the maximum absolute errors by the 
double mesh principle are presented in Table 

6 for  = 0.1 and for different values of  .  
Also we plot the graphs of the computed 
solution of the problem for  = 0.1, 0.01 and 
for different values of   as shown in Figure 
7 and 8 respectively. 
 
5. Discussions and conclusions 
 

We have presented a numerical integration 
method to solve singularly perturbed delay 
differential equations. In general numerical 
solution of second order differential equation 
will be more difficult than numerical solution 
of first order differential equation.  In this 
method, we first converted the second order 
singularly perturbed delay differential 
equation to first order neutral type delay 
differential equation and employed the 
numerical integration, whereas in paper [9]  
the second order singularly perturbed delay 
differential equation is transformed to an 
approximate second order singular 
perturbation problem which is valid only for 
small values of delay parameter  . Then, 
linear interpolation is used to get three term 
recurrence relation which is solved easily by 
method of invariant imbedding algorithm. 
The method is demonstrated by 
implementing several model examples by 
taking various values for the delay parameter 
an d perturbation parameter. 

This method is very easy to implement.  
The effect of small shifts on the boundary 
layer solution of the problem has been given 
by considering several numerical 
experiments. It is observed that if )( o  
and as   increases, the thickness of the 
boundary layer decreases in the case when 
the solution exhibits layer behaviour on the 
left side, while in the case of the right side 
boundary layer, it increases and maximum 
error decreases as the grid size h decreases in 
both cases which shows the convergence to 
the computed solution. 
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Table 1. The maximum absolute errors of example 1 with  = 0.1 for different values of   and h 
 

  N    
 210  

present    results 
method   in [9] 

310  
present    results 
method   in [9] 

410  
present    results 
method   in [9] 

510  
present    results 
method   in [9] 

0.01 0.01172     0.011824 0.00122  0.00122 1.231e-004   1.235e-004 1.228e-005  1.236e-005 
0.03 0.01505      0.01515 0.00158  0.00159 1.598e-004  1.6020e-004 1.599e-005  1.603e-005 
0.06 0.02575      0.02584 0.00281  0.00281 2.839e-004   2.842e-004 2.844e-005  2.845e-005 
0.08 0.04781     0.083131 0.00562  0.01110 5.735e-004   1.151e-003 5.748e-005  5.748e-005 
 
 

Table 2. The maximum absolute errors of example 1 with = 0.01 for different values of   and h 
 

  N    
 210  

present    results 
method   in [9] 

310  
present    results 
method   in [9] 

410  
present    results 
method   in [9] 

510  
present    results 
method   in [9] 

0.001 0.09073     0.09092 0.01228     0.01229 0.00127     0.00127 1.284e-004   1.284e-004 
0.003 0.10803   0.10836 0.01562     0.01562 0.00164     0.00164 1.653e-004   1.653e-004 
0.006 0.12777     0.12845 0.02630     0.02631 0.00287        0.00287 2.897e-004   2.897e-004 
0.008 0.10040     0.10149 0.04833     0.04834 0.00568        0.00568 5.794e-004   5.794e-004 
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Figure 1. Graph of the solution of the example (1) for  = 0.1 and for different  of )(o   
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Figure 2. Graph of the solution of the example (1) for  = 0.01 and for different  of )(o   

 
 
Table 3. The maximum absolute errors r of example 2 by double mesh principle with = 0.1 for different 

values of   and grid size 
 

  N   
 210  310  410  

0.01 0.00632996 0.000674268 6.7871251e-005 
0.03 0.00815917 0.000882563 8.8986856e-005 
0.06 0.01384760 0.001579726 1.6020004e-004 
0.08 0.02477158 0.003173235 3.2602775e-004 
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Figure 3. Graph of the solution of the example (2) for  = 0.1 and for different  of )(o   
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Figure 4. Graph of the solution of the example (2) for  = 0.01 and for different  of )(o   

 
 

Table 4. The maximum absolute errors of example 3 with  = 0.01 for different values of   and h 
 

  N    
 210  

present    results 
method   in [9] 

310  
present    
results 

method   in [9] 

410  
present    results 
method   in [9] 

510  
present    results 
method   in [9] 

0.000 0.18113     0.17855 0.02422    0.02387 0.002512     0.00247 0.00025     0.00024 
0.007 0.12064     0.11763 0.014515   0.01395 0.00148      0.00142 0.00014     0.00014 
0.015 0.08667     0.08351 0.00996    0.00944 0.00101     0.00095 0.00009     0.00009 
0.025 0.06466     0.06147 0.00717    0.00678 0.00072     0.00068 0.00007     0.00006 

 
 

Table 5. The maximum absolute errors of example 3 with  = 0.001 for different values of   and h 
 

  N    
 210  

present    results 
method   in [9] 

310  
present    results 
method   in [9] 

410  
present    results 
method   in [9] 

510  
present    results 
method   in [9] 

0.0007 0.21605    0.21339 0.02997    0.02897 0.00313      0.00301 0.000315     0.000302 
0.0015 0.12615    0.12311 0.01539    0.01462 0.00157      0.00149 0.00015     0.00014 
0.0025 0.08410    0.08096 0.00959    0.00911 0.00097      0.00092 0.00009     0.00009 
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Figure 5. Graph of the solution of the example (3) for  = 0.1 and for different  of )(o   
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Figure 6. Graph of the solution of the example (3) for  = 0.01 and for different  of )(o   

 
 

Table 6. The maximum absolute errors of example 4 by double mesh principle with  = 0.1 for different 
values of   and grid size h 

 

  N   
 210  310  410  

0.01 0.00575975 0.00050842 5.02478e-005 
0.03 0.003932768 0.00036132 3.58384e-005 
0.06 0.002702569 0.00025507 2.53643e-005 
0.08 0.00224689 0.00021413 2.13134e-005 
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Figure 7. Graph of the solution of the example (4) for  = 0.1 and for different  of )(o   
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Figure 8. Graph of the solution of the example (4) for  = 0.01 and for different  of )(o   
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