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Abstract: Due to the impact of time-dependent unit unavailability, the testing strategies (e.g., 
simultaneous or staggered testing) have significant effect on the system unavailability for 
complex standby systems. Several testing strategies have been studied to minimize average 
system unavailability for certain systems. For example, uniformly staggered testing has been 
shown to be the best for two identical units in parallel with and without common cause failure 
between units.  However, this result may not be suitable for parallel systems with nonidentical 
units. This study provides a discussion to obtain the optimal testing strategy for parallel systems 
for the case in which units are not necessary to be identical. Moreover, a maintenance manager 
who is aware of the importance of each system in the plant should establish a testing schedule 
based on plant-level, not on system- or component-level. That is, the manager should set up 
testing schedule for each system based on its contribution to the plant. Therefore, a good testing 
schedule should consider the balance between the maintenance cost and risk (or unavailability) 
coming with the maintenance task for each system. This study provides a cost-effective model 
taking both cost and risk into account to establish a good testing policy (including testing 
strategy and test interval) for two-unit parallel systems. 
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1. Introduction 
 

Engineering safety systems are usually 
standby systems whose failures are hidden 
and can be discovered only by inspection or 
at the next activation. Therefore, most 
earlier research related to standby systems 
aims to find the optimal surveillance testing 
schedule minimizing average system 
unavailability [1-4]. However, the same type 
of systems may have different effects on 
plant safety. From reliability-centered 
maintenance point of view [5], a good 
preventive maintenance (PM) should be est- 
 

 
ablished based on plant-level, not on 
system- or component-level. In other words, 
two identical systems with different effects 
on plant safety should have different testing 
policy. Therefore, an optimal surveillance 
testing policy should be able to spend least 
expenditure to provide appropriate 
maintenance to find “hidden failure” before 
a demand and keep the whole plant away 
from accident or any risk [6-7]. 

Due to the complexity of the systems, it is 
not easy to obtain the optimal testing policy 
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taken account of both testing strategy and 
test intervals from the analytical point of 
view. Most earlier research obtained the 
optimal testing policy for multi-unit systems 
by comparing the system unavailabilities 
over pre-specified policies [8-11]. Several 
computer codes have been provided to 
compute time-dependent system 
unavailability or safety [2, 12]. For two-unit 
parallel systems with identical units, 
uniformly staggered testing is shown to be 
the best testing strategy to minimize average 
system unavailability [1]. Uniformly 
staggered testing will also be shown to be 
the best testing strategy to minimize our 
objective function that balances system 
unavailability and maintenance cost in the 
cases in which two units in the system are 
identical in this study. It is believed that this 
result is also hold for systems with n 
identical units in parallel. 

In order to improve the safety in the plant, 
the purpose of the preventive maintenance 
of the standby systems should aim to 
increase the system availability rather than 
the system reliability. Moreover, 
reliability-centered maintenance suggests to 
reduce unnecessary maintenance to reduce 
the maintenance cost and to avoid the risk 
provided by imperfect maintenance [5]. 
Unfortunately, the research studying system 
availability is not as much as that for system 
reliability. Nakagawa summarized the 
optimum testing policies for systems [13]. 
Most of paper studied the optimum number 
of inspect times that minimized the total cost 
in finite time span for single-unit systems or 
the redundant systems (one operating unit 
with a standby unit). Recently, due to the 
improvement of maintenance software and 
the quality of the system, less research 
focused on the testing policies or preventive 
maintenance for complexity standby 
systems. However, the maintenance 
software is just like a black box, the decision 
makers may not have any idea about the 
influence by the change of the system on the 

maintenance policy or the precision of the 
results obtained by the software. Recently, 
there are several catastrophes occurred (e.g., 
BP oil disaster in Gulf of Mexico and 
Fukushima Daiichi nuclear diaster), the 
importance for the safety systems should be 
studied to improve the safety in plant. 

In this study, we inspect the optimal 
testing policies for two-unit standby systems 
not only to increase the system availability 
but also to reduce the maintenance cost. 
Although the uniformly staggered testing 
has been shown to be the optimal test 
policies for the systems with two identical 
unit in parallel. However, the it is not 
preferred for the case in which two units are 
not identical in the parallel systems. The 
optimal testing strategy for systems with 
two nonidentical units in parallel will be 
discussed in this study. Almost simultaneous 
testing becomes a better choice for the 
systems with significantly different units. 
These results suggest that the maintenance 
manager should be aware all the 
characteristics and property of the systems 
(e.g., importance of the system, failure rate, 
difference between units, etc.) before 
establishing the testing schedule for the 
systems. In this study, not only the optimal 
testing strategy but also an almost optimal 
test interval are for the two-unit parallel 
system. 
 
2. Methodology 
 

Consider to test units in a two-unit 
parallel system with the same test interval, 
say T. The maintenance schedule for 
two-units system is shown in Figure 1. 
Without loss of generality, assume that the 
ith cycle begins with the ith test of unit 1 at 
time Oi. After testing, unit 1 is restored at 
time Ai, and stays in the standby state until 
the next test at Oi+1. Similarly, unit 2 is 
tested at Bi and restored at Ci and stays in 
standby state until the next test at Bi+1. The 
cycle ends just before the (i+1)st test of unit 
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1; that is, at point Oi+1. The time lag between 
the tests of units 1 and 2 is assumed to be 
constant for all cycle i, and is denoted by L. 
Let τk denote the expected downtimes for 
testing, restorative maintenance, and repair 

of unit k. In order to keep the availability of 
the parallel systems, exactly simultaneous 
testing is not considered in this study. 
Therefore, the value of L in must be between 
τ1 and T - τ2. 

 
Figure 1. Maintenance schedule for two-unit systems 

 
Unlike most of earlier research, the 

objective in this study is to find not only the 
optimal test interval for the system but also 
the optimal test strategy (simultaneous or 
staggered) for the units in the system. 
Moreover, the optimal testing policy takes 
both risk and maintenance cost into account. 
The objective function is given by 

)(),(),(Min     TCLTUCLTM u     (1) 
where Cu is the expected loss due to system 
unavailability per time unit, ),( LTU  is the 
average system unavailability per cycle, and 

)(TC  is the average cost for testing, 
maintenance and repair for the system per 
cycle. The average system unavailability is 
assessed by the time-dependent 
unavailabilities of units. The testing strategy, 
such as simultaneous or uniformly staggered 
testing, will affects the system unavailability. 
Therefore, both the objective function and 
average system unavailability are functions 
of the test interval (T) and the time lag 
between the test of units 1 and 2 (i.e., L). 
Since exactly simultaneous testing is not 
adopted in this study, the cost function is 
just a function of the test interval. 
 
2.1. Assumptions 
 

Assumptions adopted in this study are 
listed below, 

 

(1) Surveillance tests of each unit are 
performed periodically. 

(2) A unit is either operable or failed. There 
are no partially degraded states. Unit 
failure can occur either because of 
failure on demand. The state of each unit 
can be determined precisely during a 
test. 

(3) Following surveillance testing, some 
minimal level of restorative maintenance 
(such as lubricating the unit and 
restoring it to standby status) is 
performed if the unit is found to be in 
the operable state during the test; 
otherwise, the unit is fully repaired or 
replaced. 

(4) A unit is as good as new immediately 
after its restoration. 

(5) A unit is unavailable during testing, 
restorative maintenance, and repair. 

(6) Units are assumed to fail independently 
of each other during both standby and 
operation. 

 
2.2. Unavailability and cost functions 
 

Let t denote the time elapsed from the 
beginning of the given cycle, and xk(t) is the 
age of unit k at time t. The time-dependent 
unavailability of unit k is given by u[xk(t)] 
and defined as 
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where ρk is the constant probability that unit 
k fails on demand and Fk(xk) is the 
probability that the unit k fails at or before 
age xk. By assuming that any given cycle 
begins with the test of unit 1, the age of unit 
1 is equal to t-τ1 for Tt 1 . The age of 
unit 2 is given by 
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(3) 

For one of the units is being tested, the 
availability of the whole systems depends on  

 
only the unit that is not being tested. For the 
period that none of the units are tested, by 
the independent failure assumption provided 
in Assumption 6, the time-dependent 
unavailability of the whole system can be 
assess by 

)]([)]([)( 2211 txutxutu         (4) 
The system unavailabilities during the 

four different periods (as shown in Figure 1) 
are given by Eqs. (5)-(10) 
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The average system unavailability per 

cycle can then be obtained by dividing the 
sum of the overall system unavailability by 
the length of the test interval, that is, 

)(1),( COBCABOA UUUU
T

LTU     (9) 

By no exactly simultaneous testing 
assumption, there is no common 
maintenance cost between two units. 
Therefore, the unit average cost is equal to 





2

1
)]([1)(

k
kkFT TuCC

T
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kk
     (10) 

where 
kTC  and 

kFC  are the testing 
(including maintenance) cost and expected 
additional repair cost for unit k, respectively. 

After deriving the average system unava- 

 
ilability function and cost function, the 
objective function can be determined by 
plugging them into Eq. (1). The optimal 
testing policy (including optimal testing 
strategy, L*, and test interval, T*) can be 
obtained by solving the following equations: 

















0),(
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3. Example 
 

In this section, we presented the case in 
which the failure rates of units are constant, 
i.e., the failure times of units are exponential 
distributed. Moreover, we presented two 
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different cases as follows. Let k  denote 
the failure rate of unit k. Using Taylor's 
expansion, the probability that the unit i 
failed at or before age kx can be 
approximated by kk x , i.e., kkkk xxF )( . 
Then, the unit time-dependent unavailability 
is approximately equal to 

kkkkkkkkk xxFxu  )1()()1()( 
        (12) 
 
3.1. Identical units case 
 

In this subsection, two units in the 
systems are assumed to be identical, that is, 
the values of all parameters (e.g., failure rate, 
demand failure, cost, etc.) of two units are 
the same. Let λ denote the failure rate of the 
unit, the time-dependent unavailability of 

unit k at age xk is approximated by 
kkkkk xxFxu  )1()()1()(   

2,1for k        (13) 
By plugging Eq. (13) into Eqs. (5)-(10) 

and solve Eq. (11), the uniformly staggered 

testing (i.e., TL
2
1*  ) minimizing the 

objective function. In other words, the 
uniformly staggered testing is the best 
testing strategy for the system with two 
identical units in parallel. This result is the 
same the model minimizing average system 
unavailability as shown in previous 
research [1]. 

By adopting uniformly staggered testing, 
an optimal test interval is approximately by 
[14]. 
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Figure 2 shows the behavior of the 

approximately optimal surveillance test 
interval as a function of the expected loss 
due the system unavailability, Cu, and the 
units' failure rate, λ. This figure suggests that 
(1) The approximately optimal test interval 

T is decreasing in the cost per time unit 
of system unavailability, Cu, and the 
failure rate λ. That is, when the system 
are more important (larger value of Ci) 
or less reliable (larger value of λ), the 
units are suggested to be tested more 
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frequently. 
(2) The approximately optimal test interval 

T appears to be roughly inversely 
proportional to λ2/3; for example, T 

decrease by a factor of about four if the 
failure rates of both component increase 
by a factor of eight. 
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(a) Impact of Cu (λ = 10-6/hr) 
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(b) Impact of λ (Cu = $1/hr) 

 
 
Figure 2. Approximately optimal test interval for a system with identical units in parallel, as a function of Cu 

and λ (for the case in which ρ = 10-3/demand, τ = 1 hr, CT = $10/test, CF = $100/repair) 
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3.2. Nonidentical units case 
 

In this subsection, units in the system are different. Let λk denote the failure rate of unit k. By 
Eq. (12), the time-dependent unit unavailability is approximately equal to 

2,1for      )1()()1()(  kxxFxu kkkkkkkkkk       (15) 
Plugging Eq. (15) into Eqs. (5)-(10) and solving Eq. (11), the optimal time lag between the 

tests of units 1 and 2 can be approximated by [14] 
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T , the two units should be tested in a staggered 

manner, but not necessarily uniformly staggered. 
 
In the real world, it may not be practical 

to implement to optimal time lag shown in 
Eq. (16), and either (almost) simultaneous or 
uniformly staggered testing may be more 
convenient. Therefore, we compare the 
results of using the optimal time lag in Eq. 
(16) with the results of using uniformly 
staggered testing and also almost 
simultaneous testing (where the unit with 

the smaller value of 
k

k

k

k
k 





 2

2
1  is 

tested first.) 
Figure 3 illustrates the performance 

achieved by these three testing policies, as a 
function of the expected loss per time unit of 
unavailability (Cu). As expected, the 

approximately optimal test interval 
decreases when the expected unavailability 
loss Cu increases. Figure 3 (a) shows that 
when Cu is small, the approximately optimal 
test interval is large. In this case, the optimal 
testing strategy is staggered (not necessarily 
uniformly staggered); however, there is no 
significant difference between the 
approximately optimal test interval 
corresponding to the optimal time lag (Topt) 
and that corresponding to uniformly 
staggered testing (TUnif). The objective 
function values achieved by these three 
testing policies do not differ significantly 
when Cu is small, as shown in Figure 3 (b). 
However, when Cu is large, the 
approximately optimal test interval becomes 
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smaller, and the optimal testing strategy 
changes to almost simultaneous testing. In 
this case, the difference in the objective 
function values achieved by the optimal 
testing strategy and almost simultaneous 
testing is insignificant. In order to avoid the 

large loss caused by using uniformly 
staggered testing when Cu is large, almost 
simultaneous testing is suggested for all 
values of Cu for two-unit parallel systems in 
which the units are significantly different. 
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(a) Approximately optimal test interval and optimal time Lag 
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(b) Objective function value 

Figure 3. Approximately optimal test interval, and approximately optimal time lag, and objective functions 

as functions of the expected unavailability loss per hour Cu, provided that  
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is not small relative to the test interval (for the case in which λ1 = 10-6/hr, λ2 = 10-5/hr, τ1 = 10 hrs, 
τ2 = 1 hr, ρk = 10-3/demand, 10$

kTC /test, 100$
kFC /repair, for k = 1, 2) 
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By adopting the simultaneous testing, the optimal test interval for systems can also be 
obtained by 
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This is almost the same as the approximately optimal test interval for two-unit parallel systems 
with identical units given in Eq. (14), expect the approximately optimal test interval 
corresponding to the continuous testing is now equal to τ1+τ2 rather than 2τ, and we now have 
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where for the case in which the value of 
1

12
12

1

   for component 1 is not greater than that 

value of component 2, then S1 = τ1, S2 = τ2, S3 = 1 and S4 = λ1; otherwise, S1 = τ2, S2 = τ1, S3 = -1 
and S4 = λ2. (Note that for the convenience of decision makers, it may be adequate to replace 
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 , since the 2

k  term will generally have relative little impact.) 

 
4. Conclusion 
 

Uniformly staggered testing has been 
shown to be the best choice to test two 
identical units in parallel. The optimal test 
interval for system decreases when the 
system is more important (larger value of 
expected lose due to system unavailability, 
Cu) or when the units are less reliable (larger 
value of failure rate, λ). In particular, the 
optimal test interval is inversely 
proportional to λ2/3. That is, if the failures 
rates of the units increase by a factor of 
eight, the optimal test interval will decrease 
by a factor of four. 

The uniformly staggered testing is not 
suitable for parallel systems with 
significantly different units. The results 

presented in this study indicate the 
importance of the system (i.e., the expected 
unavailability loss per hour) and the 
difference between units have significantly 
effect on the choice of the testing strategies. 
For parallel systems with nonidentical units, 
almost simultaneous with smaller value of 
the product of the testing duration and 
expected time to failure tested first has 
better results than uniformly staggered 
testing. This study provides an analytic 
perspective for the optimal testing strategy 
and test interval for two-unit parallel 
systems. The maintenance manager is 
suggested to be aware of all the 
characteristics and properties of the system 
(such as the importance of the system and 
the difference between the units) in order to 
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establish the most cost-effective for the 
plant. 

After the tsunami followed by the 
earthquake in Fukushima, in March, 2011, 
caused the catastrophe in Japan, the 
common cause failure has been recognized 
as one of the major reason for the failure of 
the emergence systems. Therefore, the 
impacts of the common cause failure on the 
redundant systems should be studied in the 
future research in order to improve the 
availability for the standby redundant 
systems and reduce the degree of the 
possible damage. 
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