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1. Introduction 
 

Consider the singularly perturbed differential difference equation 
 

         xfxyxbxyxay   , 10  x         (1) 
under the interval and boundary conditions 
 

  ),(xxy   0 x ,   1y .          (2) 
where     0,  xbxa  and  xf are sufficiently smooth functions, 10    and 

)( o  such that   0)(  xa for all  1,0x . Furthermore,  and   are positive 
constants. Such problems are found throughout the literature on epidemics and population where 
this small shift plays an important role in modeling of various real life phenomena (Kuang [8]). 
For example, in the mathematical model for the determination of the expected first-exist time in 
the generation of action potential in nerve cells by random synaptic inputs in dendrites (Lange 
and Miura [9]) and description of the human pupil-light reflex (Longtin and Milton [11]). The 
shifts are due to the jumps in the potential membrane which are very small. These biological 
problems motivate the study of the boundary value problems for singularly perturbed differential 
difference equations with delay as well as advance, which was initiated by Lange and Miura [9, 
10], where they introduced the new terminology ‘negative shift’ for ‘delay’ and ‘positive shift’ 
for ‘advance’. Hence in the recent times, many researchers have been trying to develop 
numerical methods for solving these problems. Kadalbajoo and et al [5] constructed and 
analyzed a fitted operator finite difference method to solve problems arising from singularly 
perturbed general differential difference equations. Patidar and Sharma [12] presented some 
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uniformly convergent non standard finite difference methods for solving class of singularly 
perturbed differential difference equations where there is small delay in the convention term.  
Moreover, a wide verity of papers have been published in the recent years describing various 
methods for solving singularly perturbed delay differential equations, among these, we mention 
Phaneendra et al [13], Yadaw and Kadalbajoo [15], Kadalbajoo and Sharma [4]; and Rao and 
Chakravarthy [14]. Furthermore, many researchers have often observed that the shifts/delay 
parameters are very small and affect the solution very significantly. Lange and Miura [10] have 
shown that the effect of very small shifts (of order ) on the solution and pointed out that they 
drastically affect the solution and therefore cannot be neglected. Further studies about the effect 
of the delay parameter,  on the layer behavior of the solution has been carried out by 
Kadalbajoo and Sharma [6, 7]. 

There is a wide variety of asymptotic expansion methods available for solving singular 
perturbation problems. But there can be difficulties in applying these asymptotic expansion 
methods as finding of the appropriate asymptotic expansions in the inner and outer regions is not 
routine exercises rather requires skill, insight, and experimentations. Even the matching of the 
coefficients of the inner and outer solution expansions can be demanding process. Thus, one can 
raise the question that whether there may be other better ways that are easy and ready for 
computer implementation to attack these problems. In this paper, we have presented a numerical 
method that does not depend on the asymptotic expansion and matching of the coefficients for 
solving a class of singularly perturbed delay differential equations with negative shift. First, the 
second order singularly perturbed delay differential equation is replaced by an asymptotically 
equivalent first order delay differential equation. Then, Trapezoidal rule and linear interpolation 
are employed to get three term recurrence relation which is solved easily by discrete Invariant 
Imbedding algorithm. The method is demonstrated by implementing it on several model 
examples by taking various values for the delay and perturbation parameters. 
 
2. Description of the method 
 
2.1. Left-end boundary layer problems 
 

Consider singularly perturbed boundary value problems of the form 
 

 1x0 ),()()()()()(  xfxyxbxyxaxyLy         (3) 
with boundary conditions 
 

0-  , )0(  xy            (4a) 
 

and )1(y           (4b) 
where 10   , b(x), f(x) are bounded continuous functions in (0, 1) and  ,  are finite 
constants. Further, we assume that 0)(  Mxa throughout the interval [0, 1], where M is 
positive constant. This assumption merely implies that the boundary layer will be in the 
neighborhood of x = 0. 

By using Taylor series expansion in the neighborhood of the point x, we have 
 

  )(
2

)()( xyxyxyxy 
          (5) 

and consequently, equation (3) is replaced by the following first order differential equation: 
 

  )()()()()()( xsyxrxyxqxyxpxy           (6) 
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for 10   , where 
 

             
 2

s ,
2

2 ,
2

 ,1 xfxxbxrxaxqxp 








         (7) 
 

The transition from equation (3) to equation (6) is admitted, because of the condition that   
is sufficiently small. This replacement is significant from the computational point of view.  
Further details on the validity of this transition can be found in Elsgolt’s and Norkin [2]. 

Now we divide the interval [0, 1] into N  equal subintervals of mesh size Nh /1  so 
that ihxi  , Ni ,...,2,1,0 . 

Integrating equation (6) with respect to x from 1  to ii xx , we get 

     dxxsxyxrxyxqxyxpxyqxyqyy
i

i

x

x
iiiiii 



 

1

)()()()()( )()( 111 
 

Where          iiiiiiiiii xssxrrxqqxppxyy     ,   ,   ,   ,  
 

By using Trapezoidal rule to evaluate the integral in the above equation, we get 
 

    
   11111

11111

2
)()(

2
               

2
)()(









iiiiiiiiii

iiiiiiiiii

ssyryrhxyqxyqh

xypxyphxyqxyqyy




 

(8) 
Again, by means of Taylor series expansion and then approximating )(xy by linear 

interpolation, we get: 

1
1 1)()()( 

 
















 

 ii
ii

iiii y
h

y
hh

yyyxyxyxy 
      (9a) 

 

ii
ii

iiii y
h

y
hh

yyyxyxyxy 
 

















 

 


 1
1

1111 1)()()(     (9b) 

 

1
1 1)()()( 

 





 






 

 ii
ii

iiii y
h

y
hh

yyyxyxyxy        (9c) 
 

ii
ii

iiii y
h

y
hh

yy
yxyxyxy 

 





 







 
 


 1

1
1111 1)( )()(      (9d) 

By making use of equations (9) in (8), we obtain: 
 

)(
2

                  

2222
1                  

22
1                   

1
22

1
22

1

111

11111

11111

















 






 





 







 






 





 

































ii

iiiiiiiiii

iiiiii

iiiiiiiii

ssh

yrhyrhyqhq
h

yqhq
h

yqhq
h

yqhq
h

yp
h

hypp
h

hypyy







 

(10) 
Rearranging equation (10), we get the following three term recurrence relation: 
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iiiiiii HyGyFyE   11 , for .1,...,2,1  Ni        (11) 
 

Where, 
 

)(
2

22
11

2
1

22
1

222
1

22

1

1111

111















 





 
















 





 






 







 

iii

iiiii

iiiiiiiii

iiii

sshH

rhqhq
h

p
h

hG

rhqhq
h

qhq
h

ppphF

qhq
h

pE







 

(12) 
We solve the above tri-diagonal system by using method of Discrete Invariant Imbedding 

Algorithm described in section 3. 
 
2.2. Right-end boundary layer problems 
 
  We now assume that 0)(  Mxa throughout the interval [0, 1], where M is negative 
constant. This assumption merely implies that the boundary layer will be in the neighborhood of 
x = 1. 

By using Taylor series expansion in the neighborhood of the point x, we have 
 

  )(
2

)()( xyxyxyxy 
         (13) 

 

and consequently, equation (3) is replaced by the following first order differential equation: 
 

  )()()()()()( xsyxrxyxqxyxpxy          (14) 
 

for  10   , where 
 

             
 2

s     ,
2

2     ,
2

   ,1 xfxxbxrxaxqxp 



       (15) 

 

Now we divide the interval [0, 1] into N  equal subintervals of mesh size Nh /1  so 
that ihxi  , .,...,2,1,0 Ni   Integrating equation (14) with respect to x from ii xx   to1 , we get 
 

     dxxsxyxrxyxqxyxpxyqxyqyy
i

i

x

x
iiiiii 



 

1

)()()()()( )()( 111   

 

By using Trapezoidal rule to evaluate the integral in the above equation, we get: 
 

    
   iiiiiiiiii

iiiiiiiiii

ssyryrhxyqxyqh

xypxyphxyqxyqyy









11111

11111

2
)()(

2
               

2
)()(




 

(16) 
Again, by means of Taylor series expansion and then approximating )(xy by linear 

interpolation, we get: 
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1
1 1)()()( 

 





 







 
 ii

ii
iiii y

h
y

hh
yyyxyxyxy       (17a) 

 

ii
ii

iiii y
h

y
hh

yyyxyxyxy 
 






 






 

 


 1
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1111 1)( )()(     (17b) 
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 
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iiii y
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y
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yxyxyxy  
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 
 


 1

1
1111 1)()()(    (17d) 

 

By making use of equations (17) in (16), we obtain 
 

)(
2
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1                  
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1                   

2
1
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1

2

1
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11111
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iiiiiiiiii

iiiiii

iiiiiiiii
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yqhq
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h

yqhq
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h

hpyp
h
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





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




 





 







 






 





 




























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















 

(18) 
Rearranging equation (18), we get the following three term recurrence relation: 

 

iiiiiii HyGyFyE   11 , for .1,...,2,1  Ni        (19) 
 

Where, 
 
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
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(20) 
We solve the above tri-diagonal system by using method of Discrete Invariant Imbedding 

Algorithm described in the next section. 
 
3. Discrete invariant imbedding algorithm 
 

We now describe the Thomas algorithm which is also called Discrete Invariant Imbedding 
Algorithm Angel & Bellman [1] to solve the three term recurrence relation: 
 

iiiiiii HyGyFyE   11 , for .1,...,2 ,1  Ni        (21) 
 

Let us set a difference relation of the form 
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iiii TyWy  1  , for .1 ,2,...,1  ,2  NNi        (22) 
 

where )( ii xWW  and )( ii xTT  which are to be determined. From (22), we have 
 

111   iiii TyWy           (23) 
 

Substituting (23) in (21), we have 
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
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
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1
1
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i
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i
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By comparing (22) and (24), we get the recurrence relations 
 





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





1iii

i
i WEF

G
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
















1

1

iii

iii
i WEF

HTET           (26) 
 

To solve these recurrence relations for 1,...,3,2  Ni , we need the initial conditions for 
0W and 0T . If we choose 00 W , then we get 0T . With these initial values, we compute 

iW  and iT for 1,...,3,2  Ni , from eqns.(25) and(26) in forward process, and then obtain iy  in 
the backward process from (22). 

For further discussion on the conditions for the discrete invariant imbedding algorithm to be 
stable, one can see (Angel and Bellman [1], Elsgolt’s and Norkin [2], and Kadalbajoo and Reddy 
[3]). 
 

,0iE  ,0iG  iii GEF   and ii GE  .       (27) 
 

In our method, one can easily show that if the assumptions a(x) > 0, b(x) < 0 and 
  0)(  xa  hold, then the above conditions (27) hold and thus the invariant imbedding 
algorithm is stable. 
 
4. Numerical experiments 
 

To demonstrate the applicability of the method, two numerical experiments with left-end 
boundary layer and two numerical experiments with right-end boundary layer are considered. We 
compared the computed results with the exact solution of the problems where the exact solution 
of the problems is known; and we also have tested the effect of small delay parameter on 
computed solution of the problem for different values of  of  )(o which are presented by 
numerical experiments whose exact solutions are not known. 
 
Example 4.1. Consider the singularly perturbed delay differential equation with left layer: 
 

[0,1]    x; 0)()()(  xyxyxy  with y(0) = 1 and y(1) = 1. 
 

The exact solution is given by 
 

21

2112 )1()-(1 )(
m

mm

xmmxm

ee
eeeexy




  
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where 
)(2

)(411
1 





m  and 

)(2
)(411

2 





m . 
 

The computational results are presented in the Table 1, 2, 3 and 4 for  =0.01 and 
0.001 for different values of  . 

 
 
 

Table 1. Numerical results of Example 4.1 for 01.0 ,  =0.001, N =100 
x Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000E+00 
0.04 0.3828886 0.3932546 1.037E-02 
0.05 0.3867368 0.3923167 5.580E-03 
0.06 0.3906236 0.3946420 4.018E-03 
0.07 0.3945495 0.3980572 3.508E-03 
0.09 0.4025200 0.4058020 3.282E-03 
0.20 0.4493248 0.4493248 0.000E+00 
0.40 0.5488078 0.5488078 0.000E+00 
0.60 0.6703169 0.6703169 0.000E+00 
0.80 0.8187288 0.8187288 0.000E+00 

1.00 1.0000000 1.0000000 0.000E+00 
 
 
 
 

Table 2. Numerical results of Example 4.1 for 01.0 ,  =0.003, N =100 
x Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000E+00 
0.03 0.3685689 0.3900410 2.147E-02 
0.04 0.3845921 0.3874350 2.843E-03 
0.05 0.3853987 0.3897590 4.361E-03 
0.07 0.3937812 0.3971220 3.341E-03 
0.09 0.4017884 0.4050630 3.274E-03 
0.30 0.4958891 0.4989910 3.102E-03 
0.50 0.6059232 0.6086280 2.705E-03 
0.70 0.7403729 0.7423540 1.981E-03 
0.90 0.9046561 0.9054620 8.062E-04 

1.00 1.0000000 1.0000000 0.000E+00 
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Table 3. Numerical results of Example 4.1 for 001.0 ,  =0.0003, N =100 
x Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000E+00 
0.02 0.3753151 0.3755683 2.532E-04 
0.03 0.3790854 0.3793402 2.548E-04 
0.05 0.3867434 0.3869979 2.545E-04 
0.07 0.3945560 0.3948103 2.543E-04 
0.08 0.3985214 0.3987754 2.540E-04 
0.20 0.4493313 0.4495803 2.490E-04 
0.40 0.5488138 0.5490419 2.281E-04 
0.60 0.6703218 0.6705075 1.857E-04 
0.80 0.8187319 0.8188452 1.133E-04 

1.00 1.0000000 1.0000000 0.000E+00 
 
 

Table 4. Numerical results of Example 4.1 for 001.0 ,  =0.0008, N =100 
x Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000E+00 
0.02 0.3767505 0.3753847 1.366E-03 
0.03 0.3788219 0.3791566 3.347E-04 
0.04 0.3827179 0.3829664 2.485E-04 
0.06 0.3904489 0.3907013 2.524E-04 
0.08 0.3983404 0.3985924 2.520E-04 
0.20 0.4491538 0.4494008 2.470E-04 
0.40 0.5486512 0.5488775 2.263E-04 
0.60 0.6701894 0.6703736 1.842E-04 
0.80 0.8186510 0.8187635 1.125E-04 

1.00 1.0000000 1.0000000 0.000E+00 
 
Example 4.2. Now we consider an example of variable coefficient singularly perturbed delay 

differential equation with left layer: 
 

1y(1)  1,y(0)   with 0)()()( 5.0   xyxyexy x   
 

For which the exact solution is not known. This example is considered to show 
the effect of the small shift on the boundary layer solution. 
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The computational results are presented in the Table 5 and 6 for  =0.01 and 
0.001 for different values of  . 

 
Table 5. Numerical results of example 4.2 for  =0.01, N =100 different values of   

x 
Numerical Solutions 

 =0.00  =0.001  =0.002  =0.003  =0.004 
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.03 0.2830336 0.2818345 0.2802429 0.2695371 0.2239334 
0.05 0.2882965 0.2876440 0.2869820 0.2856769 0.2756947 
0.07 0.2942855 0.2936334 0.2929779 0.292280 0.2898927 
0.09 0.3004657 0.2998095 0.2991498 0.2984845 0.2975120 
0.10 0.3036281 0.3029698 0.3023080 0.3016434 0.3011034 
0.20 0.3381277 0.3374511 0.3367710 0.3360870 0.3353999 
0.40 0.4264295 0.4257381 0.4250430 0.4243436 0.4236403 
0.60 0.5510259 0.5503808 0.5497320 0.5490786 0.5484208 
0.80 0.7313973 0.7309322 0.7304640 0.7299923 0.7295169 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 
 

Table 6. Numerical results of example 4.2 for  =0.001, N =100 different values of   

x 
Numerical Solutions 

 =0.0001  =0.0002  =0.0003  =0.0004  =0.0008 
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.02 0.2793129 0.2790174 0.2788556 0.2788358 0.2803663 
0.04 0.2847015 0.2846368 0.284572 0.2845069 0.2842517 
0.06 0.2905979 0.2905328 0.2904677 0.2904021 0.2901406 
0.08 0.2966775 0.2966121 0.2965465 0.2964805 0.2962173 
0.10 0.3029474 0.3028815 0.3028156 0.3027491 0.3024842 
0.20 0.3374169 0.3373493 0.3372816 0.3372131 0.3369409 
0.40 0.4256782 0.4256091 0.4255397 0.4254698 0.4251915 
0.60 0.5502985 0.5502338 0.5501689 0.5501038 0.5498438 
0.80 0.7308509 0.7308043 0.7307575 0.7307104 0.7305229 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 
Example 4. 3. Consider the singularly perturbed delay differential equation with right layer: 
 

[0,1] x; 0)()()(  xyxyxy  with y(0) = 1 and y(1) = - 1. 
 

The exact solution is given by 
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The computational results are presented in the Table 7, 8 and 9 for  =0.01 and 
different values of  . 

 
Table 7. Numerical results of example 4.3 for  =0.01, 002.0 , N = 100 

x Numerical solution Exact solution Absolute Error 
0.00 1.0000000 1.0000000 0.000E+00 
0.10 0.9051042 0.9058985 7.943E-04 
0.30 0.7414737 0.7434276 1.954E-03 
0.50 0.6074253 0.6100955 2.670E-03 
0.80 0.4503898 0.4535618 3.172E-03 
0.91 0.4036031 0.4061460 2.543E-03 
0.93 0.3955912 0.3951282 4.630E-04 
0.94 0.3915125 0.3862416 5.271E-03 
0.95 0.3869567 0.3708223 1.613E-02 
0.96 0.3801894 0.3401704 4.002E-02 
1.00 -1.0000000 -1.0000000 0.000E+00 

 
 

Table 8. Numerical results of example 4.3 for  =0.01, 003.0 , N = 100 
x Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000E+00 
0.10 0.9051947 0.9059848 7.901E-04 
0.30 0.7416958 0.7436400 1.944E-03 
0.60 0.5501123 0.5530005 2.888E-03 
0.80 0.4507494 0.4539073 3.158E-03 
0.91 0.4039555 0.4059563 2.001E-03 
0.93 0.3958005 0.3933562 2.444E-03 
0.94 0.3913622 0.3825042 8.858E-03 
0.95 0.3856679 0.3635170 2.215E-02 
0.97 0.3492044 0.2511996 9.800E-02 
1.00 -1.0000000 -1.0000000 0.000E+00 

 
 

Table 9. Numerical results of example 4.3 for  =0.01, 008.0 , N = 100 
x Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000E+00 
0.20 0.8201722 0.8215815 1.409E-03 
0.40 0.6726823 0.6749963 2.314E-03 
0.60 0.5517152 0.5545645 2.849E-03 
0.80 0.4525010 0.4556031 3.102E-03 
0.91 0.4042167 0.4004646 3.752E-03 
0.92 0.3984778 0.3900229 8.455E-03 
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0.93 0.3908216 0.3747227 1.610E-02 
0.94 0.3790436 0.3508411 2.820E-02 
1.00 -1.0000000 -1.0000000 0.000E+00 

Example 4.4. Now we consider an example of variable coefficient singularly perturbed delay 
differential equation with right layer: 

 

1y(1)  1,y(0)  with  0)()()(  xyxyexy x   
 

For which the exact solution is not known. This example is considered to show 
the effect of the small shift on the boundary layer solution. 
The computational results are presented in the Table 10 and 11 for  =0.01 and 
0.001 for different values of  . 

 
Table 10. Numerical results of example 4.4 for  =0.01, N =100 different values of   

x 
Numerical solutions 

 = 0.00  = 0.003  = 0.006  = 0.008 
0.00 1.0000000 1.0000000 1.0000000 1.0000000 
0.20 0.8344690 0.8353115 0.8361393 0.8366833 
0.40 0.7195132 0.7207859 0.7220381 0.7228627 
0.60 0.6372644 0.6387585 0.6402303 0.6412004 
0.80 0.5769618 0.5785688 0.5801532 0.5811983 
0.91 0.5505952 0.5522395 0.5539518 0.5553138 
0.93 0.5462266 0.5479044 0.5501223 0.5524401 
0.94 0.5440876 0.5458574 0.5489668 0.5525444 
0.95 0.5419781 0.5441055 0.5493786 0.5553575 
0.97 0.5378680 0.5469612 0.5683851 0.5858082 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 

 
Table 11. Numerical results of example 4.4 for  =0.001, N =100 different values of   

x 
Numerical Solutions 

 = 0.0001  = 0.0003  = 0.0006  = 0.0008 
0.00 1.0000000 1.0000000 1.0000000 1.0000000 
0.20 0.8343205 0.8343771 0.8344627 0.8345196 
0.30 0.7718209 0.7718945 0.7720051 0.7720788 
0.50 0.6748798 0.6749741 0.6751158 0.6752099 
0.60 0.6370457 0.6371462 0.6372970 0.6373973 
0.90 0.5526100 0.5527205 0.5528854 0.5529957 
0.92 0.5481805 0.5482913 0.5484567 0.5485674 
0.94 0.5438731 0.5439842 0.5441500 0.5442612 
0.96 0.5396839 0.5397965 0.5399709 0.5400962 
0.98 0.5358225 0.5364740 0.5379835 0.5392989 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 
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5.  Discussions and conclusions 
 

We have presented a numerical integration method to solve singularly perturbed delay 
differential equations. The scheme is repeated for different choices of the delay parameter,   
and perturbation parameter, . The choice of   is not unique, but can assume any number of 
values satisfying the condition, 0< <<1 and      with  1O  and   is not too large, 
Lange and Miura [9]. To reduce the amount of computations, we fix the mesh size h and vary the 
value of . Although the solutions are computed at all the points of mesh size h, only few values 
have been reported.  To demonstrate the efficiency of the method, we considered some 
numerical examples of boundary value problems with constant and variable coefficients for 
different values of the delay and perturbation parameters. Most existing numerical methods 
produce good results for h  which is very costly and time consuming (Example see [7]) 
whereas, in this paper we are tried to develop the method which produce good results for h ; 
and from the computational results, it is observed that the proposed method approximates the 
exact solution very well for h  for which other classical finite difference methods fails to 
give good results.  The small shift,   affects both the boundary layer solutions (left and right) 
in similar fashion but reversely. That is, as   increases the size/thickness of the left boundary 
layer decreases while that of the right boundary layer increases (See Table 5, 6, 10, 11). This 
method does not depend on asymptotic expansion as well as on the matching of the coefficients. 
Thus, we have devised an alternative technique of solving boundary value problems for 
singularly perturbed delay differential equations, which is easily implemented on computer and 
is also practical. 
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