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Abstract: Optimization of process parameters is important to achieving high quality in the 
machining process, especially where more complex multiple performance optimization is 
required. The present investigation focuses on the multiple performance optimization on end 
milling characteristics of LM25 Al/SiCp metal matrix composites. The process parameters used 
for the experiments were spindle speed, feed rate, depth of cut, and percentage weight of silicon 
carbide. Experiments were carried out according to response surface methodology (RSM). 
Statistical models were developed for tool flank wear and surface roughness. These models were 
used for optimization by which the optimum parameter settings were obtained with a view to 
minimizing the responses. The Non-dominated Sorting Genetic Algorithm (NSGA-II) tool was 
used to optimize the cutting conditions, yielding a non-dominated solution set that is reported 
here. 
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1. Introduction 
 

New research in the material science has been directed towards the development of new light 
weight engineering materials processing high specific strength and stiffness at elevated 
temperatures and good creep, fatigue and wear resistance. That is because advanced automotive 
and aerospace technology requires these materials to improve performance. Particulate 
reinforced MMCs have received considerable attention due to their low cost when compared to 
long fiber reinforced MMCs and due to their better properties than those of monolithic alloys [1]. 
These materials may have a wide application, especially for components, which are exposed to 
friction [2]. The most popular reinforcements are silicon carbide and alumina. Aluminium, 
titanium and magnesium alloys are commonly used as the matrix phase. It is possible to produce 
high quality MMC components to near-net shape through various manufacturing techniques, but 
component design and dimensional tolerance requirements, the need for machining cannot be 
completely eliminated. 

End milling process is classified as material removal process. This process and its machine 
tools are capable of producing complex shapes with the use of multi tooth cutting tools. In the 
end milling process, a multi tooth cutter rotates along various axes with respect to the workpiece. 
Wear on the flank of a cutting tool is caused by friction between the newly machined workpiece 
surface and the contact area on the tool flank. Because of the rigidity of the workpiece, the worn 
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area referred to the flank wear land, must be parallel to the resultant cutting direction. The width 
of the wear land is usually taken as a measure of the amount of wear and can be readily 
determined by means of a toolmaker’s microscope. In the end, excessive flank wear will lead to 
poor surface texture, inaccuracy and increasing friction as the edge shape changes. 

Several studies have been done in order to examine the efficiency of different cutting tool 
materials, such as cemented carbide, coated carbide, and diamond in turning, milling, drilling, 
reaming, and threading of MMC materials. The main problem while machining MMC is the 
extensive tool flank wear caused by the very hard and abrasive reinforcements. Manna et al. [1] 
investigated the machinability of Al/SiC MMC and found that no built-up edge (BUE) is formed 
during machining of Al/SiC MMC at high speed and low depth of cut and also observed a better 
surface finish at high speed with low feed rate and low depth of cut. 

Suresh Kumar Reddy et al. [3] studied quality of components produced during end milling of 
Al/SiC particulate metal matrix composites (PMMCs). The results showed that the presence of 
the reinforcement enhances the machinability in terms of both surface roughness and lower 
tendency to clog the cutting tool, when compared to a non-reinforced Al alloy. These results 
would serve to understand that the end milling machining process can provide better inputs to 
ensure better machining of Al/SiC PMMC and are expected to lead technological and 
economical gains with the use of Al/SiC PMMC in various industrial applications by replacing 
Al alloys. Li and Seah [4] studied the effect of size and volume content of SiC particles in 
machinability of MMC. According to their results, when the amount of reinforcement is more 
than some critical percentage, the tool wear is more severe. 

Ozben et al. [5] investigated the mechanical properties and the effects of machining 
parameters on tool wear and surface roughness of silicon carbide particulate (SiCp) reinforced 
aluminum MMC for different volume fraction. It was observed that the increase in reinforcement 
addition produced better mechanical properties such as impact toughness and hardness. The 
machinability properties of the selected material were studied and higher SiCp reinforcement 
produced a higher tool wear. The surface roughness was generally affected by feed rate and 
cutting speed. Mathematical modeling in terms of process parameters for tool wear has been 
carried out by many researchers. Kaye et al. [6] developed a mathematical model based on 
response surface methodology to predict tool flank wear using spindle speed change. 

However, for the practical machining of Al/SiCp metal matrix composite, optimal machining 
parameters must be determined to achieve less tool wear and surface roughness. This paper 
discusses the application of the Non-dominated Sorting Genetic Algorithm (NSGA-II) to 
optimize the machining parameters for machining Al/SiCp composites with multiple 
characteristics. The principles of multiple performance optimization differ from those of single 
performance optimization. In multi-performance optimization, there is more than one objective 
function, each of which may have a different optimal solution. Most of the time these objectives 
conflict with one another (i.e., optimizing one objective compromises the other objectives) [7, 8]. 

The Genetic Algorithm (GA) is an evolutionary algorithm. It is based on the mechanics of 
natural selection and it combines the characteristics of direct search and probabilistic selection 
methods. It is a very simple yet powerful tool for obtaining global optimum values for 
multi-model and combinatorial problems. The GA works with a population of feasible solutions 
and, therefore, it can be used in multi-objective optimization problems to simultaneously capture 
a number of solutions [9]. In a typical multi-objective optimization problem, there exists a set of 
solutions which are superior to the other solutions in the search space, when all objectives are 
considered, but which are inferior to other solutions in the space with respect to one or more 
objectives. These are known as Pareto-optimal solutions or non-dominated solutions. The rest of 
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the solutions are known as dominated solutions [7]. GA based multi-objective optimization 
methodologies have adequately demonstrated their usefulness in finding a well-converged and 
well-distributed set of near Pareto-optimal solutions [7, 10]. The Non-dominating Sorting GA-II 
(NSGA-II) is a fast, elitist multi-objective genetic algorithm that is widely used for generating 
the Pareto frontier. Its main advantage in solving multi-objective problems is that it leads the 
search toward the global Pareto front while maintaining diversity of the solution set along that 
front [11]. 

This study focuses on the end milling characteristics of Al/SiCp composites, whose field of 
application is constantly growing. The machining tests were performed on a vertical milling 
machine using an uncoated solid end mill cutter. The experiments were designed using response 
surface methodology. The process parameters-spindle speed, feed rate, depth of cut and various 
percentage weight of silicon carbide were optimized with multiple response characteristics 
including tool flank wear and surface roughness. Models were developed for tool flank wear and 
surface roughness. These models were used for optimization by which the optimum parameter 
settings were obtained with a view to minimizing tool flank wear and minimizing surface 
roughness. The NSGA-II algorithm was used to optimize the Al/SiCp composite machining 
process. The method presented here may be useful in a machine and/or manufacturing shop. 
 
2. Experimental work 
 

The work material used for the present investigation is LM 25Al/SiCp metal matrix 
composites with dimensions of 100 mm × 50 mm × 40 mm. The composites were manufactured 
by a stir casting method. The experiments were planned using CCD for the design of 
experiments (DOE), which helps reduce the number of experiments. Four machining parameters 
were selected: spindle speed, feed rate, depth of cut and percentage weight of silicon carbide. 
Since the considered factors are multi-level variables whose outcome effects are not linearly 
related, it was decided to use five level tests for each factor. The machining parameters used and 
their levels are presented in Table 1. 

The end milling experiments have been conducted in CNC HASS vertical milling machine 
using uncoated solid carbide cutters, having diameter of 12 mm, helix angle of 45º, rake angle of 
10º and number of flutes 4. Experiments have been conducted according to central composite 
second order rotatable design (CCD) as depicted in Table 2. In the present study, the machining 
performance was evaluated by the following responses: 
 
 

Table 1. Experimental parameters and their levels 

Process parameters Unit Notation 
Levels 

(-2) (-1) 0 (+1) (+2) 
Spindle speed RPM N 2000 2500 3000 3500 4000 

Feed rate mm/rev f 0.02 0.03 0.04 0.05 0.06 
Depth of cut mm d 0.5 1 1.5 2 2.5 

Silicon Carbide %wt S 5 10 15 20 25 
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Table 2. Experimental results 

Ex.No N (RPM) f 
((mm/rev) 

d 
(mm) 

S 
( %wt.) 

VBmax, 
mm Ra, µm 

1 2500 0.03 1 10 0.224 4.406 
2 3500 0.03 1 10 0.284 3.812 
3 2500 0.05 1 10 0.258 6.034 
4 3500 0.05 1 10 0.291 5.229 
5 2500 0.03 2 10 0.235 4.472 
6 3500 0.03 2 10 0.294 3.802 
7 2500 0.05 2 10 0.270 6.032 
8 3500 0.05 2 10 0.297 5.312 
9 2500 0.03 1 20 0.338 4.978 
10 3500 0.03 1 20 0.407 4.395 
11 2500 0.05 1 20 0.377 6.789 
12 3500 0.05 1 20 0.422 5.945 
13 2500 0.03 2 20 0.358 5.071 
14 3500 0.03 2 20 0.413 4.402 
15 2500 0.05 2 20 0.384 6.804 
16 3500 0.05 2 20 0.419 6.054 
17 2000 0.04 1.5 15 0.262 6.202 
18 4000 0.04 1.5 15 0.361 4.638 
19 3000 0.02 1.5 15 0.314 3.679 
20 3000 0.06 1.5 15 0.357 7.008 
21 3000 0.04 0.5 15 0.309 5.062 
22 3000 0.04 2.5 15 0.341 5.299 
23 3000 0.04 1.5 5 0.211 4.334 
24 3000 0.04 1.5 25 0.443 5.639 
25 3000 0.04 1.5 15 0.322 5.183 
26 3000 0.04 1.5 15 0.328 5.177 
27 3000 0.04 1.5 15 0.319 5.221 
28 3000 0.04 1.5 15 0.326 5.163 
29 3000 0.04 1.5 15 0.323 5.155 
30 3000 0.04 1.5 15 0.327 5.199 
31 3000 0.04 1.5 15 0.329 5.229 

 
2.1. Tool flank wear 
 
  Keeping tool wear to a minimum is another important criterion, since it will affect the part size 
and quality (e.g., surface finish) of products [12, 13]. There are four general wear zones on a 
typical cutting tool viz: crater wear, flank wear, nose radius wear and notch wear. Among these, 
flank wear is the most important and gives an overall indication of the wear process. Flank wear 
produces wear lands on the side and end flanks of the tool because of the rubbing action of the 
machined surface, which has been considered in this work and measured using a toolmaker’s 
microscope. The experimental results are presented in Table 2. 
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2.2. Surface roughness 
 

Surface finish is another important aspect in the machining of composites. The average surface 
roughness (Ra), which is mostly used in industry, is taken up for the present study. The surface 
roughness was measured a number of times and averaged. The surface roughness of test pieces 
has been measured using Talysurf tester with a sampling length of 10mm. The experimental 
results are presented in Table 2. 
 
3. Statistical modeling 
 

The Response surface modelling is a useful tool for searching out the relationship between 
various process parameters and the machining criteria of a machining process to explore the 
effect of these parameters on the response criteria of the machining process. The objective of the 
Response surface modelling is to develop the mathematical link between the response and 
predominant machining parameters. The general second order polynomial response surface 
mathematical model can be considered to evaluate the parametric influences on the various 
criteria as follows: 
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where Yu is the corresponding response, bi represents the linear effect of xi, bii represents the 
quadratic effect of xi and bij reveals the linear-by-linear interaction between xi and xj. 
  Owing to wide ranges of factors, it was decided to use four factors, five levels, and rotatable 
CCD matrix to optimize the experimental conditions. The main objective of the factorial 
experiments consists of studying the relationship between the response as a dependent variable 
and the parameter levels. This approach helps to understand in a better way, how the change in 
the levels of application of a group of parameters affects the response. A combination of the 
levels of the parameter, which leads to certain optimum response, can also be located through 
this approach. In order to investigate the influence of process parameters on the flank wear 
(VBmax) and surface roughness (Ra) four principal process parameters such as the spindle speed 
(N), feed rate (f), depth of cut (d), and percentage weight of silicon carbide (S) were taken. In 
this study, these process parameters were chosen as the independent input variables. The desired 
responses were the flank wear (VBmax) and the surface roughness (Ra) which are assumed to be 
affected by the above four principal process parameters. A 2k factorial with central composite 
second order rotatable design was used (in this case k=4). This consists of nc=2k=16 corner 
points at +1 level, na=2k=8 axial points at γ=+2, and a centre point at zero level repeated seven 
times n0 to estimate the pure error. 
  Statistical models based on second-order polynomial equation (1) were developed for tool 
flank wear and surface roughness using the experimental results and are given below: 
 

Tool flank wear (VBmax) = – 0.2551 + (0.0002 X1) + (2.4923 X2) + (0.0404 X3) 
+ (0.0084 X4) + (34.4196 X22) + (0.0033 X32) 
+ (0.0001 X42) – (0.0013 X1 X2) – (0.3125 X2 X3) 
+ (0.0088 X2 X4) – (0.0002 X3 X4)      (2) 

 

Surface roughness (Ra) = 4.716 – (0.002 X1) + (61.948 X2) + (0.050 X3) 
+ (0.099 X4) + (365.551 X22) – (0.017X32) – (0.002 X42) 
– (0.008 X1 X2) + (0.612 X2 X3) + (0.789 X2 X4) + (0.002 X3 X4)      (3) 
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Here spindle speed (X1) is in RPM, feed rate (X2) is in mm/rev., depth of cut (X3) is in mm 
and various percentage weight of silicon carbide (X4). 
 
4. NSGA-II algorithm 
 
  The Non-dominated Sorting Genetic Algorithm, which was introduced by Srinivas and 
Kalyanmoy [7], has been criticized for its high computational complexity, lack of elitism and its 
choice of the optimal parameter value for sharing parameter σ. The NSGA-II is a modified 
version, which has a better sorting algorithm, incorporates elitism and does not require the 
choosing of a sharing parameter a priori. The flow chart of the NSGA-II is shown in Figure 1. 
 

 
Figure 1. Flow chart of NSGA-II program 

 
4.1. Description of NSGA-II algorithm 
 
  The steps involved in the solution of optimization problem using NSGA-II are as follows. 
1. Population Initialization. The population is initialized based on the problem range and 
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constraints if any. 
2. Non-Dominated sort. The initialized population is sorted based on non-domination. The fast 

sort algorithm is described as below. 
For each individual p in main population P: 
(a) Initialize Sp = . This set would contain all the individuals that are being dominated by p. 
(b) Initialize np = 0. This would be the number of individuals that dominate p. 
For each individual q in P: 
(a) If p dominates q then add q to the set Sp, i.e., 
 

Sp = SP U {q}          (4) 
 

(b) Else if q dominates p then increment the domination counter for p, i.e., 
 

np = np + 1          (5) 
 

(c) If np = 0, i.e., no individuals dominate p then p belongs to the first front. Set rank of 
individual p to 1, i.e., Prank = 1. Update the first front set by adding p to front one, i.e., 
 

F1 = F1U {p}          (6) 
 

(d) This is carried out for all the individuals in main population P. 
(e) Initialize the front counter to one, i = 1. 
(f) The following is carried out while the ith front is nonempty, i.e., Fi ≠ . 
Q = . The set for storing the individuals for (i + 1)th front. 
For each individual p in front Fi 
(a) For each individual q in Sp (Sp is the set of individuals dominated by p). 
(b) If set nq = nq -1, decrement the domination count for individual q. 
(c) If nq = 0 then none of the individuals in the subsequent fronts would dominate q. Hence set  

qrank = i + 1. Update the set Q with individual q, i.e., 
 

Q=Q U {q}          (7) 
 

(d) Increment the front counter by one. 
(e) Now the set Q is the next front and hence Fi = Q. 
  This algorithm is better than the original NSGA [10] since it utilizes the information about the 
set that an individual dominate (Sp) and number of individuals that dominate the individual (np). 
3. Crowding Distance. Once the non-dominated sort is complete the crowding distance is 

assigned. Since the individuals are selected based on rank and crowding distance all the 
individuals in the population are assigned a crowding distance value. Crowding distance is 
assigned front wise and comparing the crowding distance between two individuals in 
different front is meaningless [10]. The crowing distance is calculated as below. 

For each front Fi, n is the number of individuals. 
(a) Initialize the distance to be zero for all the individuals, i.e., Fi(dj) = 0,where j corresponds to 

the jth individual in front Fi. 
(b) For each objective function m. 
(c) Sort the individuals in front Fi based on objective m, i.e., I = sort (Fi,m). 
(d) Assign infinite distance to boundary values for each individual in Fi, i.e., 

 

I (d1) =  and  I(dn)=          (8) 
 

Where, I(d1) and I(dn) are the distances between the extreme solutions and the boundary 
solutions of the obtained nondominated set. 
For k = 2 to (n-1) 
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I (k).m is the value of the mth objective function of the kth  individual in I. 
max

mf  and 
min

mf are the maximum and minimum value of the objective function mf . 
The basic idea behind the crowing distance is finding the Euclidian distance between each 

individual in a front based on their m objectives in the m dimensional hyper space. The 
individuals in the boundary are always selected since they have infinite distance assignment. 
4. Selection 

Once the individuals are sorted based on non-domination and with crowding distance assigned, 
the selection is carried out using a crowded-comparison-operator ( ). The comparison is 
carried out as below based on 
(a) non-domination rank prank i.e. individuals in front Fi will have their rank as prank = i. 
(b) crowding distance Fi (d j) 

p q   if 
prank < qrank         (10) 
or if p and q belong to the same front Fi then Fi(dp) > Fi(dq) i.e. the crowing  distance 
should be more. 

The individuals are selected by using a binary tournament selection with crowed- 
comparison-operator. 
5. Genetic Operators. Real-coded GA's use Simulated Binary Crossover (SBX) operator for 

crossover and polynomial mutation [14]. 
(a) Simulated Binary Crossover. 

The SBX operator works with two parent solutions and creates two offspring. The difference 
between offspring and parent depends on crossover index ηc. It has two properties: (a) the 
difference between corresponding decision variables of the created offspring is proportional to 
the difference between corresponding decision variables of the parent solutions; (b) offspring 
having decision variables nearer to those of the parent solutions are more likely to be selected. 
The procedure for finding the offspring solutions xj (1,t+1 and xi (2,t+1 from parent solutions xj (1,t) 
and xi (2,t) is given below: A spread factor  i is defined as the ratio of the absolute difference in 
children values to that of the parents: 
 


i = (xj (1,t+1) - xi (2,t+1)) / (xj (1,t) - xi (2,t))       (11) 

 

First a random number ui between 0 and 1 is created. Thereafter, from a specified probability 
distribution function, the ordinate βqi is found so that the area under the probability curve from   
0 to βqi is equal to the chosen random number ui : 

Application of A Fast and Elitist Multi-Objective Genetic Algorithm to Reactive... 
 

0.5( c+ 1) βi
 ηc

 ,  if  βi1; 
         (12) 

0.5( c+ 1) ,1
2ci

  otherwise 
 

This distribution can be obtained from a uniformly sampled random number ui between (0,1). 


c is the distribution index for crossover. 

P (  i) 
= 
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Using equation 13, calculate β qi by equating the area under the probability curve equal to u i as 
follows: 
 

            1
1

2 c
iu   ,  if ui  0.5; 

 

          
 1

1

1(2
1 


c

iu


 ,  otherwise.       (13) 
 

 

In the above equations (11, 12), the distribution index ηc is any positive real number. After 
obtaining  qi, the children solutions are calculated as follows: 
 

xj (1,t+1) = 0.5 [ (1 +  qi) xj (1,t)+(1 -  qi) xj (2,t)  ], 
 

xi (2,t+1) = 0.5 [ (1 -  qi) xj (1,t) +(1 +  qi) xj (2,t)  ].      (14) 
 

where xi is the ith child with qth component, xj is the selected parent and  qi (≥ 0) is a sample 
from a random number generated. 
(b) Polynomial Mutation: 

The probability of creating a solution near to the parent is higher than the probability of 
creating one distant from it. The shape of the probability distribution is directly controlled by an 
external parameter ηm and the distribution remains unchanged throughout the iterations. Like in 
the SBX operator, the probability distribution can also be a polynomial function, instead of a 
normal distribution: 

The polynomial mutation is performed by 
 

yi (1,t+1)=  (xj (1,t+1)  +   (xj (U) -  xi (L)) i         (15) 
 

where yi (1,t+1) is the child and xj (1,t+1) is the parent with xj (U) being the upper bound on the parent 
component, xi (L) is the lower bound and  i is small variation which is calculated from a 
polynomial distribution. 
 

P ( i ) = 0.5( m+ 1)(1- i )
 m,        (16) 

 
 

           1
1

2 m
ir



- 1,  if  ri  0.5 ; 
 i =          (17) 

    1- [2(1- ri )]
 1

1
m

,  if  ri  0.5 ; 
 

ri is an uniformly sampled random number between (0; 1) and ηm is mutation distribution index. 
  For handling the bounded decision variables, the mutation operator is modified for two 
regions, i.e. [(xj

(L)- xi )] and [(xj-xi
(U))] . 

6. Recombination and Selection. The offspring population is combined with the current 
generation population and selection is performed to set the individuals of the next generation. 
Since all the previous and current best individuals are added in the population, elitism is 
ensured. Population is now sorted based on non-domination. The new generation is filled by 
each front subsequently until the population size exceeds the current population size. If by 
adding all the individuals in front Fj the population exceeds N then individuals in front Fj are 

 qi = 
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selected based on their crowding distance in the descending order until the population size is 
N. And hence the process repeats to generate the subsequent generations. 

The control parameters of NSGA-II must be adjusted to give the best performance. The 
parameters are: Probability of cross over Pc=0.9 with distribution index ηc=20, mutation 
probability Pm=0.25 and population size Pz=100. It was found that the NSGA-II with those 
control parameters produces better convergence and distribution of optimal solutions located 
along the Pareto optimal solutions. The 1000 generations are quite enough to find the true 
optimal solutions. 
 
5. Results and discussion 
 

The machining characteristics of Al/SiCp composites are an important area of study. These 
materials are known as the difficult-to-machine materials because of the hardness and abrasive 
nature of reinforcement element-like silicon carbide particles (SiCp). Due to the above facts, 
achieving multiple performances is very difficult. The NSGAII is used for optimization to 
achieve better multiple performances. 

The second-order polynomial model was developed for tool flank wear. The fit summary 
indicates that the quadratic model is statistically significant for analysis of flank wear. The value 
of R2 is over 99.65%, which indicates that the developed regression model is adequately 
significant at a 95% confidence level. It provides an excellent relationship between the 
machining parameters and the responses tool flank wear. 

An analysis of variance (ANOVA) was performed for tool flank wear and the results are 
presented in Table 3. The normal probability plot for tool flank wear is presented in Figure 2. It 
can be noticed that the residuals fall on a straight line, which means that the errors are normally 
distributed and the regression model is well fitted with the observed values. Figure 3 shows the 
residual values with fitted values for surface roughness. Figure 3 indicates that the maximum 
variation of -0.0100 to 0.0050, which shows the high correlation that exists between fitted values 
and observed values. 
 

 
Figure 2. Normal probability plot for VBmax, mm 
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Figure 3. Residual versus fitted values for VBmax, mm 

 
 

Table 3. Analysis of variance for flank wear, VBmax 

Source of 
variation 

Degree of 
freedom 

Sum of 
squares 

Mean sum 
of squares 

 
F- value 

 

 
p- value 

 
Regression 14 0.103963 0.007426 328.73 0.000 

Linear 4 0.102512 0.000268 11.88 0.000 
Square 4 0.000642 0.000160 7.10 0.002 

Interaction 6 0.000809 0.000135 5.97 0.002 
Residual Error 16 0.000361 0.000023   

Total 14 0.103963    
 
 

Similarly, the value of R2 for surface roughness is 99.85%, which means that the regression 
model provides an excellent explanation of the relationship between the independent variables 
(factors) and the response surface roughness. The associated p-value for the model is lower than 
0.05 (i.e. level of significance α=0.05, or 95% confidence), which indicates that the model can be 
considered statistically significant. The result proves that the feed rate and spindle speed enhance 
the surface finish. The ANOVA table for the quadratic model for Ra is presented in Table 4. The 
model results indicate that the model is significant at a 95% confidence level. The normal 
probability of residuals for Ra is presented in Figure 4. It is observed that the residuals are 
distributed normally and in a straight line and hence the model is adequate. The fitted values 
versus the residuals are presented in Figure 5. The residuals observed are from -0.075 to 0.050, 
which shows the high correlation that exists between the model and experimental values. 
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In the present work, a non-dominated sorting genetic algorithm, NSGA-II, was used to 
optimize multiple performances using the second-order models created. The NSGA-II algorithm 
ranked the individuals based on dominance. The control parameters in NSGA-II were adjusted to 
obtain the best performance. The parameters used are: probability of crossover=0.9 with 
distribution index 20, mutation probability 0.25 and population size 100. It was found that the 
above control parameter produces better convergence and distribution of optimal solutions. The 
100 generations were generated to obtain the true optimal solution. The non dominated solution 
set obtained over the entire optimization is shown in Figure 5. This figure shows the formation of 
the Pareto front leading to the final set of solutions. The 40 out of 100 sets were presented in 
Table 6; since none of the solutions in the non-dominated set is absolutely better than any other, 
any one of them is the “better solution”. As the best solution can be selected based on individual 
product requirements, the process engineer must therefore select the optimal solution from the 
set of available solutions. If the engineer desires to have a better surface finish, or less flank wear 
on the tool, a suitable combination of variables can be selected from Table 5. 

 

 
Figure 4. Normal probability plot for surface roughness, µm 

 

 
Figure 5. Residual versus fitted values for surface roughness, µm 
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Table 4. Analysis of variance for surface roughness, Ra 

Source of 
variation 

Degree of 
freedom 

Sum of 
squares 

Mean sum of 
squares F- value p- value 

Regression 14 22.0127 1.572334 763.09 0.000 
Linear 4 21.7361 0.078294 38.00 0.000 
Square 4 0.2282 0.057041 27.68 0.000 

Interaction 6 0.0485 0.008076 3.92 0.013 
Residual Error 16 0.0330 0.002060   

Total 30 22.0456    
 
 

Table 5. Optimal combinations of parameters for end milling process 
Ex.no N, RPM f, mm/rev d, mm S, %wt. VBmax, mm Ra, µm 

1 2508.11 0.023 2.08 9.3 0.239 3.929 
2 2744.99 0.021 1.09 12.08 0.252 3.783 
3 2122.19 0.027 2.2 8.03 0.196 4.395 
4 2271.40 0.020 0.81 12.0 0.216 4.171 
5 3182.14 0.020 1.59 13.17 0.318 3.065 
6 3685.33 0.020 0.66 5 0.364 2.570 
7 2227.17 0.02 1.62 11.99 0.221 4.121 
8 2530.47 0.02 1.04 9.07 0.253 3.775 
9 3533.68 0.021 0.87 19.46 0.403 2.145 
10 3638.67 0.020 0.52 5.11 0.414 2.027 
11 3731.99 0.020 0.57 6.1 0.429 1.869 
12 3806.48 0.020 0.5 5 0.434 1.752 
13 3510.35 0.031 0.56 5.1 0.395 2.234 
14 3055.40 0.021 1.38 16.4 0.332 2.921 
15 2332.16 0.023 1.60 10.0 0.223 4.093 
16 2658.79 0.022 1.91 7.2 0.274 3.549 
17 2430.84 0.020 1.0 12.6 0.241 3.904 
18 2239.04 0.03 0.69 5.3 0.213 4.204 
19 2390.49 0.021 1.41 11.4 0.230 4.024 
20 2145.52 0.030 1.15 5.34 0.200 4.349 
21 3113.13 0.020 1.36 15.84 0.339 2.840 
22 3137.02 0.02 1.9 16.19 0.342 2.809 
23 3078.74 0.04 0.65 5.34 0.206 4.286 
24 3997.01 0.02 0.9 5.02 0.466 1.461 
25 2727.13 0.02 1.2 7.14 0.284 3.442 
26 3198.75 0.02 1.41 10.1 0.351 2.706 
27 3018.21 0.020 1.55 14.26 0.296 3.310 
28 2171.94 0.02 1.5 6.4 0.204 4.308 
29 3452.21 0.02 0.82 5 0.388 2.311 
30 2078.25 0.02 0.57 8.2 0.191 4.454 
31 4000.00 0.02 0.5 5 0.467 1.456 
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From the experimental results presented in Table 2, the parameters listed in the experiment 
number 19 lead to minimum Ra of 3.679μm and the corresponding tool flank wear of 0.314mm, 
where the spindle speed, feed rate, depth of cut and %wt. of silicon carbide are 3000 RPM, 
0.02mm/rev, 1.5mm and 15%, respectively. By using NSGA-II, the optimized Ra value very 
close to the experimental value has been selected from Table 5. For trail No. 27, the surface 
roughness value is 3.310 μm and the corresponding tool flank wear is 0.296 mm, and the 
pertinent parameters are spindle speed, feed rate, depth of cut and %wt. of silicon carbide, which 
are 3018.21 RPM, 0.02mm/rev, 1.55mm, 14.26%, respectively. This indicates that the values 
obtained from the optimization technique are in close agreement with the experimental values 
and more or less for the same parameter settings. 

The verification of the test results under the selected optimum conditions for the cases of tool 
flank wear and surface roughness are shown in Figure 6. The predicted machining performance 
is compared with the actual machining performance and a good agreement is obtained between 
their performances. From the analysis of Table 6, it can be observed that the calculated error is 
small. The error between the experimental and the predicted values for tool flank wear and 
surface roughness lie within 3% and 6%, respectively. Obviously, this confirms excellent 
reproducibility of the experimental conclusions. 
 

 
Figure 6. Pareto optimal chart obtained through NSGA-II 

 
 

Table 6. Validation test results 

Spindle 
speed  

(RPM) 

Feed rate 
(mm/rev) 

Depth 
of cut 
(mm) 

Silicon 
Carbide 
(%wt.) 

VBmax, mm Surface roughness, µm 

Predicted Actual Error 
% Predicted Actual Error 

% 

3018.21 0.020 1.55 14.26 0.296 0.304 3 3.310 3.507 6 
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6. Conclusion 
 
a) The end milling process parameters were optimized by using non-dominated sorting genetic 

algorithm (NSGA-II), and a non-dominated solution set was obtained. The second order 
polynomial models developed for tool flank wear and surface roughness were used for 
optimization. 

b) The choice of one solution over the other depends on the process engineer’s requirements. If 
the requirement is a better Ra or lower VBmax, a suitable combination of variables can be 
selected. 

c) The optimized value of Ra obtained through NSGA-II is 3.310μm and the corresponding 
VBmax is 0.296 mm, and the pertinent parameters are spindle speed, feed rate, depth of cut 
and wt. of silicon carbide, which are 3018.21 RPM, 0.02mm/rev, 1.55mm, 14.26%, 
respectively. 

d) Optimization will help to increase production rate considerably by reducing machining time. 
The objectives such as tool flank wear and surface roughness were optimized using 
non-dominating sorting genetic algorithm-II. A Pareto-optimal set of 100 solutions was 
obtained. 
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