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1. Introduction 
 

Convective heat transfer in a porous media is a topic of rapidly growing interest due to its 
application to geophysics, geothermal reservoirs, thermal insulation engineering, exploration of 
petroleum and gas fields, water movements in geothermal reservoirs, etc. The study of 
convective heat transfer mechanisms through porous media in relation to the applications to the  
above areas has been made by Nield and Bejan [1]. Hossain and Begum [2] have discussed 
unsteady free convective mass transfer flow past vertical porous plates. Recently, the study of 
free convective mass transfer flow has become the object of extensive research as the effects of 
heat transfer along with mass transfer effects are dominant features in many engineering  
applications such as rocket nozzles, cooling of nuclear reactors, high sinks in turbine blades,  
high speed aircrafts and their atmospheric reentry, chemical devices and process equipments.   
Unsteady effect on MHD free convective and mass transfer flow through porous medium with 
constant suction and constant heat flux in rotating system studied by Sharma [3]. But in all these 
papers thermal diffusion effects have been neglected, whereas in a convective fluid when the 
flow of mass is caused by a temperature difference, thermal diffusion effects cannot be neglected. 
In view of the importance of this diffusion-thermo effect, Jha and Singh [4] presented an 
analytical study for free convection and mass transfer flow past an infinite vertical plate moving  
impulsively in its own plane taking Soret effects into account. In all the above studies, the  
effect of the viscous dissipative heat was ignored in free-convection flow. However, Gebhart  
and Mollendorf [5] have shown that when the temperature difference is small or in high Prandtl 
number fluids or when the gravitational field is of high intensity, viscous dissipative heat  
should be taken into account in free convection flow past a semi-infinite vertical plate. The 
unsteady free convection flow of a viscous incompressible fluid past an infinite vertical plate  
with constant heat flux is considered on taking into account viscous dissipative heat, under the 
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influence of a transverse magnetic field studied by Srihari. K et al [6]. The effect of temperature 
dependent viscosity and thermal conductivity on unsteady MHD convective heat transfer past a 
semi-infinite vertical porous plate has studied Seddek and Salama [7]. In recent years, progress 
has been considerably made in the study of heat and mass transfer in magneto hydrodynamic 
flows due to its application in many devices, like the MHD power generator and Hall accelerator. 
The influence of magnetic field on the flow of an electrically conducting viscous fluid with mass 
transfer and radiation absorption is also useful in planetary atmosphere research. Yih [8] 
numerically analyzed the effect of transpiration velocity on the heat and mass transfer 
characteristics of mixed convection about a permeable vertical plate embedded in a saturated 
porous medium under the coupled effects of thermal and mass diffusion. Elbashbeshy [9] studied 
the effect of surface mass flux on mixed convection along a vertical plate embedded in porous 
medium. Chin et al. [10] obtained numerical results for the steady mixed convection boundary 
layer flow over a vertical impermeable surface embedded in a porous medium when the viscosity 
of the fluid varies inversely as a linear function of the temperature. Anand Rao and Shivaiah [11]  

studied the Chemical reaction effects on an unsteady MHD free convection flow past an infinite 
vertical porous plate with constant suction. The chemical reaction effects on an unsteady MHD 
flow past a semi-infinite vertical porous plate with viscous dissipation has been analyzed 
numerically by Anand Rao and Shivaiah [12]. 

The object of the present paper is to study the thermal radiation effect on unsteady magneto 
hydrodynamic flow past a vertical porous plate with variable suction. The problem is governed 
by the system of coupled non-linear partial differential equations whose exact solutions are 
difficult to obtain, if possible. So, Galerkin finite element method has been adopted for its 
solution, which is more economical from computational point of view. 
 
2. Formulation of the problem 
 

An unsteady two-dimensional laminar free convective boundary layer flow of a viscous, 
incompressible, electrically conducting and the chemical reaction effects on an unsteady 
magneto hydrodynamics free convection fluid flow past a semi-infinite vertical plate embedded 
in a porous medium with heat absorption is considered. The x - axis is taken along the vertical 
plate and the y  - axis normal to the plate. It is assumed that there is no applied voltage, which 
implies the absence of an electric field. The transverse applied magnetic field and magnetic 
Reynolds number are assumed to be very small so that the induced magnetic field and the Hall 
Effect are negligible. The concentration of the diffusing species in the binary mixture is assumed 
to be very small in comparison with the other chemical species which are present, and hence the 
Soret and Dufour are negligible. Further due to the semi-infinite plane surface assumption, the 
flow variables are functions of normal distance y  and t  only. Now, under the usual 
Boussinesq’s approximation, the governing boundary layer equations of the problem are: 
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Energy equation: 2
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Diffusion equation: 2
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Where vu , are the velocity components in ,x  y  directions respectively. t  - the time, 
 -the fluid density,  - the kinematic viscosity, pc - the specific heat at constant pressure, 

g -the acceleration due to gravity,  and  - the thermal and concentration expansion 
coefficient respectively, 0B - the magnetic induction ,  - the fluid thermal diffusivity, K - the 
permeability of the porous medium, T  - the dimensional temperature, C - the dimensional 
concentration, k -the thermal conductivity,  - coefficient of viscosity, D - the mass 
diffusivity. 

The boundary conditions for the velocity, temperature and concentration fields are: 
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Where pu is the plate velocity, wT  and wC  are the wall dimensional temperature and 

concentration respectively, T and C  are the free stream dimensional temperature and 
concentration respectively, n - the constant. 

Where A is a real positive constant, ε and εA are small values less than unity and 0V  is scale 
of suction velocity at the plate surface. 

In order to write the governing equations and the boundary condition in dimension less form, 
the following non- dimensional quantities are introduced. 
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  In view of equation (6), equations (2) - (4) reduced to the following dimensionless form. 
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And the corresponding boundary conditions are 
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3. Method of Solution 
 

The Galerkin expansion for the differential equation (7) becomes 
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The Galerkin expansion for the differential equation (11) becomes 
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Neglecting the first term in equation (12) we get 
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Where hyyl jk
e )(  and dot denotes the differentiation with respect to t . 
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We write the element equations for the elements ii yyy 1  and kj yyy   assemble 
three element equations, we obtain 
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Now put row corresponding to the node i to zero, from equation (13) the difference schemes is 
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Applying Crank-Nicholson method to the above equation then we gets 
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Applying similar procedure to equation (8) and (9) then we gets 
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Here 2h
kr   and h, k are the mesh sizes along y -direction and time t  -direction respectively. 

Index i  refers to the space and j  refers to the time. In Equations (14)-(16), taking i =1(1)n 
and using initial and boundary conditions (10), the following system of equations are obtained: 

3)1(1i,BXA iii   
 
 

Where iA ’s are matrices of order n and iX , iB ’s column matrices having n − components. 
The solutions of above system of equations are obtained by using Thomas algorithm for velocity, 
temperature and concentration. Also, numerical solutions for these equations are obtained by 
C-program. In order to prove the convergence and stability of finite element method, the same 
C-program was run with slightly changed values of h and k and no significant change was 
observed in the values of Tu, and C. Hence, the finite element method is stable and 
convergent. 
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4. Skin Friction 
 

The skin-friction, Nusselt number and Sherwood number are important physical parameters 
for this type of boundary layer flow. The skin friction, rate of heat and mass transfer are Skin 
 

friction coefficient ( fC ) is given by 
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Nusselt number ( Nu ) at the plate is 
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Sherwood number ( Sh ) at the plate is 
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5. Results and discussion 
 
  As a result of the numerical calculations, the dimensionless velocity, temperature and 
concentration distributions for the flow under consideration are obtained and their behaviour 
have been discussed for variations in the governing parameters viz., the thermal Grashof number 

G , modified Grashof number CG , magnetic field parameter M , permeability parameter K , 
Prandtl number Pr , and Schmidt number CS . In the present study we adopted the following 
default parameter values of finite element computations: 

,0.5Gr ,0.5Gm ,0.1M ,0.5K ,71.0Pr  ,6.0Sc ,01.0A ,002.0 ,0.1 0.1t . 
All graphs therefore correspond to these values unless specifically indicated on the appropriate 

graph. 
Figure 1 presents typical velocity profiles in the boundary layer for various values of the 

Grashof number Gr , while all other parameters are kept at some fixed values. The Grashof 
number Gr defines the ratio of the species buoyancy force to the viscous hydrodynamic force. 
As expected, the fluid velocity increases and the peak value is more distinctive due to increase in 
the species buoyancy force. The velocity distribution attains a distinctive maximum value in the 
vicinity of the plate and then decreases properly to approach the free stream value. 
  The influence of the modified Grashof number Gm on the velocity is presented in Figure 2. 
The modified Grashof number signifies the relative effect of the thermal buoyancy force to the 
viscous hydrodynamic force in the boundary layer. As expected, it is observed that there is a rise 
in the velocity due to the enhancement of thermal buoyancy force. Here, the positive values of 
Gm correspond to cooling of the plate. Also, as Gm increases, the peak values of the velocity 
increases rapidly near the porous plate and then decays smoothly to the free stream velocity. 

For various values of the magnetic parameter M , the velocity profiles are plotted in Figure 3. It 
can be seen that as M increases, the velocity decreases. This result qualitatively agrees with the 
expectations, since the magnetic field exerts a retarding force on the flow. The effect of the 
permeability parameter K on the velocity field is shown in Figure 4. An increase the resistance of the 
porous medium which will tend to increase the velocity. This behavior is evident from Figure 4. 

Figure 5(a) and Figure 5(b) illustrate the velocity and temperature profiles for different values 
of the Prandtl number Pr . The Prandtl number defines the ratio of momentum diffusivity to 
thermal diffusivity. The numerical results show that the effect of increasing values of Prandtl 
number results in a decreasing velocity (Figure 5(a)). From Figure 5(b), it is observed that an 
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increase in the Prandtl number results a decrease of the thermal boundary layer thickness and in 
general lower average temperature within the boundary layer. The reason is that smaller values 
of Pr are equivalent to increasing the thermal conductivities, and therefore heat is able to diffuse 
away from the heated plate more rapidly than for higher values of Pr . Hence in the case of 
smaller Prandtl numbers as the boundary layer is thicker and the rate of heat transfer is reduced. 
 

       
Figure 1. Velocity profile for different values of Gr  Figure 2. Velocity profile for different values of Gm  
 

     
Figure 3. Velocity profile for different values of M    Figure 4. Velocity profile for different values of K  

 

   
Figure 5. (a) Velocity profile for different values 

of Pr 
Figure5. (b) Temperature profile for different 

values of Pr
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The influence of the Schmidt number CS on the velocity and concentration profiles are plotted 
in Figure 6(a) and Figure 6(b) respectively. The Schmidt number embodies the ratio of the 
momentum to the mass diffusivity. The Schmidt number therefore quantifies the relative 
effectiveness of momentum and mass transport by diffusion in the hydrodynamic (velocity) and 
concentration (species) boundary layers. As the Schmidt number increases the concentration 
decreases. This causes the concentration buoyancy effects to decrease yielding a reduction in the 
fluid velocity. The reductions in the velocity and concentration profiles are accompanied by 
simultaneous reductions in the velocity and concentration boundary layers. These behaviors are 
clear from Figure 6(a) and Figure 6(b). 

 
 

 
 

Figure 6. (a) Velocity profile for different values 
of Sc 

 

Figure 6. (b) Concentration profile for different 
values of Sc 

6. Conclusion 
 

In this article a mathematical model has been presented for the thermal radiation effect on 
unsteady magneto hydrodynamic flow past a vertical porous plate with variable suction. The 
non- dimensional governing equations are solved with the help of finite element method. The 
conclusions of the study are as follows: 
a) The velocity increases with the increase Grashof number and modified Grashof number. 
b) The velocity decreases with an increase in the magnetic parameter. 
c) The velocity increases with an increase in the permeability of the porous medium   

parameter. 
d) Increasing the Prandtl number substantially decreases the velocity and the temperature 

function. 
e) The velocity as well as concentration decreases with an increase in the Schmidt number. 
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