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1. Introduction 
 

A singularly perturbed differential-difference equation is an ordinary differential equation in 
which the highest derivative is multiplied by a small parameter and involving at least one delay 
or advance term. In recent papers [9-13] the terms negative or left shift and positive or right shift 
have been used for delay and advance respectively. The smoothness of the solutions of such 
singularly perturbed differential-difference equation deteriorates when the parameter tends to 
zero. Such problems are found throughout the literature on epidemics and population dynamics 
where these small shifts play an important role in the modeling of various real life phenomena 
[18]. Boundary value problems in differential-difference equations arise in a very natural way in 
studying variation problems in control theory where the problem is complicated by the effect of 
time delays in signal transmission [7]. 

The differential-difference equation plays an important role in the mathematical modeling of 
various practical phenomena in the biosciences and control theory. Any system involving a 
feedback control will almost always involve time delays. These arise because a finite time is 
required to sense information and then react to it. For a detailed discussion on 
differential-difference equation one may refer to the books and high level monographs: Bellen[2], 
Driver[16], Bellman and Cooke [17]. 

Lange and Miura [5] gave an asymptotic approach in the study of a class of boundary value 
problems for linear second order differential-difference equations in which the highest order 
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derivative is multiplied by a small parameter. It has been shown that the layer behavior can 
change its character and even be destroyed as the shifts increase but remain small. In [7], similar 
boundary value problems with solutions that exhibit rapid oscillations are studied. Based on 
finite difference scheme, fitted mess and B-spline technique, piecewise uniform mesh an 
extensive numerical work had been initiated by M. K. Kadalbajoo and K. K. Sharma in their 
papers [9-14] for solving singularly perturbed delay differential equations. In [8], M. Gulsu 
presented matrix methods for approximate solution of the second order singularly perturbed 
delay differential equations. 

It is well known that the classical methods fail to provide reliable numerical results for such 
problems (in the sense that the parameter and the mess size cannot vary independently). Lange 
and Miura[3-5] gave asymptotic approaches in the study of class of boundary value problems for 
linear second order differential difference equations in which the highest order derivative is 
multiplied by small parameter. 

The aim of this paper is to provide a parameter fitted scheme to solve singularly perturbed 
delay differential equations of second order with left or right boundary. The effect of small shifts 
on the boundary layer solution of the problem has been considered. In this technique, by 
approximating the term containing negative shift by Taylor series expansion, we modify the 
singularly perturbed delay differential equations. We introduce a fitting parameter on the highest 
order derivative term of the new equation. The fitting parameter is to be determined from the 
upwind scheme using the theory of singular Perturbation. We obtain a three term recurrence 
relation that can be solved using Thomas algorithm. The applicability of the method is tested by 
considering four problems which have been widely discussed in literature (two linear problems 
on left layer, two linear problems on right layer. It is observed that when the delay parameter is 
smaller than the perturbation parameter, the layer behavior is maintained. 
 
2. The parameter fitted scheme 
 
  To describe the method, we first consider a linear singularly perturbed delay differential 
two-point boundary value problem of the form: 
 

)()()()()()( xfxyxbxyxaxy   , 10  x        (1) 
 

with 0  );()0(  xxy          (1a) 
 

and )1(y          (1b) 
 

where  is a small positive parameter (0<<<1), )(),( xfxb  are bounded functions in )1,0( and 
 ,  are known constants. Furthermore, we assume that 0)(  Mxa throughout the interval 

[0,1], where M is a positive constant. Under these assumptions, (1) has a unique solution y(x) 
which in general, displays a boundary layer of width O() at 0x . 
  Assuming 0  ;)0(  x , we can rewrite (1) in the form: 
 

)()()()()()( xfxyxbxyxaxy   , 10  x        (2) 
 

with 0  ;)0(  xy          (2a) 
 

and )1(y          (2b) 
 

Approximating )(  xy by the linear interpolation, we have 
 

)x(y)x(y)x(y           (3) 
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Substituting equation (3) in to equation (2), we get 
 

)()()()()()()(( xfxyxbxyxaxyxa         (4) 
 

  For Possible choices of  such that 0 ( ) 1a x       (here  varies as ,    and 
)x(  vary), from the theory of singular perturbations it is known that the solution of (4) and (3) 

is of the form [O’ Malley [15]; pp 22-26]. 
 

0

( ) ( )
( )

0 0
(0)( ) ( ) ( (0)) ( )
( )

x a x b x dx
a xay x y x y e O

a x
 

 
  

 
           (5) 

 

where )x(y0 is the solution of 
 

)x(f)x(y)x(b)x(y)x(a 00  , )1(y0 . 
 

  By taking the Taylor’s series expansion for a(x) and b(x) about the point ‘0’ and restricting to 
their first terms, (5) becomes, 
 

(0) (0)
(0)

0 0( ) ( ) ( (0)) ( )
a b x

ay x y x y e O 
 

  
   �        (6) 

 

  Now we divide the interval [0, 1] into N equal parts with constant mesh length h.  Let 
1,...,,0 10  Nxxx be the mesh points.  Then we have Niihxi ,...,1,0 ;  . 

  From (6) we have 
 

2 (0) (0))
(0)

0 0( ) ( ) ( (0))
a b ih

ay ih y x y e



 

  
            (7) 

 

and 

2 (0) (0)
(0)

0 00
lim ( ) (0) ( (0))

a b i
a

h
y ih y y e

 


 

  
 


          (8) 

 

where h


  
 

  The upwind scheme corresponding to equation (4) is 
 

1 12 ( 2 )i i iy y y
h


   )( 1 ii
i yy

h
a

  ii yb = if  ; 1,2,... 1i N        (9) 
 

where iiiiiiii yxyfxfbxbaxa  )(;)(;)(;)( . 
 

  Now, we introduce a fitting factor )(  in the above scheme (9) as follows 
 

1 12

( ) ( 2 )i i iy y y
h

  
   )( 1 ii

i yy
h
a

  ii yb = if  ; 1,2,... 1i N      (10) 
 

with y (0)= and y (1)= . 
  The fitting factor () is to be determined in such a way that the solution of (10) converges 
uniformly to the solution of (1)-(2). 
  Multiplying (10) by h and taking the limit as h 0; we get 

   
0

lim ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0
h

y ih h y ih y ih h a ih y ih h y ih


 
        

 
    (11) 
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  By substituting (5) in (11) and simplifying, we get the constant fitting factor 
 

2 (0) (0)( )
(0)

2
2

(0) [1 ]   
(0) (0)4 [sinh(( ) / 2)]

(0)

a b
aa e

a b
a












       (12) 

 

  The equivalent three term recurrence relation of equation (10) is given by: 
 

i1iiii1ii HyGyFyE     ;  i=1,2,3, …….,N-1      (13) 
 

where;  
2iE

h


 ;
2

2 i
i i

aF b
h h


   ;
2

i
i

aG
h h


  ; ii fH   
 

  This gives us the tri diagonal system which can be solved easily by Thomas Algorithm. 
 
Thomas Algorithm 
  A brief discussion on solving the three term recurrence relation using Thomas algorithm which 
also called Discrete Invariant Imbedding (Angel & Bellman [6])is presented as follows: 

Consider the scheme given in (13): 
 

i1iiii1ii HyGyFyE     ;  i=1,2,3, …….,N-1  subject to the boundary conditions 
 

 )0(yy0 ;  and  )1(yyN       (13a) 
 

We set i1iii TyWy    for i = N-1, N-2, …. 2, 1.     (13b) 
where )x(WW ii  and )x(TT ii  which are to be determined. 
  From (13b), we have 
 

1ii1i1i TyWy           (13c) 
 

  By substituting (13c) in (13), we get   i1iiii1ii1ii HyGyFTyWE   . 
 

 




























 1iii

i1ii
1i

1iii

i
i WEF

HTEy
WEF

Gy       (13d) 
 

  By comparing (13d) and (13b), we get the recurrence relations 
 












1iii

i
i WEF

G
W         (13e) 

 


















1iii

i1ii
i WEF

HTET .        (13f) 
 

  To solve these recurrence relations for i=0,1,2,3,……,N-1, we need the initial conditions for 
0W  and 0T . For this we take 0100 TyWy  . We choose 0W0   so that the value of 

0T . With these initial values, we compute iW and iT for i=1,2,3,….,N-1 from (13e-13f) in 
forward process, and then obtain iy in the backward process from (13b)and (13a). 
  The conditions for the discrete invariant embedding algorithm to be stable are (see [1-2]): 
 

0iE  , 0iF  , iii GEF  and ii GE  (13g) 
 

  In this method, if the assumptions ( ) 0, ( ) 0 and ( ( )) 0a x b x a x     hold, one can easily show 
that the conditions given in (13g) hold and thus the invariant imbedding algorithm is stable. 



Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations 

Int. J. Appl. Sci. Eng., 2013. 11, 4     365 

3. Right-end boundary layer 
 
  We now assume that 0)(  Mxa throughout the interval [0, 1], where M is some negative 
constant. This assumption merely implies that the boundary layer for equation (1)-(2) will be in 
the neighborhood of x=1. From the theory of singular perturbations it is known that the solution 
of (4) and (2) is of the form [cf. O’ Malley [15]; pp 22-26]. 
 

)())1((
)(
)1()()(

1

)(
)(

)(
)(

00   Oey
xa

axyxy x

dx
xa
xb

xa
xa















       (14) 
 

where )x(y0 is the solution of )x(f)x(y)x(b)x(y)x(a 00  , )0(0y . 
 

  Similar to the left layer problems, for possible choices of  such that 0 ( ) 1a x      , 
we have 
 

(1) (1) (1 )
(1)

0 0( ) ( ) ( (1)) ( )
a b x

ay x y x y e O 
 

  
           (15) 

 

  From (15) we have 
 

2 (1) (1) 1( )
(1)

0 00
lim ( ) (0) ( (1))

a b i
a

h
y ih y y e

 


 
  

 


         (16) 

 

where, h


 , 
 

  We introduce a fitting factor )( in the scheme corresponding to equation (4) 
 

1 12

( ) ( 2 )i i iy y y
h

  
   )( 1 ii

i yy
h
a

ii yb = if  ; 1i N-1     (17) 
 

with  y (0)= and y (1)= . 
  Multiplying (17) by h and taking the limit as h 0; we get the value of the fitting factor: 
 

2 (1) (1)( )
(1)

2
2

(0) [1 ]   
(1) (1)4 [sinh(( ) / 2)]

(1)

a b
aa e

a b
a











 


       (18) 

 

  The equivalent three term recurrence relation of equation (17) is given by: 
 

i1iiii1ii HyGyFyE     ;  i=1,2,3, …….,N-1      (19) 
 

where; 
2

i
i

aE
h h


  ;  
2

2 i
i i

aF b
h h


   ;  
2iG

h


 ; ii fH   This gives us the tri diagonal system 

which can be solved easily by Thomas Algorithm. 
 
Description of the Method 
  To solve problems of the form given in equation (1)-(2), we followed the procedure: 
Step 1. Modify the Singularly Perturbed Delay Differential Equation (1) to the form (4). 
Step 2. Introduce the fitting parameter in (4) and determine its value using the theory of singular 

perturbation. 
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Step 3. Solve the tri-diagonal system (13) and (19) with the boundary conditions (2) using 
Thomas Algorithm by taking different values of the perturbation and the delay parameter. 

 
4. Numerical examples 
 
  To demonstrate the applicability of the method, we considered four numerical experiments 
(two problems with left-end and two with right-end boundary layer). We presented the absolute 
error compared to the exact solution of the problems. For the examples not having the exact 
solution, the absolute error is calculated using the double mesh principle. 
 
Example 1. 

Consider a singularly perturbed delay differential equation with left layer: 
 

1)1(  and  1)0(   with ]10[0   ;0)()()(  yy, xyxyxy  . 
 

The exact solution is given by: 
21

2112 )1()1[()( mm

xmmxmm

ee
eeeexy




  
 

where, 
 

)(2
)(411

1 





m  and 
 

)(2
)(411

2 





m . 

 
Example 2. 

Now we consider an example of variable coefficient singularly perturbed delay differential 
equation with left layer: 
 

1)1(  and  1)0(   with ]10[0   ;0)()()( 5.0   yy, xyxyexy x  . 
 
Example 3. 

Consider a singularly perturbed delay differential equation with left layer: 
 

( ) ( ) ( ) 0;    0 [0 1]   with (0) 1  and  (1) 1y x y x y x  , y y          . 
 

The exact solution is given by: 
1

2112

2

)1()1[()( mm

xmmxmm

ee
eeeexy




  
 

where, 
 

)(2
)(411

1 





m  and 
 

)(2
)(411

2 





m . 

 
Example 4. 

Now we consider an example of variable coefficient singularly perturbed delay differential 
equation with right layer: 
 

1)1(  and  1)0(   with ]10[0   ;0)()()(  yy, xxyxyexy x  . 
 
5.  Discussion and conclusions 
 
  We presented a parameter fitted scheme to solve singularly perturbed delay differential 
equations of second order with left and right boundary. Approximating the term containing 
negative shift by Taylor series, we modified the singularly perturbed delay differential equations. 
We introduced a variable fitting parameter on the highest order derivative term of the new 
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equation and determined its value using the theory of singular Perturbation; O’Malley [15]. We 
solved the resulting three term recurrence relation using Thomas algorithm. 
  To test the applicability of the new method, four problems were considered by taking different 
values of the delay parameter , the perturbation parameter  and the same mesh size. We 
considered δ to increase from 0.1ε to 0.9ε. For left layer problems, it is observed that as δ 
increase from 0.1ε to 0.9ε, ϒ decreases and absolute maximum error decreases for the constant 
coefficient problem and increases for the variable coefficient problem. For right layer problems, 
it is observed that as δ increase from 0.1ε to 0.9ε, ϒ increases and absolute maximum error 
increases for the constant coefficient problem and decreases for the variable coefficients problem. 
Overall, it is observed that when the delay parameter is smaller than the perturbation parameter, 
the layer behavior is maintained. 
 
 

 
Figure 1. Graph for solution of example 1. for ε=0.1 and different values of δ 

 
 

Table 1. Results for example 1. for ε=0.1, h=0.01 
x(i) δ=0.05 δ=0.06 δ=0.07 δ=0.08 δ=0.09 

0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 
0.01 0.88232340 0.85747830 0.81874800 0.75035960 0.60202650 
0.03 0.71413730 0.66804750 0.60503200 0.51764120 0.41243570 
0.05 0.60853200 0.56084810 0.50349550 0.44035200 0.39445670 
0.07 0.54332050 0.50166710 0.45740380 0.41812020 0.39893030 
0.09 0.50420220 0.47055380 0.43875630 0.41545710 0.40646000 
0.10 0.49140340 0.46166860 0.43507910 0.41713960 0.41045980 
0.20 0.47294680 0.46525620 0.45996560 0.45633130 0.45312560 
0.40 0.56349150 0.56079290 0.55804090 0.55519590 0.55228590 
0.60 0.68214510 0.68003000 0.67781370 0.67550840 0.67314600 
0.80 0.82591970 0.82463920 0.82329440 0.82189320 0.82045470 
1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

Abs. Max. Err. 1.10E-02 8.87E-03 6.70E-03 4.45E-03 2.11E-03 
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Figure 2. Graph for solution of example 1. for ε=0.01 and different values of δ 

 
 

Table 2. Results for example 1. for ε=0.01,h=0.01 
x(i) δ=0.001 δ=0.002 δ=0.003 δ=0.004 δ=0.005 

0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 
0.01 0.57798310 0.55145200 0.52233970 0.49078280 0.45750990 
0.03 0.40377390 0.39626760 0.39019620 0.38573960 0.38294290 
0.05 0.39250510 0.39108960 0.39014440 0.38953700 0.38915430 
0.07 0.39834220 0.39788560 0.39752770 0.39721380 0.39693830 
0.09 0.40610100 0.40577030 0.40546940 0.40517500 0.40490410 
0.10 0.41012630 0.40980730 0.40951060 0.40921740 0.40894700 
0.20 0.45281370 0.45250630 0.45221660 0.45192920 0.45166360 
0.40 0.55200070 0.55171970 0.55145470 0.55119180 0.55094890 
0.60 0.67291420 0.67268570 0.67247050 0.67225670 0.67205920 
0.80 0.82031350 0.82017420 0.82004300 0.81991260 0.81979220 
1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

Abs. Max. Err. 1.83E-03 1.53E-03 1.17E-03 7.83E-04 5.64E-04 
 
 

 
Figure 3. Graph for solution of example 2. for ε=0.1 and different values of δ 
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Table 3. Results for example 2. for (ε=0.1) 
x(i) δ=0.04 δ=0.05 δ=0.06 δ=0.07 δ=0.08 

0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 
0.01 0.89142690 0.87695430 0.85244070 0.81439880 0.74754270 
0.03 0.72769140 0.69983490 0.65426640 0.59172180 0.50355450 
0.05 0.61609390 0.58623670 0.53843260 0.47979630 0.41184090 
0.07 0.54031970 0.51343870 0.47066320 0.42334380 0.37741770 
0.09 0.48930470 0.46715350 0.43146840 0.39558160 0.36606260 
0.10 0.47062210 0.45097150 0.41885290 0.38797470 0.36454320 
0.20 0.41023060 0.40794490 0.39830550 0.39203740 0.39085780 
0.40 0.47800690 0.48306830 0.48163960 0.48164770 0.48454350 
0.60 0.59904760 0.60513100 0.60488540 0.60592000 0.60985720 
0.80 0.76655330 0.77165180 0.77193620 0.77323830 0.77683300 
1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

Abs. Max. Err. 6.29E-04 1.26E-03 1.55E-03 2.00E-03 2.77E-03 
 
 

 
Figure 4. Graph for solution of example 2. for ε=0.01 and different values of δ 

 
 

Table 4. Results for example 2. for (ε=0.01) 
x(i) δ=0.002 δ=0.004 δ=0.006 δ=0.007 δ=0.008 

0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 
0.01 0.48692950 0.41688970 0.34148500 0.30790000 0.28638180 
0.03 0.30546100 0.29240020 0.28767130 0.28693920 0.28667950 
0.05 0.29608490 0.29356830 0.29308950 0.29276150 0.29254270 
0.07 0.30086480 0.29943280 0.29913230 0.29880640 0.29858650 
0.09 0.30699360 0.30565200 0.30536520 0.30503800 0.30481720 
0.10 0.31017690 0.30883670 0.30855370 0.30822590 0.30800480 
0.20 0.34493740 0.34354730 0.34330790 0.34297780 0.34275800 
0.40 0.43357130 0.43211600 0.43200220 0.43169310 0.43150900 
0.60 0.55788340 0.55648930 0.55654050 0.55629860 0.55620170 
0.80 0.73649640 0.73546280 0.73564090 0.73551610 0.73553140 
1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

Abs. Max. Err. 2.69E-04 2.00E-04 5.41E-04 7.48E-04 1.17E-03 
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Figure 5. Graph for solution of example 3. for ε=0.1 and different values of δ 

 
 

Table 5. Results for example 3. for (ε=0.1) 
  x(i) δ=0.05 δ=0.06 δ=0.07 δ=0.08 δ=0.09 
0.00 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 
0.20 0.834777200 0.835099000 0.835302400 0.835389000 0.835362500 
0.40 0.690885200 0.689934600 0.688679200 0.687143100 0.685356600 
0.60 0.538671000 0.531944900 0.524874400 0.517544700 0.510033400 
0.80 0.234541500 0.213745200 0.193839000 0.174820200 0.156673200 
0.90 -0.151482900 -0.176135800 -0.198791300 -0.219670900 -0.238964600 
0.91 -0.208951200 -0.233119900 -0.255241500 -0.275556900 -0.294269800 
0.93 -0.338552700 -0.360849800 -0.381095900 -0.399557700 -0.416456400 
0.95 -0.490753100 -0.509637000 -0.526647600 -0.542050100 -0.556060000 
0.97 -0.669802000 -0.683231600 -0.695233100 -0.706023800 -0.715777500 
0.99 -0.880742100 -0.886046400 -0.890749200 -0.894947900 -0.898719400 
1.00 -1.000000000 -1.000000000 -1.000000000 -1.000000000 -1.000000000 

Abs.  Max. Err. 6.21E-02 6.55E-02 6.88E-02 7.21E-02 7.52E-02 
 
 

 
Figure 6. Graph for solution of example 3. for ε=0.01 and different values of δ 
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Table 6. Results for example 3. for (ε=0.01) 
x(i) δ=0.003 δ=0.004 δ=0.006 δ=0.007 δ=0.008 

0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 
0.20 0.82088520 0.82102980 0.82131760 0.82146340 0.82160720 
0.40 0.67385210 0.67408970 0.67456250 0.67480120 0.67503820 
0.60 0.55315490 0.55344770 0.55403000 0.55432360 0.55461610 
0.80 0.45407620 0.45439640 0.45503100 0.45534870 0.45566260 
0.90 0.41089190 0.41084230 0.41020750 0.40956780 0.40867890 
0.91 0.40623490 0.40583830 0.40419910 0.40289990 0.40125130 
0.93 0.39392520 0.39168080 0.38533360 0.38123920 0.37655450 
0.95 0.36504700 0.35697080 0.33792280 0.32720340 0.31584690 
0.97 0.25527250 0.23250280 0.18643380 0.16355860 0.14098620 
0.99 -0.24713310 -0.28218910 -0.34343290 -0.37028460 -0.39499700 
1.00 -1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000000 

Abs. Max. Err. 6.33E-03 6.66E-03 7.69E-03 8.26E-03 8.81E-03 
 
 

  
Figure 7. Graph for solution of example 4. for ε=0.1 and different values of δ 

 
 

Table 7. Results for example 4. for (ε=0.1) 
x(i) δ=0.04 δ=0.06 δ=0.07 δ=0.08 δ=0.09 

0.00 1.00000000 1.00000000 1.000000000 1.000000000 1.000000000 
0.20 0.96844430 0.96776770 0.967159700 0.966189300 0.965820200 
0.40 0.92049930 0.91977160 0.919231000 0.918754100 0.918788400 
0.60 0.86676200 0.86721020 0.868063500 0.870810300 0.872573700 
0.80 0.82921210 0.83479480 0.840524100 0.851925900 0.857417900 
0.90 0.85130390 0.86088140 0.869557600 0.884560200 0.891029200 
0.91 0.85783750 0.86758330 0.876304800 0.891178500 0.897520900 
0.93 0.87483270 0.88452630 0.892991800 0.907033600 0.912888500 
0.95 0.89834640 0.90720770 0.914758700 0.926939000 0.931904300 
0.97 0.93032930 0.93714090 0.942803000 0.951683300 0.955221900 
0.99 0.97334270 0.97625500 0.978615900 0.982215500 0.983617100 
1.00 1.00000000 1.000000000 1.000000000 1.000000000 1.000000000 

Abs. Ma. Err. 1.05E-03 8.43E-04 6.93E-04 4.75E-04 3.35E-04 
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Figure 8. Graph for solution of example 4. for ε=0.01 and different values of δ 

 
 

Table 8. Results for example 4. for (ε=0.01) 
x(i) δ=0.002 δ=0.005 δ=0.007 δ=0.008 δ=0.009 

0.00 1.00000000 1.000000000 1.000000000 1.000000000 1.000000000 
0.20 0.98077140 0.980351400 0.980072200 0.979933200 0.979793100 
0.40 0.93757480 0.936943700 0.936524100 0.936316800 0.936106300 
0.60 0.88229320 0.881605000 0.881148800 0.880922700 0.880693900 
0.80 0.82317480 0.822526100 0.822097800 0.821885000 0.821671400 
0.90 0.79387460 0.793298100 0.792992100 0.792882400 0.792809300 
0.91 0.79098310 0.790454100 0.790246600 0.790214700 0.790240000 
0.93 0.78525510 0.785076900 0.785428000 0.785780800 0.786255700 
0.95 0.77994690 0.781588400 0.783898900 0.785376400 0.787035800 
0.97 0.77930030 0.789205300 0.797152000 0.801266000 0.805398500 
0.99 0.83506920 0.863399100 0.877574100 0.883631200 0.889124600 
1.00 1.00000000 1.000000000 1.000000000 1.000000000 1.000000000 

Abs. Max. Err. 1.05E-02 8.79E-03 7.52E-03 6.95E-03 6.42E-03 
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