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Abstract: This paper investigates the stability analysis of plates made of functionally graded 
material (FGM) and subjected to electro-mechanical loading. A FGM plate with piezoelectric 
actuator and sensor at top and bottom face is considered. The material properties are assumed to 
be graded along the thickness direction according to simple power-law distribution in terms of 
the volume fraction of the constituents, while the poisson’s ratio is assumed to be constant. The 
plate is simply supported at all edges. Using first order shear deformation theory (FOST), the 
finite element model is derived with von-Karman hypothesis and as a degenerated shell element. 
The displacement component of the present model is expanded in Taylor’s series in terms of 
thickness co-ordinate. The governing equilibrium equation is obtained by using principle of 
minimum potential energy and solution for critical buckling load is obtained by solving 
eigenvalue problem. The stability analysis of piezoelectric FG plate is carried out to present the 
effect of power law index and applied mechanical pressure. Results reveal that buckling strength 
increases with increase in volume fraction. It can also be improved using piezo effects. The 
present analysis is carried out on newly introduced metal based FGM which is mixture of 
aluminum and stainless steel which exhibits the corrosion resistance as well as high strength 
property in single material. 
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1. Introduction 
 

Functionally graded materials are the microscopically inhomogeneous composite materials 
which exhibits smooth and continuous change of material properties along the thickness 
direction. The laminated composite structures are faces major problem because of abrupt change 
in material properties, weakness of interfaces of layers placed between two adjacent laminates of 
composite structures. Such problems are overcome by using the FGM’s. The advances in 
composite technology have lead to the increasing application of piezolaminated structure due to 
their sensing and actuating property also these structures have self-diagnostic and 
self-controlling capability. These structures can be able to control the shape, size, vibration and 
stability of the structural systems because of their direct and converse piezoelectric effects. 
Particularly the distributed piezoelectric sensor layer monitors the structural shape deformation 
due to the direct effect and the distributed actuator layer controls the deflection through the 
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converse piezoelectric effect. Research on smart composite structures with integrated 
piezoelectric sensors and actuators have been investigated extensively. Recently researchers are 
focuses on thermal buckling response of ceramic-metal FGM/Piezoelectric FGM plates to 
control the extreme thermal environment. Praveen and Reddy [1] investigated the response of 
functionally graded ceramic-metal plates using a plate finite element that accounts for the 
transverse shear strains, rotary inertia and moderately large rotations in the von von-Karman 
sense. Javaheri and Eslami [2] studied buckling of functionally graded plate under influence of 
in-plane compressive force. Javaheri and Eslami [3] presented equilibrium and stability 
equations of rectangular functionally graded plate under influence of four types of thermal 
loading such as, uniform temperature rise, linear temperature change across the thickness, 
nonlinear temperature change across the thickness and linear temperature change along the 
length. Javaheri and Eslami [4] investigated thermal buckling of functionally graded plate based 
on classical plate theory and love-Kirchhoff’s hypothesis. Lanhe [5] investigated thermal 
buckling of functionally graded moderately thick plate under two types of thermal loading such 
as uniform temperature rise and gradient through thickness based on first order shear 
deformation theory and stability equations were established. Liew et al. [6] presented thermal 
buckling and postbuckling analysis for moderately thick laminated rectangular plates that 
containing functionally graded material. Laminated Formulation was based on first order shear 
deformation theory, considering initial geometric imperfection. Na and Kim [7] investigated 
three dimensional thermal buckling analysis of functionally graded plates by using finite element 
method for more accurate analysis they used eighteen noded solid finite element. For 
maintaining kinematic stability for thin plate, strain mixed formulation was adopted considering 
temperature dependent material properties. Najafizadeh and Heydari [8] presented equilibrium 
and stability equations for circular functionally graded plate under uniform temperature rise and 
nonlinear temperature change across the thickness. Shariat et al. [9] investigated buckling of 
rectangular functionally graded plates with geometrical imperfections based on classical plate 
theory and they derived equilibrium, stability and compatibility equations of an imperfect 
functionally graded plate. Ganapathi and Prakash [10] investigated thermal buckling of simply 
supported functionally graded skew plates based on finite element method, Mindlin theory and 
eight noded serendipity element. Na and Kim [11] investigated three dimensional thermal 
buckling and postbuckling analysis of functionally graded plate subjected to uniform or 
non-uniform temperature rise by using finite element. Eighteen noded solid finite element was 
used for analysis. Green-Lagrange nonlinear strain-displacement relation was used for evaluation 
large deflection due to thermal load. Park and Kim [12] investigated thermal postbuckling and 
vibration control of functionally graded plates. Formulation for nonlinear finite element was 
based on first order shear deformation plate theory and von-Karman nonlinear 
strain-displacement relationship. Shariat et al. [13] presented thermal buckling of rectangular 
functionally graded plates subjected to three types of thermal loads as uniform temperature rise, 
nonlinear temperature rise through the thickness and axial temperature rise using classical plate 
theory. Shariat et al. [14] presented buckling analysis of rectangular thick functionally graded 
plates subjected to thermo-mechanical loads based on third order shear deformation plate theory 
and derived equilibrium and stability equations. Li et al. [15] presented nonlinear 
thermo-mechanical post-buckling of an imperfect functionally graded circular plate, subjected to 
both mechanical load and transversely non-uniform temperature rise. Governing equilibrium 
equations for the axisymmetrical large deformation plate was based on von-Karman thin plate 
theory by considering geometric imperfection. Wu et al. [16] studied the post-buckling response 
of the functionally graded materials plate, subjected to thermal and mechanical loadings is 
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obtained analytically using fast converging finite double Chebyshev polynomials. Prakash et al. 
[17] studied nonlinear behaviour of functionally graded skew plates under thermal load by using 
eight noded shear flexible plate bending finite element. The material properties are temperature 
dependant. Matsunaga [18] investigated thermal buckling of functionally graded plates based on 
two-dimensional global higher-order deformation theory. Critical temperatures of a simply 
supported functionally graded plate subjected to uniformly and linearly distributed temperatures 
across the thickness of the plates were obtained by solving eigenvalue problems. Bouazza et al. 
[19] investigated elastic buckling of functionally graded plate under two types of thermal loading 
such as uniform temperature rise and linear temperature rise through the thickness. Analysis is 
based on first order shear deformation and von-Karman type stability and compatibility 
equations are obtained. Bouazza et al. [20] presented the buckling analysis of rectangular thin 
functionally graded plates under uniaxial and biaxial compression is investigated using classic 
plate theory and Navier’s solution. The Von Karman’s nonlinear strain-displacement relation is 
used to account for buckling due to mechanical load. The analysis is based on ceramic-metal 
FGM plate with material variation of metal to ceramic from bottom to top of the plate. 
Khorshidvand et al. [21] presented the thermal buckling analysis of circular piezoelectric FGM 
plate. Buckling temperatures are derived for solid circular plates under uniform temperature rise, 
nonlinear and linear temperature variation through the thickness. Sridharan and Kim [22] 
investigated the feasibility of piezo-electric control of stiffened plates carrying axial compression 
and subject to interaction of local and overall buckling. Kargarnovin et al. [23] derived an exact 
solution for a two-dimensional Functionally Graded Piezoelectric Material under 
thermo-electro-mechanical load by using of potential function method. A new kind of 
piezoelectric materials, named functionally graded piezoelectric materials (FGPMs) have been 
introduced. FGPM is a kind of piezoelectric material with material composition and properties 
varying continuously along certain directions. To improve the performance of structure, 
researchers are focused on smart structures. Liew et al. [24] presented postbuckling behavior of 
piezoelectric FGM plate subject to thermo-electro-mechanical loading based on Reddy’s 
higher-order shear deformation plate theory. Galerkin differential quadrature iteration algorithm 
is proposed for solution of the non-linear partial differential governing equations. Shen [25] 
presented the postbuckling analysis for a simply supported, shear deformable functionally graded 
plate with piezoelectric actuators subjected to the combined action of mechanical, electrical and 
thermal loads. Shen [26] also presented the thermal postbuckling analysis for a simply supported 
shear deformable functionally graded plate under thermal loading. The compressive postbuckling 
under thermal environments and thermal postbuckling due to a uniform temperature rise for a 
simply supported shear deformable functionally graded plate with piezoelectric fiber reinforced 
composite (PFRC) actuators has also been reported by Shen [27]. The above works done by 
Shen were based on higher order shear deformation plate theory and a two step perturbation 
technique was employed to determine buckling loads and postbuckling equilibrium paths. Chen 
et al. [28] used the element free Galerkin method to analyze buckling of piezoelectric FGM 
rectangular plates subjected to non-uniformly distributed loads, heat and voltage. Shariyat [29] 
developed finite element formulation based on a higher-order shear deformation theory to 
present the vibration and dynamic buckling of FGM rectangular plates with surface bonded 
piezoelectric sensors and actuators under the influence of thermo-electro-mechanical loading. 
Mirzavand and Eslami [30] presented the thermal buckling of functionally graded rectangular 
plates integrated with surface-bonded piezoelectric actuators. The third-order shear deformation 
plate theory is employed to account for the transverse shear strains. The temperature dependency 
of the material properties is considered. The buckling analysis of the plate under thermal 
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loadings is carried out using the Reitz method. They indicate that the buckling temperature 
difference can be controlled by applying a suitable voltage on the actuator layers. A number of 
works have been carried out on stability analysis of FGM/piezoelectric FGM plate subjected to 
thermo-electro-mechanical, thermo-mechanical loading. 

To the best of authors’ knowledge, no work has been reported on the stability analysis of 
piezoelectric FGM plate subjected to electro-mechanical loading. This paper investigates the 
stability analysis of FG plate integrated with piezoelectric actuator and sensor at top and bottom 
face subjected to electro-mechanical coupling based on finite element method and FOST, 
von-Karman hypothesis and degenerated shell element. Also this paper focuses to control the 
piezoelectric FGM plate against buckling by setting the optimum thickness of piezo layer. The 
present analysis is carried out on newly introduced metal based FGM material which is mixture 
of aluminum and stainless steel. So this FGM exhibits the corrosion resistance and high strength 
property in single material. The approach of our work is useful in shipping, construction as well 
as metal industry to overcome the corrosion resistivity and high strength properties in single 
material. 
 
2. Finite-element formulation 
 
  Figure 1 shows the general layout of FGM shell element integrated with piezoelectric actuator 
and sensor at top and bottom surface respectively. The Figure 2 shows the geometry of eight 
noded isoparametric degenerated shell element [31] The displacement components of the 
mid-point of the normal, the nodal coordinates, global stiffness matrixes, applied force vectors 
etc. are referred the global coordinate system. The nodal co-ordinates system is defined by local 
frame of three mutually perpendicular vectors 1 2 3V , V and V

  
at each nodal point with the origin at 

the reference surface. 3kV


is constructed from the co-ordinates of the top and bottom surface at 

the kth node. 1kV


is constructed parallel to the global x-z plane and the vector 2kV


is perpendicular 

to the plane defined by 3kV


and 1kV .


  represents the curvilinear co-ordinates. The 
co-ordinate and  is in the middle plane of element and   is a linear co-ordinate in the 
thickness direction with 1    and 1    at the top and bottom surfaces respectively. 
  The finite element formulation is based on eight noded degenerated elements and has five 
degrees of freedom per node. The assumption made in the formulation as, in the FOST model, 
the straight normal to the middle surface remain practically straight but not necessarily normal to 
mid surface during the deformation. 
 

 
Figure 1. Piezoelectric FGM plate 
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Figure 2. Geometry of an element 

 
2.1. Element geometry and displacement field 
 
  In the isoparametric formulation co-ordinate of a point within the element are obtained as, 

x
3 kk8 8
y
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k 1 k 1 z

k m id 3 k

V̂x x
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2 ˆz z V
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         (1) 

where,  j
i kV̂ i 1, 2,3 is the jth component of unit vector along nodal vector 

i kV
 at node k and tk is 

the thickness of shell at node k. k kx , y and kz are the Cartesian coordinates of the midpoint of 
the shell at kth node. The shape function Nk at kth node is expressed as, 

k k k k k
1N ( , ) (1 ) (1 )( 1) for k 1, 2,3, 4
4
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1N ( , ) (1 ) (1 ) for k 5, 7
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2
k k

1N ( , ) (1 ) (1 ) for k 6, 8
2

       
      

(4) 

  The displacement components of any point in the element are expanded in Taylor’s series by 
using first order shear deformation theory. The displacement component of any point within 
element in the global co-ordinate system in terms of thickness co-ordinate for FOST is given as 
[32], 

k i i
i mi 1k y 2k x

?u u V z V z ; i 1, 2,3 and k 1, 2,.....,8             (5) 
  Where ui are the displacements u, v and w (u1=u, u2=v and u3=w), and k

miu are the 
displacements in the midpoint of the normal in global co-ordinate system. The Equation (5) 
expanded and written as, 
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  Expressing the displacement field in a compact form, 
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   
n

e

k 1

u [N] d



          

(7) 

In which 
n[N ]= [N 1 , N 2 , .. .. .. .. .. ., N ] is the shape function matrix for the entire element. 

   Te e e
1 nd d ,.................., d is the element displacement vector. For the FOST model, the element 

displacement vector is expressed as, 
 

   Te k k k k k
k m m m x yd u v w           

(8) 

  
Where k

mu , k
mv and k

mw are the displacement components of the midpoint of the normal in the 
global coordinate system. k

x  is a positive rotation of the normal about 1kV


 and k
y  is a 

positive rotation about 2kV


. 
 
2.2. Strain displacement relation 
 
  In this formulation linear and nonlinear strains are expressed by using von Karman 
assumptions, the derivatives of the u'  and v '  with respect to x' , y'  and z'are small and their 
square terms are neglected, also neglecting the variation of w' with z ' . The Green-Lagrange 
strains may be expressed in local co-ordinates as, 

 

'
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(9) 

  

Where  ' L and  ' NL are the linear and nonlinear strain vectors respectively. 

x 'x ' y 'y ' z 'z ', and   are the normal strains; x ' y ' x 'z ' y 'z ', and   are the shear strains and 
u ' , v ' and w ' are the displacement components in the local co-ordinate system. These local 
derivatives are obtained from the global derivatives of the displacements u, v and w by the 
following operation, 
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                

(10) 

  Where,  T'  is a transformation matrix given as, 

 
1 2 3

1 2 3

1 2 3

l l l
T ' m m m

n n n

 
   
            
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  li, mi  and ni  (i=1, 2, 3) are the components of unit vectors. The relation between the 
derivatives of displacements in global and curvilinear co-ordinates are given by, 

1

u v wu v w
x x x
u v w u v wJ
y y y

u v wu v w
z z z



      
          
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  Where J is the Jacobian matrix 
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  The nonlinear strain vector in local co-ordinate system can be expressed using derivatives as, 
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  The matrix G is with two rows and a number of columns equal to the total number of element  
 

nodal variables. The local derivative w '
x '




 and w '
y '


  

contains the contribution of each nodal 

variable (corresponding shape function derivatives) respectively. Expressing strains using 
strain-displacement matrices can be written as, 
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  Where, ' L[B ]  and ' NL[B ] are the strain displacement matrices for the small and large strains 
respectively. The displacement derivatives with respect to the ξ can be expresses as, 
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  The derivatives with respect to η and ζ are obtained in a similar way. 
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2.3. Stress-strain relations 
 
  The stress-strain relation in the local co-ordinate system can be written as, 
 

    C            (18) 
 

  Where,   T

xx yy xy xz yz          
is the stress vector,    is the strain vector and [C] is 

the elasticity matrix in global co-ordinates system. The [C] is obtained in global coordinates 
using the strain transformation matrix is given below [33], 
 

     T 'C T C T            
 (19) 

 

  The effective material properties for FGM plates by using power law function given by [34] 
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       
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  Where, m1E  and m2E  are the elastic moduli of aluminum and stainless steel respectively, 

m1V  and m2V  are the volume fraction of the aluminum and stainless steel respectively, n is 
power law index, z is thickness coordinate variable. 
 
2.4. Electro-mechanical coupling 
 
  The linear piezoelectric constitutive equations coupling the elastic and electric fields can be 
respectively expressed as the direct and the converse piezoelectric equations are given by [35, 
36], 
 

P{D} = [e]{ } + [g]{E }           (24) 
 

T P{ } = [C]{ } [e] {E }            (25) 
 

  Where,{D}is the electric displacement vector, [e] is the dielectric permittivity matrix and [g] 
is the dielectric matrix, [E] is the electric field vector, [σ] is the stress vector and [C] is the elastic 
matrix for a constant electric field. 
 
2.5. Electrical potential function 
 
  One electrical degree of freedom is used per node for each sensor and actuator layers of an 
element. The electric field vector is assumed to be constant over an element of the piezoelectric 
layer and to vary linearly through the thickness of the piezoelectric layer. The electric field 
strength of an element in terms of the electrical potential of the actuator and sensor layers is 
expressed as, 
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          
n

p e e e
a a a aa i a i

i 1
a

0
E B B 0

1/ t

 
          
  


      

(26) 

 

          
n

p e e e
s s s ss i s i

i 1
s

0
E B B 0

1 / t

 
          
  


      

(27) 

 

where
 
ta and ts 

are the thickness of the actuator and sensor layers respectively,  e
a and  e

s are 
the nodal electric potential vectors for the actuator and sensor layers respectively and [B] is the 
field gradient matrix, can be given as follow, 
 

   e T
a a1 a 2 a 3 an................. ,  n= 1, 2, 3, ...., 8            

(28) 
 

   e T
s s1 s 2 s 3 sn................. ,  n= 1, 2, 3, ...., 8             

(29) 
 

 
2.6. Potential energy and stability criteria 
 
  Total potential energy is given by, 
 

e e eU W            (30) 
 

  Where, eU is the potential energy due to internal work done and eW is the external work done 
by external forces. The internal potential energy eU consisting of the strain energy of the entire 
structure and the electrical potential energy of the piezoelectric layers can be written as, 
 

               
T Tp pE Ea s

T T1 1 1e L NU dV D dV D dV dVa s 02 2 2V V V Va s
          

   
(31) 

 

  Where, V, Va,Vs and 0 are the volume of the entire structure, actuator layer, sensor layer and 
initial stress vector respectively. The work done by external forces due to the applied surface 
traction and applied electric charge on actuator is given as, 
 

      
a

Te e T T
a a

A A

W d [ N ] x , y dA {E } q x , y dA   
     

(32) 

 

  
Where,  x, y and  e

aq x, y are the surface traction vector and specified surface charge 
density respectively. To minimize the total potential energy, the first variation of Equation (30) is 
set to zero, 
 

e e eU W 0              (33) 
 

  Substituting Equation (18) and (19) in Equation (31) and taking its first variation, it can be 
written as, 
                 

               

        

a a

a s s

s

T T T Te L L
a a a a a a

V V V

T T T T
a a s s s s s s

V V V

TT NL
s s 0

V V

U C dV e E dV E e dV

E g E dV e E dV E e dV

E g E dV dV

        

      

    

  

  

 
    

(34) 
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             
            
       

T T Te e e e e e e e e e
d da a a da

T T Te e e e e e e e
a aa a ds s s sd

T Te e e e
s ss s

U d K d d K K d

K d K K e d

K d K d

                 

             

              

(35) 

 

e T L

V

[K ] [G] [ ][G]dV  
         

(36) 
 

L L
x xyL
L L
xy y

[ ]
  

     
         (37) 

 

  Taking the first variation of eW , the Equation (32) can be written as, 
 

           
a

T TTe e e
a a a

A A

W d N (x , y) dA B q x, y dA            (38) 

 

       T Te e e e e
1 a aW d F Q             (39) 

 

  In which, the element mechanical force vector  e
1F and the element electrical force vector 

 e
aQ are given below 

 

   
Te

1
A

F [ N ] (x , y ) dA          (40) 
 

   Te e
a a a

v

Q N q dA          (41) 

 

  Substituting the Equation (35) and (39) in Equation (33), and condensing the electrical degrees 
of freedom using static condensation the resulting equation can be written as, 
 

       e e e e e e
1 acK d K d F F                

(42) 
 

1 1e e e e e e e e
d da aa ad ds ss sdK K K K K K K K

 
                                       

(43) 
 

       e e e e e e e
d da a ds s 1K d K K F                     

(44) 
 

     e e e e e
ad aa a aK d K Q                 

(45) 
 

   1e e e e
da aa a acK K Q F


                

(46) 
 

   e e e e
sd ss sK d K 0                 

(47) 
 

  Where the superscript e refers to the parameter at the element level and [K] matrices with 
subscripts d, da, ad, aa, ds and ss are defined below 
 

    Te
d

V

K B C B dV             (48) 
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    T Te e
da ad a

Va

K K B e B dV                (49) 
 

    Te
aa a a

Va

K B g B dV             (50) 
 

    T Te e
ds sd s

Vs

K K B e B dV                (51) 
 

    Te
ss s s

Vs

K B g B dV             (52) 
 

  Assembling the element Equation (42), (44), (45) and (47) results in the global set of 
equations given as follows: 
 

        1 acK d K d F F             (53) 
 

       d da a ds s 1K d K K F                      (54) 
 

     ad aa a aK d K Q                 (55) 
 

   sd ss sK d K 0                 (56) 
 

  Where
  d is the global nodal generalized displacement vector,  a  and  s are the global 

nodal generalized electric vector for the actuator and sensor layer respectively. Equation (56) can 
be expressed as, 
 

  1
s ss sd[K ] [K ]{d}           (57) 

 

  In case of constant gain velocity feedback control, the electrical potential to be fed back to the 
actuator  a is calculated as, 
 

   *
a sG             (58) 

 

  Where G* is the feedback control gain matrix. In case of SISO (single input single output) 
system, the actuator and sensor voltage becomes a single value and control gain becomes a 
single value. The criteria for stability is obtained using the method of neutral equilibrium where 
the critical load is the load under which the structure can be in equilibrium both in the straight 
(initial) and the slightly bent configuration. [K ] is geometric stiffness matrix based on an 
arbitrary reference intensity of membrane stresses.   is a scalar multiplier which is determined 
such that, both the reference configuration represented by the load vector  d and slightly 
deformed     d   remains in equilibrium configuration.  1F  and  acF are the mechanical 
force vectors and resulting force vector from applied charge on actuator layer. 
 

       K K d F           (59) 
 

           K K d d F             (60) 
 

  Subtracting Equation (59) from Equation (60) yields the Eigen value problem 
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      K K d 0            (61) 
 

  Where the critical buckling load is associated with the lowest magnitude eigenvalue and the 
displacement vector  d represents the buckled mode shape. 
 
2.7. Determination of buckling loads 
 
  The formulation presented is applicable for determining the critical values of both mechanical 
and electrical loads. For any specified mechanical load (P) or electrical load (qa) the stress 
resultants {F1} or {Fac} are determined by solving Equation (53) in which the initial stresses are 
assumed to be zero. Using the stress resultants so obtained, the geometric stiffness matrix is 
obtained and the critical buckling coefficient λcr is calculated from eigenvalue analysis. The 
buckling load is obtained as, 
Critical buckling values: For mechanical load is P   P crcr   
   For electrical load is acrcr q   V   
 
3. Numerical results and discussion 
 
  The stability analysis is carried out on newly introduced FGM plate which is mixture of 
aluminum and stainless steel and it is integrated with piezoelectric sensor and actuator. The plate 
is simply supported and subjected to biaxial compressions as shown in Figure 3. The material 
properties of FGM plate and piezoelectric layer are given in Table1. The critical buckling load is 
obtained following the procedure outlined in [37]. The results are presented for critical buckling 
load (Ncr) without and with piezoelectric effect and corresponding w-displacement for various 
volume fraction indices through the thickness without and with piezoelectric effect respectively. 
Since there are no appropriate comparison results available for the stability analysis of FGM 
plate mixture of aluminum and stainless steel, so comparison of results are done with analytical 
results outlined in [37] and ANSYS nonlinear analysis results for isotropic plate (In case of FGM, 
n=0 is assumed as isotropic plate). 
 
 

 

 
Figure 3. FGM plate subjected to biaxial compression 

 
 

Nx 

Nx 



Stability Analysis of Piezoelectric FGM plate Subjected to Electro-Mechanical Loading using 
Finite Element Method 

Int. J. Appl. Sci. Eng., 2013. 11, 4     387 

Table 1. Material property 
E (Aluminum) 70 Gpa 

E (Stainless steel) 193Gpa 
Poisson’s ratio 0.3 

Piezostrain constants e31,e32 0.046 C/m2 
Electric permittivity ε11 1.060e-10 F/m 

 
Example 1. 

Stability analysis of FGM plate having a/b=1 and b/h=1000 thickness is done. The thickness 
of piezoelectric sensor and actuator is 0.0012 m respectively. As per analytical method critical 
buckling load is calculated as 303.68 N/m for simply supported isotropic aluminum plate 
subjected to biaxial compression. The present analysis gives critical buckling load for (In case of 
FGM, n=0 is assumed as isotropic plate) of 300.009 N/m and nonlinear ANSYS finite element 
program gives critical buckling load is 300 N/m as shown in Figure 4. It can be seen that 
buckling load increases when volume fraction index increases. This is because the plate stiffness 
becomes strong with rise in volume fraction index. The buckling is improved with the help of 
piezoelectric layer which is 423.383 N/m with gain of 0.75. Figure 5 (a) and (b) shows the 
comparison of results for variation of w-displacement of FGM plate through the thickness for 
various power law index n as 0, 3, 4, 5 and 10 in case of without piezoelectric effect and with 
piezoelectric effect respectively. To validate the procedure, non dimensional buckling load for an 
isotropic plate is presented and compared with the Ref. [20], analytical solutions and ANSYS 
results and these have good agreement with reference, analytical solutions and ANSYS results as 
shown in Table 2. In this Pcr is the critical buckling load in x or y direction. In case of 
electro-mechanical coupling, the piezo sensor sense the deformation from structure and this can 
be fed back to the actuator layer and this control process is carried out by applying gain values. 
Table 3 and Table 4 shows the buckling load for various volume fraction indices through the 
thickness without and with piezoelectric effect of simply supported piezoelectric FGM plate 
respectively. 
 

 
Figure 4. Load vs. w-displacement of aluminum plate subjected to biaxial compression 
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Figure 5. w-displacement vs. z/h ratio (a)without piezoeffect; (b)with piezoeffect for piezo thickness of 
0.0012m; (c)without piezoeffect for piezo thickness of 0.0025m 

 
 

Table 2. Comparison of the non-dimensional critical buckling load (Pcr.a2/D) for an isotropic plate (n = 0) 
a/b Ref. [14] Analytical [35] ANSYS Present 
1 19.7392 19.7391 19.4999 19.5006 

 
 
Table 3. Buckling load (Ncr = λNx N/m) of SSSS FGM plate under biaxial compression without 

piezoelectric effect (FOST, b/h=1000) 
z/h n=0 n=3 n=4 n=5 n=10 
0.5 300.009 300.009 300.009 300.009 300.009 
0.0 300.009 343.871 356.07 375.923 389.522 
-0.5 300.009 769.624 769.624 769.624 769.624 

 
 
Table 4. Buckling load (Ncr = λNx N/m) of SSSS FGM plate under biaxial compression with piezoelectric 

effect (FOST, b/h=1000, piezo thk. = 0.0012).G*=0.75 
z/h n=0 n=3 n=4 n=5 n=10 
0.5 423.383 423.383 423.383 423.383 423.383 
0.0 423.383 467.923 476.081 483.052 492.656 
-0.5 423.383 833.049 833.049 833.049 833.049 

 
Example 2. 

Stability analysis of FGM plate having a/b=1 and b/h=1000 thickness is done. In this example 
piezolayer thickness is increased to improve buckling load easily as compared to previous 
example. The thickness of piezoelectric sensor and actuator is 0.0025m respectively. As per 
analytical method critical buckling load is calculated as 303.68 N/m for simply supported 
isotropic aluminum plate subjected to biaxial compression. The present analysis gives critical 
buckling load for (In case of FGM, n=0 is assumed as isotropic plate) 300.009 N/m and 
nonlinear ANSYS finite element program gives critical buckling load is 300 N/m (see Figure 4). 
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It can be seen that buckling load increases when volume fraction index increases. This is because 
the plate stiffness becomes strong with rise in volume fraction index. The buckling is improved 
with the help of piezoelectric layer which is 428.507 N/m with gain of 0.3. As compared with 
results of example 1, the buckling of FGM plate can be improved easily with lower gain value 
and higher piezo thickness. Figure 5 (a) and (c) shows the comparison of results for variation of 
w-displacement of FGM plate through the thickness for various power law index n as 0, 3, 4, 5 
and 10 in case of without piezoelectric effect and with piezoelectric effect respectively. Table 3 
and Table 5 shows the buckling load for various volume fraction indices through the thickness 
without and with piezoelectric effect of simply supported piezoelectric FGM plate respectively. 
 
Table 5. Buckling load (Ncr = λNx N/m) of SSSS FGM plate under biaxial compression with piezoelectric 

effect (FOST, b/h=1000, piezo thk. = 0.0025).G*=0.3 
z/h n=0 n=3 n=4 n=5 n=10 
0.5 428.507 428.507 428.507 428.507 428.507 
0.0 428.507 470.083 482.117 496.425 497.179 
-0.5 428.507 837.120 837.120 837.120 837.120 

 
4. Conclusions 
 
  A new model for stability analysis of piezolaminated FGM plate using finite element method 
and FOST is developed. The validation for the stability analysis is performed by comparing the 
buckling load results of FGM plate with the analytical results and ANSYS nonlinear finite 
element program results. Numerical studies for stability analysis using SISO control strategy 
suggested that buckling of FGM plate can be controlled by increasing the gain values. So 
buckling strength of plate can be improved by considering piezoelectric effect. Present analysis 
predicts that buckling strength of plate can be improved easily by using higher piezo layer 
thickness. 
  Overall results show that, buckling strength of the plate increases with increase in volume 
fraction indices through the thickness also the piezo thickness significantly influence the 
buckling control of plate with different gain values. The displacement can be improved with the 
help of piezoeffect using gain values. The FOST mode results closely agree with the analytical 
results and results of ANSYS nonlinear finite element program. It can be concluded that volume 
fraction index significantly influence the buckling load. In this analysis FGM exhibits the two 
different material properties in single material i.e. high corrosion resistivity as well as high 
strength. This newly introduced metal based FGM will definitely help to construction as well as 
metal industry. 
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