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Abstract: This paper discusses the use of D-optimal designs in the design of experiments (DOE) 
and artificial neural networks (ANN) in predicting the deflection and stresses of carbon fibre 
reinforced plastic (CFRP) square laminated composite plate subjected to uniformly distributed 
load. For training and testing of the ANN model, a number of finite element analyses have been 
carried out using D-optimal designs by varying the fibre orientations and thickness of each 
lamina. The composite plate is modeled using shell 99 elements. The ANN model has been 
developed using multilayer perceptron (MLP) backpropagation algorithm. The adequacy of the 
developed model is verified by root mean square error and regression coefficient. The results 
showed that the training algorithm of backpropagation was sufficient enough in predicting the 
deflection and stresses. 
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1. Introduction 
 

Composite materials are particularly attractive to aviation and aerospace applications because 
of their exceptional strength and stiffness-to-density ratios and superior physical properties. The 
mechanical behavior of a laminate is strongly dependent on the fiber directions and because of 
that; the laminate should be designed to meet the specific requirements of each particular 
application in order to obtain the maximum advantages of such materials. Usually, laminated 
composite materials are fabricated from unidirectional plies of giving thickness and with fiber 
orientations limited to a small set of angles, eg., 0o, 45o, -45o and 90o [1]. A true understanding of 
their structural behaviour is required, such as the deflections, buckling loads and modal 
characteristics, the through thickness distributions of stresses and strains, the large deflection 
behaviour and, of extreme importance for obtaining strong, reliable multi-layered structures, the 
failure characteristics [2]. 

In the past, the structural behavior of plates and shells using the finite element method has 
been studied by a variety of approaches. Choudhary and Tungikar [3] analyzed the geometrically 
nonlinear behavior of laminated composite plates using the finite element analysis. They studied 
the effect of number of layers, effect of degree of orthotropy (both symmetric and antisymmetric) 
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and different fibre orientations on central deflections. Ganapathi et al. [4] presented an 
eight-node C0 membrane-plate quadrilateral finite element-based on the Reissner-Mindlin plate 
theory to analyse moderately large deflection, static and dynamic problems of moderately thick 
laminates including buckling analysis and membrane-plate coupling effects. Han et al. [5] used 
the hierarchical finite element method to carry out the geometrically nonlinear analysis of 
laminated composite rectangular plates. Based on the first-order shear deformation theory and 
Timoshenko’s laminated composite beam functions, the current authors developed a unified 
formulation of a simple displacement based 3-node, 18degree-of-freedom flat triangular 
plate/shell element [6] and two simple, accurate, shear-flexible displacement based 4-node 
quadrilateral elements [7-8] and for linear and geometrically nonlinear analysis of thin to 
moderately thick laminated composite plates. The deflection and rotation functions of the 
element boundary were obtained from Timoshenko’s laminated composite beam functions. Raja 
Sekhara Reddy et al. [9] applied the artificial neural networks (ANN) in predicting the natural 
frequency of laminated composite plates under clamped boundary condition. They used the 
D-optimal design in the design of experiments to carry out the finite element analysis. WEN  et 
al. [10-11] used the finite element method to predict the damage level of the materials. They 
studied the prediction of the elastic-plastic damage and creep damage using Gurson model and 
creep damage model, which is based on the Kachanov-Rabothov continuum creep damage law. 
They also studied the creep damage properties of thin film/substrate systems by bending creep 
tests and carried the Simulation of the interface characterization of thin film/substrate systems. 
Reddy et al [12] employed a distance-based optimal design in the design of experimental 
techniques and artificial neural networks to optimize the stacking sequence for a sixteen ply 
simply supported square laminated composite plate under uniformly distributed load (UDL) for 
minimizing the deflections and stresses using finite element method. Therefore the finite element 
method is especially versatile and efficient for the analysis of complex structural behavior of the 
composite laminated structures. 

The present study proposes a new experimental design method for selection of practical 
laminates and thickness of each ply for a criterion of a response. This method employs 
D-optimality for selections from a set of feasible laminates. This method is applied to a 10 layer 
laminate to predict the deflection and stresses of a composite plate subjected to a uniform 
distributed load under simply supported boundary condition and an artificial neural network 
model has been developed to predict the same. 
 
2. Material and methods 
 
  The material used to model the physical structure of the laminated composite plate is carbon 
fibre reinforced plastic (CFRP). The material properties are as follows [13]: 
E1=220GPa, E2=6.9GPa, E3=6.9GPa, G12=G23=G13=4.8GPa, v12=0.25, Vf=0.6. 
  The methodology adopted in predicting the deflections and stresses using the integrated 
approach is shown in Figure 1. 
 
2.1. Geometry of the shell 99 element 
 
  In this study to model the laminated composite plate the finite element analysis software 
ANSYS has been used. In ANSYS software, there are many element types available to model 
layered composite materials. In our FE analysis, the linear layered structural shell element (Shell 
99) is used. It is designed to model thin to moderately thick plate and shell structures with a 
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side-to-thickness ratio of roughly 10 or greater. The linear layered structural shell element allows 
a total of 250 uniform-thickness layers. Alternatively, the element allows 125 layers with 
thicknesses that may vary bilinearly over the area of the layer. An accurate representation of 
irregular domains (i.e. domains with curved boundaries) can be accomplished by the use of 
refined meshes and/or irregularly shaped elements. For example, a non-rectangular region cannot 
be represented using only rectangular elements; however, it can be represented by triangular and 
quadrilateral elements. Since, it is easy to derive the interpolation functions for a rectangular 
element, and it is much easier to evaluate the integrals over rectangular geometries than over 
irregular geometries, it is practical to use quadrilateral elements with straight or curved side 
assuming you have a means to generate interpolation functions and evaluate their integrals over 
the quadrilateral elements [14-15]. The linear layered structural shell element is shown in Figure 
2. Nodes are represented by I, J, K, L, M, N, O, and P. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Generic model 
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Figure 2. Geometry of 8-node element with six degrees of freedom 

 
2.2. Design of experiments 
 
  Design of Experiments (DOE) is a mathematical methodology that defines an optimal set of 
experiments in the design space, in order to obtain the most relevant information possible with 
the highest accuracy at the lowest cost. This scientific exploration of the design space replaces a 
tedious, manual, trial-and-error process, and is the fastest way to acquire the most relevant 
information with minimum computational effort. Traditional experimental designs (Full Factorial 
Designs, Fractional Factorial Designs, and Response Surface Designs) are appropriate for 
calibrating linear models in experimental settings where factors are relatively unconstrained in 
the region of interest. In some cases, however, models are necessarily nonlinear. In other cases, 
certain treatments (combinations of factor levels) may be expensive or infeasible to measure. 
D-optimal designs are model-specific designs that address these limitations of traditional 
designs. 
  The D-optimality criterion states that the best set of points in the experiment maximizes the 
determinant | X T X |. "D" stands for the determinant of the X matrix associated with the model.  
A D-optimal design is generated by an iterative search algorithm and seeks to minimize the 
covariance of the parameter estimates for a specified model. This is equivalent to maximizing the 
determinant D=|XT X|, where X is the design matrix of model terms (the columns) evaluated at 
specific treatments in the design space (the rows). Unlike traditional designs, D-optimal designs 
do not require orthogonal design matrices, and as a result, parameter estimates may be correlated. 
Parameter estimates may also be locally, but not globally, D-optimal. The D-optimal design uses 
the row-exchange and Co-ordinate exchange algorithms to generate the optimal designs [16]. 
  A related measure of the moment matrix (X T X/k) is the D-efficiency and can be calculated by 
using the following expression: 
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where 
  ND is the number of points in the design and p is the number of effects in the model including 
the intercept. If all variables are normalized so that they vary from -1 to 1, then the maximum 
value of the Deff is 1. Furthermore, the quality of the set of points can then be measured by Deff.. 
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2.3. Artificial neural networks 
 
  An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by 
the way biological nervous systems, such as the brain, process information. It resembles the 
human brain in two aspects: the knowledge is acquired by the network through a learning 
process, and inter neuron connection strengths known as synaptic weights are used to store the 
knowledge. A typical biological neuron collects signals from others through a host of fine 
structures called dendrites. The neuron sends out spikes of electrical activity through a long, thin 
stand known as an axon, which splits into thousands of branches. At the end of each branch, a 
structure called a synapse converts the activity from the axon into electrical effects that inhibit or 
excite activity from the axon into electrical effects that inhibit or excite activity in the connected 
neurons. When a neuron receives excitatory input that is sufficiently large compared with its 
inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by 
changing the effectiveness of the synapses so that the influence of one neuron on other 
changes. A biological neuron and artificial neuron are shown in Figure 3 and Figure 4 
respectively. 
  The analogy of biological neuron to artificial neuron is as follows: 
 

Human Artificial 
Neuron Processing Element 

Dendrites Combining Function 
Cell Body Transfer Function 

Axons Element Output 
Synapses Weights 

 

  The use of artificial neural networks (ANN) has been well accepted in the areas of 
telecommunication, signal processing, pattern recognition, prediction, process control and 
financial analysis. Neural networks are built by connecting these neurons together by weighted 
interconnections. The determination of these weights called training is the most significant task. 
In supervised learning the network is trained to learn a mapping from certain inputs to given 
outputs. An example of supervised learning is the back propagation method for multilayer 
perceptron (MLP) networks. Multilayer means the addition of one or more hidden layers in 
between the input and output layers. In the network each neuron receives total input from all of 
the neurons in the preceding layer according to the Eq. (2). 
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  Where netj is the total or net input and N is the number of inputs to the jth neuron in the hidden 
layer. Wij is the weight of the connection from the ith neuron in the forward layer to the jth neuron 
in the hidden layer. A neuron in the network produces its output (Out j) by processing the net 
input through an activation (Transfer) function, such as Tangent hyperbolic function as in Eq. 
(3). 
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  In the training process the algorithm is used to calculate neuronal weights, so that the 
root-mean squared error between the calculated outputs and observed outputs from the training 
set is minimized and is calculated using Eq. (4). 
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  Where di is the desired response (or target signal), yi are the output units of the network, and 
the sums run over time and over the output units. When the root-mean square error is minimized, 
the power of the error (i.e. the power of the difference between the desired and the actual ANN 
output) is minimized. 
  In addition, the absolute fraction of variance (R2) is defined as follows: 
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Figure 3. Simplified model of a biological neuron 

 
 
 

 
Figure 4. Artificial neuron model 
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3. Finite element analysis 
 
3.1. Validation of linear layered structural shell element-a case study 
 
  In order to validate the usage of the linear layered structural shell element, a numerical 
example is solved in static analysis. The boundary condition is simply supported and the 
geometry and material properties are as follows: 
E1/E2=40, G12=G13=0.6E2, G23=0.5E2, 25.012  , a/h=10, a=1, q=1.0. 

The center deflection and stresses are presented here in non-dimensional form using the 
following: 
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  Table 1 and Table 2 represents the mesh convergence study and comparison of results of 
non-dimensional displacement obtained from Reddy [15] and the ANSYS computer program. 
The results using a free mesh show an excellent correlation to the results given by Reddy [15]. 
 

Table 1. Nondimensional displacement of composite plates (cross- ply) 
Mesh 0/90 0/90/0 0/90/90/0 0/90/0/90 
2 × 2 14.222 6.8178 6.5423 6.7762 
4 × 4 14.478 6.9848 6.7402 6.9897 

10×10 14.488 6.9904 - 6.9965 
20×20 14.488 6.9905 6.7459 6.9966 
40 × 40 14.475 6.9857 6.7405 6.9904 

FSDT (Reddy) 14.069 6.919 6.682 6.9260 
Difference (%) 2.907 0.951 0.870 0.919 

 
Table 2. Nondimensional displacement of composite plates (θ/- θ/ θ/- θ) 

Mesh 5 15 
2 × 2 6.7716 6.3811 
4 × 4 - 6.6625 
10×10 6.9652 - 
20×20 - 6.6668 

40 × 40 6.9623 6.6631 
FSDT (Reddy) 6.741 6.086 
Difference (%) 3.2828 9.4824 

 
3.2. Model description 
 
  The physical structure that was used in this work is a carbon fibre reinforced plastic composite 
plate, shown in Figure 5. The length (a) and width (b) of the plate is 100 mm and ply orientation 
and thickness (h) of the plate is treated as a design variable. A total 422 analyses are performed 
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in this design study, using a finite element model of the plate. The model was developed using 16 
linear layered structural shell elements in ANSYS 10.0. The global x-coordinate is taken along 
the length of the plate; the global y-coordinate is taken along the width of the plate while the 
global z-direction is taken out the plate surface. There are 4 elements in the axial direction and 4 
along the width one. In this finite element analysis, all the sides are constrained in the Z direction 
only. The pressure applied to the plate is 1N/mm2. 

 
Figure 5. Uniformly loaded simply supported composite plate 

 
3.3. Finite element analyses details 
 
  In the present study, the D-optimal design has been implemented to select a feasible set of 
laminates from among all feasible laminates. For the ply angle and thickness we adopt 3 levels 
(00, 45o and 90o)  and  4 levels (0.2mm, 0.3mm, 0.4mm and 0.5mm) respectively for each 
lamina. Thus the total number of entire feasible simulations is 3×3×3×3×3×4×4×4×4×4=2, 
48,832 because we consider only a symmetric laminate and for each ply. The ‘odd’ occurrences 
i.e., first (outermost), third, fifth, etc. of 450 plies corresponds to 450 plies, whereas ‘even’ 
occurrences corresponds to -450. For example, a laminate of [0/45/45/90/45/0.2/0.3/0.5/0.2] is 
coded as [0/45/-45/90/45/0.2/0.3/0.5/0.2]. There is one unbalanced 450 ply when the number of 
occurrences of 450 plies is odd. This is repaired by replacing the 450 -ply with a 900-ply or a 
00-ply. The 450-ply position replaced by a 900-ply or a 00-ply is the innermost 450-ply that can be 
replaced without violating the four contiguous ply rule: the same fibre angle plies must not 
stacked more than four plies [1]. We can select feasible laminates from the set of feasible 
laminates using D-optimal. In this study, the total 422 feasible laminates were selected for 
training (322 laminates), validation (80 laminates) and testing (20 laminates) of the artificial 
neural network model. The selected D-optimal set of laminates design was performed using JMP 
software of SAS. The material properties used throughout this study are presented in section 2. 
The plate is analyzed for deflections and stresses under a simply supported boundary condition 
when the plate is subjected to a uniformly distributed load working along the Z-direction. The 
variations of mean nondimensional results of the laminates are shown in Figure 6-9. 
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Figure 6. Variation of mean nondimensional deflection for different fibre orientations and thickness 
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Figure 7. Variation of mean nondimensional stress (Sx) for different fibre orientations and thickness 
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Figure 8. Variation of mean nondimensional stress (Sy) for different fibre orientations and thickness 
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Figure 9. Variations of mean nondimensional shear stress (Sxy) for different fibre orientations and 

thickness 
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4. Results and discussion 
 
4.1. Development of ANN model 
 
  One of the key issues when designing a particular neural network is to calculate proper 
weights for neuronal activities. These are obtained from the training process applied to the given 
neural network. To that end, a training sample is provided, i.e. A sample of observations 
consisting of inputs and their respective outputs. The observations are fed to the network. In the 
training process the algorithm is used to calculate neuronal weights, so that the root mean 
squared error between the calculated outputs and observed outputs from the training set is 
minimized [17]. 
 
4.2. Neural network training 
 
  To calculate the connection weights, a set of desired network output values is needed. Desired 
output values are called the training data set. The training data set in this study was selected 
based on a D-optimal design in the design of experiments. In this study, 322 data sets were used 
for training, 80 data set were for validation and 20data set were used for testing the network 
respectively. For calculation of weight variables, often referred to as network training. To get the 
best prediction by the network, several architectures were evaluated and trained using the finite 
element analyses data. A network with one hidden layer and 30 neurons provided to be an 
optimum ANN. The performance of the network (RMSE and Regression coefficient (R2)) with 
the number of neurons is shown in Figure 10-17. The optimal neural network architecture 
10-30-4 was used in this study.  It was designed using JMP software of SAS. The network 
consists of one input, one hidden and one output layer. The input layer has 10 neurons, hidden 
layer has thirty neurons and output layer has four neurons respectively. Since deflection and 
stresses prediction in terms of ply orientation and thickness of each ply was the main interest in 
this research, neurons in the input layer corresponding to the number of plies and thickness of 
each ply and the output layer corresponds to deflection and stresses. The minimum root-mean 
square error for deflection and stresses are 0.009797, 0.277487, 0.235952, and 0.049341 
respectively for the training data set. 

 

 
Figure 10. Root-mean square vs. number of neurons for nondimensional displacement 
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Figure 11. Root-mean square vs. number of neurons for nondimensional stress (Sx) 

 

 
Figure 12. Root-mean square vs. number of neurons for nondimensional stress (Sy) 

 

 
Figure 13. Root-mean square vs. number of neurons for nondimensional shear stress (Sxy) 
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Figure 14. R-square vs. number of neurons for nondimensional deflection 

 
 
 

 
Figure 15. R-square vs. number of neurons for nondimensional stress (Sx) 
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Figure 16. R-square vs. number of neurons for nondimensional stress (Sy) 

 
 

 
Figure 17. R-square vs. number of neurons for nondimensional shear stress (Sxy) 

 
4.3. Neural network validation 
 

Once the weights are adjusted the performance of the trained network was validated and tested 
with the finite element analyses which were never used in the training process. Validation set is a 
part of the data used to tune the network topology or network parameters other than weights. It is 
used to define the number of hidden units to detect the moment when the predictive ability of 
neural network started to deteriorate. One method, k-fold cross validation, is used to determine 
the best model complexity, such as the depth of a decision tree or the number of hidden units in a 
neural network. The method of k-fold cross validation partitions the training set into k sets. For 
each model complexity, the learner trains k times, each time using one of the sets as the 
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validation set and the remaining sets as the training set. It then selects the model complexity that 
has the smallest average error on the validation set (averaging over the k runs). It can return the 
model with that complexity, trained on all of the data. In this study k=5 is chosen. The minimum 
validation root-mean square error for deflection and stresses are 0.0067692, 0.1574362, 
0.1836281 and 0.0268278 respectively. To have a more precise investigation into the model, a 
regression analysis of outputs and desired targets was performed for training and validation data 
set as shown in Figure 18-25. The R-square values for training and, validation data set are 
0.973001, 0.997533, 0.998166, 0.999546, 0.98284, 0.999249, 0.998961 and 0.999831 for 
deflection and stresses (Sx, Sy, Sxy). 

The comparison between ANN model output and experimental output for training, validation 
data sets are shown in Figure 18-25 and showing that, the predicted values using ANN is in very 
good correlation and representation with the experimental results. 
 
 

 
Figure 18. ANN predicts outputs vs. experimentally measured outputs for train data set (nondimensional 

deflection) 
 
 

 
Figure 19. ANN predicts outputs vs. experimentally measured outputs for validation data set 

(nondimensional deflection) 
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Figure 20. ANN predicts outputs vs. experimentally measured outputs for train data set (nondimensional 

stress (Sx)) 
 

 
Figure 21. ANN predicts outputs vs. experimentally measured outputs for validation data set 

(nondimensional stress (Sx)) 
 

 
Figure 22. ANN predicts outputs vs. experimentally measured outputs for train data set (nondimensional 

stress (Sy)) 
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Figure 23. ANN predicts outputs vs. experimentally measured outputs for a validation data set 

(nondimensional stress (Sy)) 
 

 
Figure 24. ANN predicts outputs vs. experimentally measured outputs for train data set (nondimensional 

stress (Sxy)) 
 

 
Figure 25. ANN predicts outputs vs. experimentally measured outputs for a validation data set 

(nondimensional stress (Sy)) 
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4.4. Neural network testing 
 
  The ANN predicted results are in very good agreement with experimental results and the 
network can be used for testing. Hence the test data sets are applied to the network, which were 
never used in the training process and is presented in Table 3. The test set is a part of the input 
data set used only to test how well the neural network will predict on new data. The results 
predicted by the network were compared with the finite element results and shown in Figure 
26-29. The regression coefficients for deflection and stresses (Sx, Sy, Sxy) were found to be 
0.882, 0.983, 0.993 and 0.999 respectively. 
 

 
Figure 26. ANN predicts outputs vs. experimentally measured outputs for the test data set 

(nondimensional deflection) 
 

 
Figure 27. ANN predicts outputs vs. experimentally measured outputs for the test data set 

(nondimensional stress (Sx)) 
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Figure 28. ANN predicts outputs vs. experimentally measured outputs for the test data set 

(nondimensional stress (Sy)) 
 
 

 
Figure 29. ANN predicts outputs vs. experimentally measured outputs for the test data set 

(nondimensional shear stress (Sxy)) 
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Table 3. Test data set 

S. 
No 

First 
Ply 

angle 

Second 
Ply 

angle 

Third 
Ply 

angle 

Fourth 
Ply 

angle 

Fifth 
Ply 

angle 

First 
Ply 

thickness 

Second 
Ply 

thickness 

Third 
Ply 

thickness 

Fourth 
Ply 

thickness 

Fifth 
Ply 

thickness 
1 45 -45 45 0 -45 0.2 0.2 0.2 0.2 0.2 
2 90 0 45 0 -45 0.2 0.2 0.2 0.2 0.2 
3 0 90 45 0 -45 0.2 0.2 0.2 0.2 0.2 
4 90 90 45 0 -45 0.2 0.2 0.2 0.2 0.2 
5 45 0 90 0 -45 0.2 0.2 0.2 0.2 0.2 
6 0 45 90 0 -45 0.2 0.2 0.2 0.2 0.2 
7 90 45 90 0 -45 0.2 0.2 0.2 0.2 0.2 
8 45 90 90 0 -45 0.2 0.2 0.2 0.2 0.2 
9 45 0 -45 45 -45 0.2 0.2 0.2 0.2 0.2 
10 0 45 -45 45 -45 0.2 0.2 0.2 0.2 0.2 
11 45 -45 0 45 -45 0.2 0.2 0.2 0.2 0.2 
12 45 90 90 0 -45 0.2 0.2 0.2 0.2 0.2 
13 45 0 -45 45 -45 0.2 0.2 0.2 0.2 0.2 
14 45 -45 90 45 -45 0.4 0.5 0.4 0.3 0.2 
15 0 45 -45 90 90 0.4 0.5 0.4 0.2 0.2 
16 0 45 -45 90 90 0.5 0.2 0.5 0.2 0.4 
17 45 -45 90 0 90 0.4 0.2 0.5 0.5 0.4 
18 45 0 -45 90 90 0.5 0.5 0.5 0.5 0.5 
19 0 45 -45 90 90 0.3 0.4 0.5 0.3 0.4 
20 45 90 -45 90 90 0.2 0.5 0.5 0.2 0.5 

 
5. Conclusions 
 
  This study presented a new D-optimal set of laminates to model the artificial neural networks 
for predicting the deflection and stresses. The ANN predicted results are in very good agreement 
with the finite element results. Hence, the D-optimal design of experiments can be applied to any 
structural analysis. The D-optimal set of laminates is not limited to 10 ply laminates for changing 
the ply thickness. It is applicable to laminates of any number of plies by changing the ply 
thickness. The effectiveness of the method is shown with predicting capability to deflection and 
stresses of laminated composite plates subjected to uniformly distributed load under simply 
supported boundary condition. 
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