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1. Introduction 
 

Fifth order boundary value problem appears in the mathematical modelling of viscoelastic 
flows and other branches of mathematical, physical and engineering sciences [4, 5]. The 
conditions for the existence and uniqueness of the solution of such problems can be found in [6]. 
Gamel [2] analyzed Sinc-Galerkin method for the solution of fifth-order boundary value 
problems with two-point boundary conditions. Shen [3] solved fifth-order boundary value 
problems using the homotopy perturbation method. Siddiqi and Ghazala presented 
nonpolynomial spline method [7], polynomial sextic spline method [8] for the numerical solution 
of the fifth-order linear special case boundary value problems and the method is observed to be 
second-order convergent. Ghazala and Hamood [1] developed searching the least value (SLV) 
method for the solution of fifth order boundary value problem. 

In this paper, a reproducing kernel method is used for the solution of nonlinear fifth order 
boundary value problem. The method discussed in this paper also applied to solve general fifth 
order boundary value problem. To the best of our knowledge, such boundary value problem 
involving )x(u ),x(u ),x(u ),x(u )2()3()4()5(  has not been already solved. 

The following fifth order nonlinear boundary value problem (BVP) can be considered as 
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where ai (x), i = 0, 1, 2, …, 4 and f(x,u(x)) are continuous functions on [0, 1]. 

Let L be the differential operator and homogenization of the boundary conditions of system (1) 
can be transformed into the following form 
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  Thus, the solution of system (2) provides the solution of the system (1). 
The rest of this paper is organized as under: 
In Section 2, the reproducing kernel spaces and the reproducing kernel function are given. The 

approximate solution of problem (2) is presented in Section 3. Three numerical examples are 
presented to demonstrate the accuracy of the method in Section 4. 
 
2. Reproducing kernel spaces 
 

i) The reproducing kernel space 1] ,0[W 6
2  is defined by  5 2..., 1, ,0i (x), u / u(x)1] ,0[W (i)6

2   
are absolutely continuous real valued functions in [0, 1],   ]1 ,0[ L)x(u 26  . The inner 
product and norm in 1] ,0[W6

2  are given by 
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2.1. Theorem 
 

The space  1 ,0W6
2  is a reproducing kernel Hilbert space. That is   1] ,0[Wyu 6

2  and each 
fixed 1] ,0[y ,x   there exists 1] ,0[W)y(R 6

2x   s.t )x(u)y(R ),y(u x   and )y(R x  is called 
the reproducing kernel function of space  1 ,0W6

2 . 
The reproducing kernel function )y(R x  is given by 
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Proof 
  Since 1] ,0[W(y)R 6

2x   and from Eq. (3), it can be written as 
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  Since 1] ,0[W(y)R 6
2x  , it follows that 
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then Eq. (6) implies that 
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  For all ],1 ,0[x  if )y(R x  also satisfies 
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When ,xy   characteristic equation of Eq. (10) is given by 12  then the characteristic 
values can be determined whose multiplicity is 12. 

Let )y(R x  satisfies 
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Integrating (10) from  x to x  with respect to y and ,0x   using jump degree of 
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x   
 

.1)0x(R)0x(R )12(
x

)12(
x          (13) 

 

  The coefficients ci and di (i=1, 2, …, 11) can be determined from Eqns. (7), (8), (12) and (13). 
 
3. The exact and approximate solutions 
 

In the problem (2), the linear operator ]1 ,0[W]1 ,0[W :L 1
2

6
2   is bounded. Using the adjoint 

operator L* of L and choose a countable dense subset   ]1 ,0[... ,x ..., ,x ,xT n21   and let 
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Since  1iix  is dense in [0, 1], (Lu)(x)=0, which implies u=0 from the existence of L-1. 
  Using the reproducing property, it can be written as 
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To orthonormalize the sequence   1ii )x(  in the reproducing kernel space 1], ,0[W 6
2  

Gram-Schmidt process can be used, as 
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3.2. Theorem 1 
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  From Eqns. (16) and (17), it can be written as  
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  The approximate solution obtained by the n-term intercept of the exact solution u(x), given by 
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  The problem (2) is nonlinear, then approximate solution of the problem (2) can be obtained 
using the following iteration formula: 
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3.3. Theorem 2 
 

If  i) )x(u  is bounded 
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If n=2, then )).x(u ,x(f))x(u ,x(f)x(Lu)x(Lu 2122210121222121   
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  Furthermore, it is easy to see by induction that 
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where Ai are given by Eq. (20). 
To illustrate the applicability and accuracy of our method, three numerical examples are 

constructed. 
 
4. Numerical examples 
 
Example 4.1. 
  The nonlinear fifth-order boundary value problem can be considered, as 
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  The exact solution of the Example 4.1. is u(x)=ln(1+x). The comparison of the errors in 
absolute values between the method developed in this paper and that of Gamel [2] is shown in 
Tables 1, 2. 
 

Table 1. Absolute errors (|exact solution-approximate solution|) for problem (24) 
x Present method (n=10) Gamel [2] 

0.0 0 0 
0806 1.38225E-07 0 

0.2285 1.0026E-06 2.0E-05 
0.3999 5.70443E-06 2.0E-05 

0.5 8.21059E-06 4.0E-05 
0.6395 9.0013E-06 1.0E-05 
0.6923 8.21059E-06 2.0E-05 
0.7714 6.19523E-06 3.0E-05 
0.8836 2.33757E-06 2.0E-05 
0.9447 6.32223E-07 5.0E-05 

1.0 0 0 
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Table 2. Max. absolute error for problem (24) 
Present method (n=10) Gamel [2] 

9.17818 E-06 5.0 E-05 
 

Example 4.2. 
 The nonlinear fifth-order boundary value problem can be considered, as 

 

1)0(u ,e)1(u
,1)0(u e,u(1) 1,u(0)
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The exact solution of the Example 4.2. is u(x)=ex. 
The comparison of the errors in absolute values between the method developed in this paper 

and that of Ghazala and Hamood [1], Gamel [2] and Shen [3] is shown in Table 3. 
 

Table 3. Absolute errors (|exact solution-approximate solution|) for problem (25) 
x Present method (n = 10) Ghazala and Hamood [1] (n = 10) Gamel [2] Shen [3] 

0.0  0 0 0 
0.01 1.20691 E -11 7.79 E -10 0 1.2 E -9 

0.1184 1.59402E -08 7.83 E-7 0 7.0 E -6 
0.1517 3.11814E -08 1.36 E-6 1.0 E-4 1.4 E -5 
0.2410 1.01658E -07 3.005 E-6 0 4.6 E -4 
0.3604 2.47487E -07 2.52E-6 1.0 E-4 1.0 E -4 
0.4287 3.37393E -07 2.57 E-7 0 1.0 E -4 

0.5 4.16695E -07 5.04 E-6 2.0 E-4 1.9 E -4 
0.6395 4.68051E -07 1.58E-5 1.0 E-4 1.0 E -4 
0.8482 2.03296E -07 1.33 E-5 2.0 E-4 9.8 E -5 
0.9996 2.39419E -12 2.10 E-10 2.0 E-4 1.2 E -9 

1.0  0 0 0 
 
Example 4.3. 

 The nonlinear fifth-order boundary value problem can be considered, as 
 

.1cos e)1(u ,0)1(u2)0(u ,0)0(u ,1)0(u
),x(f)x(ue)x(u)x(u)x(u)x1()x(xu)x(u

)1()2()1(

)x(u)1()2()3()4()5(




    (26) 

 

The exact solution of the Example 4.3. is x)-(1e=u(x) x cosx and 
)sinx2x+6x+11x+)cosx(32x+4x+5x+((14e=f(x) 3232

x  
The results are summarized in Table 4. 

 
Table 4. Absolute errors (|exact solution-approximate solution|) for problem (26) 
x Exact solution Approximate solution |)x(u)x(u| 10  

0.0 1.0 1.0 0 
0.16 0.97647 0.97647 3.347  E-7 
0.32 0.902695 0.902699 3.717 E-6 
0.48 0.776689 0.7767 1.159 E-5 
0.64 0.601525 0.601544 1.922 E-5 
0.8 0.387228 0.387246 1.797 E-5 
0.96 0.152886 0.152891 5.797 E-6 
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5. Conclusions 
 

In this paper, the reproducing kernel space method is developed for the solution of fifth order 
boundary value problem. The obtained results are compared with the solutions obtained from 
other methods and found that present method gives better results. The results revealed that the 
method is a powerful mathematical tool for the solution of fifth order boundary value problems. 
Numerical examples also show the accuracy of the method. 
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