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Abstract: In this paper, a domain decomposition method for solving singularly perturbed 
two-point boundary value problems is presented. By using a terminal point, the original problem 
is divided into inner and outer region problems. An implicit terminal boundary condition at the 
terminal point is determined. The outer region problem with the implicit boundary condition is 
solved and produces an explicit boundary condition for the inner region problem. Then, the 
modified inner region problem (using the stretching transformation) is solved as a two-point 
boundary value problem. We used fourth order stable central difference method to solve both the 
inner and outer region problems. The proposed method is iterative on the terminal point. To 
demonstrate the applicability of the method, we solved several linear and nonlinear singular 
perturbation problems. 
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1. Introduction 
 

Singular perturbation problems containing a small parameter,  multiplying to their highest 
derivative term arise in many fields such as, fluid mechanics, fluid dynamics, chemical reactor 
theory, elasticity etc and have received a significant amount of attention in past and recent years. 
The solution of these types of problems exhibits a multi scale characters. That is, there are a 
narrow region called boundary layer in which their solution changes rapidly and the outer region 
where solution changes smoothly. Thus, numerical treatment of such problems is not trivial 
because of the boundary layer behavior of their solutions. Pearson [16] was the first to attempt 
something like net adjustments in difference schemes while solving singular perturbation 
problems. His idea was to use a variable mesh width in applying finite difference scheme in the 
domain of interest. Besides, there are a wide variety of asymptotic expansion methods available 
for solving singular perturbation problems. However, it may be difficult to apply these 
asymptotic expansion methods as finding of the appropriate asymptotic expansions in the inner 
and outer regions is not routine exercises rather requires skill, insight, and experimentations. 
Moreover, the matching of the coefficients of the inner and outer solution expansions can also be 
a demanding process. Thus, the general motivation of this paper is to provide simpler and 
efficient computational techniques which helps to know the behavior of the solutions of the 
problems in the inner region, where the solution of the problem changes rapidly, of the boundary 
layer and to find the computational results at uniform mesh length. For detail discussion of 
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solving singular perturbation problems by asymptotic expansion methods, one can refer to the 
books and high level monographs: O'Malley [13, 14], Nayfeh [11, 12], Cole and Kevorkian [4], 
Bender and Orszag [2], Eckhaus [5], Van Dyke [19], and Bellman [1]. 

Moreover, in the recent times many researchers have been trying to develop and present 
numerical methods for solving these problems. For instance, based on the asymptotic behavior of 
singular perturbation problems, Kadalbajoo and Patidar [7] and Kadalbajoo and Reddy [8, 9] 
have discussed numerical schemes for the solution of linear singularly perturbed two-point 
boundary value problems. Xie and et al [20] have presented a novel approach for solving 
parameterized singularly perturbed two-point boundary value problems. They have treated these 
problems by converting the original problem into non-singularly perturbed algebraic equation 
and a first order initial value problem by making use of the boundary layer correction technique 
and then easily apply conventional numerical method, Runge-Kutta method, to solve the initial 
value problems numerically. Geng [6] has presented reproducing kernel method (RKM) for 
solving a class of singularly perturbed boundary value problems by transforming the original 
problem in to a new boundary value problem whose solution does not change rapidly. RKM has 
the advantage that it can produce smooth approximate solutions, but it is difficult to apply the 
method for singularly perturbed boundary value problems without transforming using 
appropriate transformation. Padmaja and et al [15] have presented a nonstandard explicit method 
involving the reduction of order for solving singularly perturbed two point boundary value 
problems. The original problem is approximated by a pair of initial value problems. In order to 
know the behavior of the solution of the problems in the boundary layer region, these researchers 
solved the first initial value problem as outer region problem whose solution can be required in 
the second initial value problem which they considered it as an inner region problem and is 
modified using the stretching transformation. Prasad and Reddy [17] applied the Differential 
Quadrature Method (DQM) for finding the numerical solution of singularly perturbed two point 
boundary value problems with mixed condition. DQM is based on the approximation of the 
derivatives of the unknown functions involved in the differential equations at the mesh point of 
the solution domain and is an efficient discretization technique in solving boundary value 
problems using a considerably small number of grid points. 

In the present paper, the domain decomposition method for singularly perturbed two point 
boundary value problems with the boundary layer at the left end of the interval is presented. 
Based on the decomposition of the domain into inner and outer regions, the method consists of 
the following steps: (i) the original problem is divided in to two problems, inner region and outer 
region problems; (ii) a terminal boundary condition in the implicit form is determined; (iii) then, 
the outer region problem with the implicit boundary condition is solved as a two-point 
boundary-value problem, and an explicit terminal boundary condition is obtained; (iv) the inner 
region problem is modified and solved as a two-point boundary value problem using the explicit 
terminal boundary condition. Finally, we combine the solutions of both the inner region and 
outer region problems to get the approximate solution of the original problem. 

The present method is iterative on the terminal point. We repeat the process (numerical 
scheme) for various choices of the terminal point, until the solution profiles do not differ 
materially from iteration to iteration. 
 
2. Description of the method 
 
  Consider a linear singularly perturbed two-point boundary value problem of the form: 
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)()()()()()( xfxyxbxyxaxy  , 10  x        (1) 
 

with )0(y          (2a) 
 

and )1(y ;         (2b) 
where  is a small positive parameter )10(    and ,  are known constants. We assume 
that a(x), b(x) and f(x) are sufficiently continuously differentiable functions in [0, 1]. 
Furthermore, we assume that 0)(  Mxa  throughout the interval [0, 1], where M is some 
positive constant. Under these assumptions, (1) has a unique solution )(xy  which in general, 
displays a boundary layer of width O() at x=0 for small values of . (O’Malley [13] and Nayfeh 
[12]). 
  As mentioned above, we divide the original problem in to two regions: an inner region and 
outer region problem. Let px ( 10  px ) be the terminal point or width or thickness of the 
boundary layer (inner region), then the inner and outer region problems are defined on 

pxx 0  and 1 xx p  respectively. 
  By using Taylor’s expansion, we have 
 

)(
2

)()()(
2

xy
x

xyxxyxxy p
pp          (3) 

 

  Using (3) in to (1), we get 
 

)()()()()()(2)(2)(2 222 xfxxyxbxxyxaxxxyxyxyx ppppp        (4) 
 

  Evaluating (4) at pxx  , we get 
 

321 )()( cxycxyc pp           (5) 
 

where 2)(2
1  pp xbxc         (6a) 

 

))(2(2 ppp xaxxc           (6b) 
 

)0(2)(2
3 yxfxc pp          (6c) 

 

which is in implicit form and is taken as the terminal boundary condition at pxx  (the terminal 
point). 
  Using the terminal boundary condition (5), which is in implicit form, we solve the outer region 
problem as a two point boundary value problem 
 

)()()()()()( xfxyxbxyxaxy  , 1 xx p        (7) 
 

with 321 )()( cxycxyc pp          (8a) 
 

and )1(y          (8b) 
 

  We solve this two point boundary value problem and get solution )(xy  over [xp, 1]. 
  From the solution  xy  of the outer region problem (7)-(8) on the interval 1 xx p  we get 
the value of )( pxy which is the explicit terminal boundary condition and let us denote it by 
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)( pxy . 
  In order to solve the inner region problem, since the terminal point of the inner region is 
common to both the inner and outer regions, we can formulate the inner problem as a two-point 
boundary-value problem 
 

)()()()()()( xfxyxbxyxaxy  , pxx 0        (9) 
 

with )0(y         (10a) 
 

and )x(y p ;        (10b) 
 

we choose the transformation 
 


xt            (11) 

 

to form a new differential equation for the inner region solution. By using (11) we transform 
equation (9) with 
 

)()()( tYtyxy           (12a) 
 


 )()()( tYtyxy





         (12b) 

 

22

)()()(


 tYtyxy





         (12c) 
 

)()()( tAtaxa           (12d) 
 

)()()( tBtbxb           (12e) 
 

)()()( tFtfxf           (12f) 
 

to the new inner region problem of the form: 
 

)t(F)t(Y)t(B)t(Y)t(A)t(Y   , ptt 0       (13) 
 

with )0(Y         (14a) 
 

and  )()( pp xytY        (14b) 
 

where 


p
p

x
t  . We solve this new inner region problem (13)-(14) to obtain the solutions over 

the interval ptt 0 . 
  To solve the two-point boundary value problems given in equations (7)-(8) (outer region 
problem) and (13)-(14) (inner region problem), we make use of fourth order stable central 
difference method (Choo and Schultz [3]). In fact, any standard analytical or numerical method 
can be used. Finally, we combine the solutions of both the inner region defined on pxx 0  
and outer region defined on 1 xx p  problems to get the approximate solution of the original 
problem (1)-(2) over the interval 10  x . 
  We repeat the process (numerical scheme) for various choices of px (the terminal point), until 
the solution profiles do not differ materially from iteration to iteration. For computational point 
of view, we use an absolute error criterion, namely 
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 )()(1 xyxy mm  pxx 0        (15) 
 

  Where )(xy m  = the solution for the mth iterate of px  and  = the prescribed tolerance 
bound. 
 
3. Fourth order stable central difference method 
 
  To set up the difference equation of the outer region problem (7)-(8) we divide [xp, 1] into 
N equal parts, each of length h , 1210  Np x...xxxx . Then, we have ihxx pi  ; 

.N...,,2,1,0i 　　　  For simplicity let   ,axa ii     ,bxb ii     ,fxf ii     ,yxy 0p     ,yxy ii   
  ,yhxy 1ii     ,yhxy 1ii     ,yxy ii     ,yxy ii   etc. By Taylor expansion, we 

obtain the following central difference formulas for y   and y  at x  assuming that y has 
continuous fourth derivatives on [0, 1]. 
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Where  
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Substituting (16) and (17) into (7) we can write the central difference approximation of (7) in 

the form that includes all the  2hO  error terms as follows: 
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  Where 21 RaRR i  . Now, from (1) we have 
 

iiiiii fybyay          (19) 
 
  Differentiating both sides of (19) we get 
 

  iiiiiiiiii fybybyayay         (20) 
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  Differentiating both sides of (20) again we have 
 

       iiiiiiiiiiii fybybaybayay  224      (22) 
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  By making use of (21) and (22) into (18) for iy  and  4
iy  we obtain 
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  Now, approximating the converted error term, which has a stabilizing effect, in (23) by using 
the central difference formulas (16) and (17) for iy   and iy  we obtain 
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  Rearranging (24) we obtain the three term recurrence relation 
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  Equation (25) gives a system of N  equations with 1N unknown 1y  to 1Ny  . To eliminate 
the unknown 1y , we make use of the implicit boundary condition (8a) and then by employing 
the second order central difference approximation in it, we get 
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  Where 21 c,c  and 3c  are defined in (6). Making use of (27) in the first equation of the 
recurrence relation (25) at 0i , we get 
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  Now, equations (25) and (28) give N  by N  tri-diagonal system which can be easily solved 
by using Thomas Algorithm. 
 

  Similarly, to set up the difference equation of the inner region problem (13)-(14) we divide the 
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three term recurrence relation 
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  To solve the tri diagonal system (29), we also used Thomas Algorithm. 
 
4. Numerical examples 
 
  To demonstrate the applicability of the method, we have implemented it on three numerical 
examples. 
 
Example 4.1. 

Consider the singular perturbation problem from Kevorkian and Cole [10], Page 33, equations 
2.3.26 and 2.3.27 with =0. 

 
 

0)()(  xyxy ; 10  x with y(0)=0 and y(1)=1. 
 

  Outer region problem: 
 

0)()(  xyxy , 1 xx p  with 321 )()( cxycxyc pp   and 1)1( y  
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  Using the transformation 
xt   and rescaling, we get inner region problem: 

 

0)()(  tYtY , ptt 0 , with 0)0( Y and  )()( pp xytY  
 

  The exact solution is given by 
)/1exp(1
)/exp(1)(








xxy . 

 

  Numerical results are presented in Table 1 and 2 for =10-3 and =10-4 respectively. 
 

Table 1. Numerical results for example 4.1. =10-3 

x y(x) y(x) y(x) Exact Solution tp=5 tp=10 tp=20 
0.0000 0.0000000 0.0000000 0.0000000 0.0000000 
0.0005 0.3964216 0.3934893 0.3934622 0.3934693 
0.0010 0.6368634 0.6321526 0.6321090 0.6321205 
0.0025 0.9248022 0.9179614 0.9178982 0.9179150 
0.0050 0.9933118 0.9933118 0.9932433 0.9932621 
0.0100  0.9999947 0.9999361 1.0000000 
0.0200   0.9999997 1.0000000 
0.1000 1.0000000 1.0000000 1.0000000 1.0000000 
0.2000 1.0000000 1.0000000 1.0000000 1.0000000 
0.3000 1.0000000 1.0000000 1.0000000 1.0000000 
0.4000 1.0000000 1.0000000 1.0000000 1.0000000 
0.5000 1.0000000 1.0000000 1.0000000 1.0000000 
0.6000 1.0000000 1.0000000 1.0000000 1.0000000 
0.8000 1.0000000 1.0000000 1.0000000 1.0000000 
0.9000 1.0000000 1.0000000 1.0000000 1.0000000 
1.0000 1.0000000 1.0000000 1.0000000 1.0000000 

 
Table 2. Numerical results for example 4.1. =10-4 

x y(x) y(x) y(x) Exact Solution tp=5 tp=10 tp=20 
0.00000 0.0000000 0.0000000 0.0000000 0.0000000 
0.00005 0.3964216 0.3934893 0.3934622 0.3934693 
0.00010 0.6368634 0.6321526 0.6321090 0.6321205 
0.00025 0.9248022 0.9179614 0.9178982 0.9179150 
0.00050 1.0000000 0.9933118 0.9932433 0.9932621 
0.00100  1.0000000 0.9999361 0.9999546 
0.00200   1.0000000 1.0000000 
0.10000 0.9994636 0.9994636 0.9994636 1.0000000 
0.20000 0.9995232 0.9995232 0.9995232 1.0000000 
0.30000 0.9995828 0.9995828 0.9995828 1.0000000 
0.40000 0.9996424 0.9996424 0.9996424 1.0000000 
0.50000 0.9997020 0.9997020 0.9997020 1.0000000 
0.60000 0.9997616 0.9997616 0.9997616 1.0000000 
0.80000 0.9998808 0.9998808 0.9998808 1.0000000 
0.90000 0.9999404 0.9999404 0.9999404 1.0000000 
1.00000 1.0000000 1.0000000 1.0000000 1.0000000 
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Example 4.2. 
Consider the following singular perturbation problem from fluid dynamics for fluid of small 

viscosity, Reinhardt [18], Example 2. 
 

xxyxy 21)()(  ; 10  x , with y(0)=0 and y(1)=1. 
 

Outer region problem: 
 

xxyxy 21)()(  , 1 xx p , with 321 )()( cxycxyc pp  and 1)1( y  
 

  Using the transformation 
xt   and rescaling, we get the inner region problem: 

 

 ttYtY  21)()(  , ptt 0 , with 0)0( Y  and  )()( pp xytY  
 

The exact solution is given by )
)/1exp(1
)/exp(1)(12()21()(









xxxxy . 

 

Numerical results are presented in Table 3 and 4 for =10-3 and =10-4 respectively. 
 

 
 

Table 3. Numerical results for example 4.2. =10-3 

x 
y(x) y(x) y(x) 

Exact Solution 
tp=5 tp=10 tp=20 

0.0000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0005 -0.3988031 -0.3922527 -0.3908068 -0.3921831 

0.0010 -0.6406894 -0.6301660 -0.6278433 -0.6298573 

0.0025 -0.9303619 -0.9150810 -0.9117079 -0.9135779 

0.0050 -1.0067350 -0.9901992 -0.9865495 -0.9862605 

0.0075  -0.9963951 -0.9927238 -0.9899068 

0.0100  -0.9972157 -0.9935324 -0.9878747 

0.0200   -0.9965126 -0.9776400 

0.1000 -0.8852087 -0.8852087 -0.8852087 -0.8882000 

0.2000 -0.7554023 -0.7554023 -0.7554023 -0.7584000 

0.3000 -0.6055970 -0.6055970 -0.6055970 -0.6086000 

0.4000 -0.4357930 -0.4357930 -0.4357930 -0.4388000 

0.6000 -0.0361892 -0.0361892 -0.0361892 -0.0392001 

0.8000 0.4434079 0.4434079 0.4434079 0.4403999 

0.9000 0.7132034 0.7132034 0.7132034 0.7102000 

1.0000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table 4. Numerical results for example 4.2. =10-4 

x 
y(x) y(x) y(x) 

Exact Solution 
tp=5 tp=10 tp=20 

0.00000 0.0000000 0.0000000 0.0000000 0.0000000 
0.00005 -0.3981239 -0.3945281 -0.3923660 -0.3933406 
0.00010 -0.6395984 -0.6338219 -0.6303481 -0.6318942 
0.00025 -0.9287786 -0.9203904 -0.9153460 -0.9174814 
0.00050 -1.0050240 -0.9959474 -0.9904884 -0.9925632 
0.00075  -1.0021850 -0.9966897 -0.9984966 
0.00100  -1.0030070 -0.9975108 -0.9987538 
0.00200   -1.0004910 -0.9977964 
0.10000 -0.8898201 -0.8898201 -0.8898201 -0.8898200 
0.20000 -0.7598400 -0.7598400 -0.7598400 -0.7598400 
0.30000 -0.6098603 -0.6098603 -0.6098603 -0.6098600 
0.40000 -0.4398800 -0.4398800 -0.4398800 -0.4398800 
0.60000 -0.0399200 -0.0399200 -0.0399200 -0.0399201 
0.80000 0.4400399 0.4400399 0.4400399 0.4400399 
0.90000 0.7100198 0.7100198 0.7100198 0.7100199 
1.00000 1.0000000 1.0000000 1.0000000 1.0000000 

 
 
Example 4.3. 

Consider the following singular perturbation problem from Kevorkian and Cole [10], Page 33, 
equations 2.3.26 and 2.3.27 with =-1/2. 
 

0)(
2
1)()

2
1()(  xyxyxxy ; 10  x , with y(0)=0 and y(1)=1. 

 

  Outer region problem: 
 

0)x(y
2
1)x(y)

2
x1()x(y  ; 1xx p  , with 3p2p1 c)x(yc)x(yc   and 1)1(y  . 

 

Using the transformation 
xt   and rescaling, we get the inner region problem: 

 

0)(
2

)()
2

1()(  tYtYttY  , ptt 0 , with 0)0( Y and  )()( pp xytY  
 

  The exact solution is given by: 


 /)4/xx( 2
e

2
1

x2
1)x(y . 

 

  Numerical results are presented in Table 5 and 6 for =10-3 and =10-4 respectively. 
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Table 5. Numerical results for example 4.3. =10-3 

x y(x) y(x) y(x) Exact Solution tp=5 tp=10 tp=20 
0.0000 0.0000000 0.0000000 0.0000000 0.0000000 
0.0005 0.2086948 0.2003571 0.1982316 0.1968407 
0.0010 0.3353204 0.3219237 0.3185086 0.3162644 
0.0025 0.4873530 0.4678823 0.4629188 0.4595191 
0.0050 0.5287614 0.5076362 0.5022516 0.4978630 
0.0075  0.5111049 0.5056835 0.5016016 
0.0100  0.5115069 0.5060741 0.5024893 
0.0200   0.5087405 0.5050505 
0.1000 0.5275981 0.5275981 0.5275981 0.5263158 
0.2000 0.5568738 0.5568738 0.5568738 0.5555556 
0.3000 0.5895875 0.5895875 0.5895875 0.5882353 
0.4000 0.6263814 0.6263814 0.6263814 0.6250000 
0.6000 0.7156940 0.7156940 0.7156940 0.7142857 
0.8000 0.8346714 0.8346714 0.8346714 0.8333333 
0.9000 0.9103107 0.9103107 0.9103107 0.9090909 
1.0000 1.0000000 1.0000000 1.0000000 1.0000000 

 
Table 6. Numerical results for example 4.3. =10-4 

x y(x) y(x) y(x) Exact Solution tp=5 tp=10 tp=20 
0.00000 0.0000000 0.0000000 0.0000000 0.0000000 
0.00005 0.2080094 0.1988881 0.1956313 0.1967453 
0.00010 0.3341934 0.3195390 0.3143064 0.3160807 
0.00025 0.4854656 0.4641780 0.4565767 0.4590136 
0.00050 0.5258662 0.5028067 0.4945732 0.4967540 
0.00075  0.5066160 0.4983189 0.4999107 
0.00100  0.5075817 0.4992693 0.5002273 
0.00200   0.5025655 0.5005005 
0.10000 0.5263897 0.5263897 0.5263896 0.5263158 
0.20000 0.5556296 0.5556296 0.5556295 0.5555555 
0.30000 0.5883077 0.5883077 0.5883077 0.5882353 
0.40000 0.6250740 0.6250740 0.6250739 0.6250000 
0.60000 0.7143514 0.7143514 0.7143514 0.7142857 
0.80000 0.8333839 0.8333839 0.8333839 0.8333333 
0.90000 0.9091176 0.9091176 0.9091176 0.9090909 
1.00000 1.0000000 1.0000000 1.0000000 1.0000000 

 
5. Nonlinear problems 
 
  To solve nonlinear singular perturbation problems we have used the method of 
quasilinearization. 
 
Example 5.1. 

Consider the following singular perturbation problem from Bender and Orszag [2], page 463, 
equations 9.7.1. 
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0e)x(y2)x(y )x(y  ; 10  x , with y(0)=0 and y(1)=0. 
 

  The linear form of this example is 
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  Outer region problem: 
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with 321 )()( cxycxyc pp   and 0)1( y . 
 

  Using the transformation 

xt   and rescaling, we get the inner region problem: 
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with 0)0( Y and  )()( pp xytY  
 

We have chosen to use Bender and Orszag’s uniformly valid approximation [[2], page 463, 
equation 9.7.6] for comparison, 
 










 /x2

ee e)2(log
1x

2log)x(y  
 

  For this example, we have boundary layer of thickness O() at x=0. [cf. Bender and Orszag 
[2]]. 

Numerical results are presented in Table 7 and 8 for =10-3 and =10-4 respectively. 
 

Table 7. Numerical results for example 5.1. =10-3 

x y(x) y(x) y(x) Exact Solution tp=5 tp=10 tp=20 
0.0000 0.0000000 0.0000000 0.0000000 0.0000000 
0.0005 0.4408946 0.4370730 0.4348807 0.4376527 
0.0010 0.6028609 0.5976343 0.5946361 0.5983404 
0.0025 0.6912875 0.6852906 0.6818503 0.6859799 
0.0050 0.6935626 0.6875402 0.6840836 0.6881282 
0.0075  0.6856030 0.6821464 0.6856750 
0.0100  0.6836601 0.6802093 0.6831968 
0.0200   0.6724607 0.6733446 
0.1000 0.5971998 0.5971998 0.5971998 0.5978370 
0.2000 0.5102048 0.5102048 0.5102048 0.5108256 
0.3000 0.4301792 0.4301792 0.4301792 0.4307829 
0.4000 0.3560878 0.3560878 0.3560878 0.3566749 
0.6000 0.2225883 0.2225883 0.2225883 0.2231435 
0.8000 0.1048342 0.1048342 0.1048342 0.1053605 
0.9000 0.0507805 0.0507805 0.0507805 0.0512933 
1.0000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table 8. Numerical results for example 5.1. =10-4 

x y(x) y(x) y(x) Exact Solution tp=5 tp=10 tp=20 
0.00000 0.0000000 0.0000000 0.0000000 0.0000000 
0.00005 0.4397037 0.4385542 0.4366111 0.4381026 
0.00010 0.6014532 0.5998808 0.5972227 0.5992399 
0.00025 0.6908551 0.6890486 0.6859952 0.6882268 
0.00050 0.6954359 0.6936173 0.6905436 0.6926158 
0.00075  0.6937961 0.6907224 0.6923972 
0.00100  0.6939749 0.6909012 0.6921477 
0.00200   0.6916165 0.6911492 
0.10000 0.5978820 0.5978820 0.5978820 0.5978370 
0.20000 0.5108603 0.5108603 0.5108603 0.5108256 
0.30000 0.4308094 0.4308094 0.4308094 0.4307829 
0.40000 0.3566946 0.3566946 0.3566946 0.3566750 
0.60000 0.2231531 0.2231531 0.2231531 0.2231436 
0.80000 0.1053641 0.1053641 0.1053641 0.1053605 
0.90000 0.0512948 0.0512948 0.0512948 0.0512933 
1.00000 1.0000000 1.0000000 1.0000000 0.0000000 

 
Example 5.2. 

Let us consider the following singular perturbation problem from Kevorkian and Cole [10], 
page 56, equation 2.5.1. 
 

0)x(y)x(y)x(y)x(y  ; 10  x  with y(0)= -1 and y(1)=3.9995 
 

  The linear problem concerned to this example is 
 

9995.2x)x(y)9995.2x()x(y   
 

  Outer region problem: 
 

9995.2)()9995.2()(  xxyxxy ; 1 xx p  
 

with 321 )()( cxycxyc pp   and 1)1( y  
 

  Using the transformation 
xt   and rescaling, we get the inner region problem: 

 

)9995.2()()9995.2()(  ttYttY  , ptt 0 , with 0)0( Y  and  )()( pp xytY . 
 

  We have chosen to use the Kevorkian and Cole’s uniformly valid approximation [10], pages 
57 and 58, equations (2.5.5), (2.5.11) and (2.5.14) for comparison, 
 















 








 2

1
1 cx

2
ctanhcx)x(y , where c1=2.9995 and c2=(1/c1)loge[(c1-1)/(c1+1)] 

 

  For this example also we have a boundary layer of width O() at x=0 [cf. Kevorkian and Cole 
[10], pages 56-66]. 
 

  The numerical results are given in Table 9 and 10 for =10-3 and 10-4 respectively. 
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Table 9. Numerical results for example 5.2. =10-3 

x 
y(x) y(x) y(x) 

Exact Solution 
tp=5 tp=10 tp=20 

0.0000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 
0.0005 2.1181140 2.1176840 2.1238030 1.1484590 
0.0010 2.8140390 2.8135130 2.8209980 2.4569390 
0.0025 3.0114610 3.0109090 3.0187820 2.9953620 
0.0050 3.0139090 3.0133570 3.0212340 3.0044960 
0.0075  3.0136260 3.0215020 3.0070000 
0.0100  3.0135220 3.0213970 3.0095000 
0.0200   3.0220790 3.0195000 
0.1000 3.1005670 3.1005670 3.1005670 3.0995000 
0.2000 3.2005610 3.2005600 3.2005600 3.1995000 
0.3000 3.3005550 3.3005550 3.3005550 3.2995000 
0.4000 3.4005500 3.4005490 3.4005490 3.3995000 
0.6000 3.6005310 3.6005310 3.6005310 3.5995000 
0.8000 3.8005190 3.8005190 3.8005190 3.7995000 
0.9000 3.900508 3.9005080 3.9005080 3.8995000 
1.0000 3.9995000 3.9995000 3.9995000 3.9995000 

 
 

Table 10. Numerical results for example 5.2. =10-4 

x 
y(x) y(x) y(x) 

Exact Solution 
tp=5 tp=10 tp=20 

0.00000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 
0.00005 2.1153530 2.1095570 2.1085090 1.1480090 
0.00010 2.8105100 2.8034220 2.8021390 2.4560400 
0.00025 3.0072620 2.9998090 2.9984590 2.9931120 
0.00050 3.0081140 3.0006620 2.9993110 2.9999960 
0.00075  3.0016230 3.0002490 3.0002500 
0.00100  3.0032370 3.0018640 3.0005000 
0.00200   3.0027990 3.0015000 
0.10000 3.1001470 3.1001470 3.1001470 3.0995000 
0.20000 3.2000710 3.2000710 3.2000710 3.1995000 
0.30000 3.3000090 3.3000090 3.3000090 3.2995000 
0.40000 3.3999360 3.3999360 3.3999360 3.3995000 
0.60000 3.5997990 3.5997990 3.5997990 3.5995000 
0.80000 3.7996520 3.7996520 3.7996510 3.7995000 
0.90000 3.8995750 3.8995750 3.8995750 3.8995000 
1.00000 3.9995000 3.9995000 3.9995000 3.9995000 
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6. Discussion and conclusions 
 
 We have presented a domain decomposition method for solving singularly perturbed two-point 
boundary value problems. As mentioned the method is iterative on the terminal point px  and 
the process is to be repeated for different values of px  (the terminal point which is not unique), 
until the solution profile stabilizes in both the inner and outer regions. We have implemented the 
present method on three linear and two nonlinear problems with left-end boundary layer, by 
taking different values of . From the results presented in tables, it can be observed that the 
present method approximates the exact solution very well. The present method is simple, easy 
and efficient technique for solving singular perturbation problems. In fact, our method helps us 
to get good results and also to know the behavior of the solution in the boundary layer/inner 
region with h  itself. Where as the existing numerical methods produce good results only for 

h  which is very costly and time consuming. Further for h  the existing methods fails to 
give good results and in fact produce oscillatory solutions. Thus, the present method provides an 
alternative technique to the conventional ways of solving singularly perturbed boundary value 
problems. 
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