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Abstract: This paper presents analytical formulations and solutions for the static analysis of 
functionally graded plates (FGPs) using higher order shear deformation theory (HSDT) without 
enforcing zero transverse shear stress on the top and bottom surfaces of the plate. The theoretical 
model presented herein incorporates the transverse extensibility which accounts for the 
transverse effects. The equations of equilibrium and boundary conditions are derived using the 
principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s 
technique. The results are compared with the other HSDTs for deflections and stresses. It can be 
concluded that the proposed theory is accurate and efficient in predicting the static responses of 
functionally graded plates. The results show that, the effect of transverse shear deformation is 
quite significant at side-to-thickness ratio less than 10 on maximum center deflections and 
stresses and the response of FGPs is intermediate to that of ceramic and metal plates. 
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1. Introduction 
 

Functionally graded materials (FGMs) are a new generation of engineered materials in which 
the material properties are continually varied through the thickness direction by mixing two 
different materials and thus no distinct internal boundaries exist and failures from interfacial 
stress concentrations developed in conventional structural components can be avoided. FGMs 
are widely used in many structural applications such as mechanics, civil engineering, optical, 
electronic, chemical, mechanical, biomedical, energy sources, nuclear, automotive fields and 
ship building industries to eliminate stress concentration and relax residual stresses and enhance 
bond strength. 

The literature on the FGPs is relatively scarce when compared to isotropic and laminated 
plates. Because of FGMs applications in high temperature environments, most of the studies on 
the behavior of FGM plates focus on the thermo-mechanical response of FGM plates: Reddy and 
chin [1], Reddy [2], Vel and Batra [3, 4], Cheng and Batra [5] and Javaheri and Eslami [6]. In the 
past, a variety of plate theories have been proposed to study the mechanical behavior of FGM 



B. Sidda Redddy, J. Suresh Kumar, C. Eswara Reddy, and K. Vijaya Kumar Reddy 

24     Int. J. Appl. Sci. Eng., 2014. 12, 1 

plates. In particular, knowledge pertaining to static analysis is essential for optimal design of 
structures. For example, our numerical results clearly show that, one could achieve an optimal 
design for FGM plates with a suitable power law index “n”. 

The Classical plate theory (CPT) provides acceptable results only for the analysis of thin 
plates and neglects the transverse shear effects. However, for moderately thick plates CPT under 
predicts deflections and over predicts buckling loads and natural frequencies. The first-order 
shear deformation theories (FSDTs) are based on Reissner [7] and Mindlin [8] accounts for the 
transverse shear deformation effect by means of a linear variation of in-plane displacements and 
stresses through the thickness of the plate, but requires a correction factor to satisfy the free 
transverse shear stress conditions on the top and bottom surfaces of the plate. Although, the 
FSDT provides a sufficiently accurate description of response for thin to moderately thick plates, 
it is not convenient to use due to difficulty with determination of the correct value of shear 
correction factor [9]. In-order to overcome the limitations of FSDT many HSDTs were 
developed that involve higher order terms in Taylors expansions of the displacements in the 
thickness coordinate, notable among them are Reddy [2], Zenkour [10-12], Kant and Co-workers 
[13-18], Kadkhodayan [19], Matsunaga [20, 21], Xiang [22] and Ferreira [23]. Most of these 
theories do not account for transverse shear stress on the top and bottom surfaces of the plate and 
transverse extensibility by neglecting the transverse stress in the z-direction (σz). Mechab et.al 
[25]developed a two variable refined plate theory to the bending analysis of functionally graded 
plates; Mantari and Soares [26] used the new trigonometric higher order shear deformation 
theory with stretching effect to develop the analytical solutions for static analysis of functionally 
graded materials. They employed the virtual work principle to derive the governing equations of 
motion and boundary conditions. The bi-sinusoidal load in the transverse direction is applied to 
the simply supported FGM plate to obtain the Navier-type solution. Vo and Thai [9] developed a 
new sinusoidal shear deformation theory based on the assumption that the in-plane and 
transverse displacements consist of bending and shear parts to predict the bending, buckling and 
vibration responses of FGM plates. The material properties are graded according to a power law 
distribution of the volume fraction of the constituents. They used Hamilton’s principle to derive 
the equations of motion. Neves et.al [23, 24] derived a higher order shear deformation theory 
(HSDT) for modeling of functionally graded material plates and focused on the thickness 
stretching issue on the static, free vibration, and buckling analysis of FGM plates by a meshless 
technique. They used the virtual work principle of displacements under Carrera’s Unified 
Formulation (CUF) to obtain the governing equations and boundary conditions. The bending and 
Eigen problems are solved by collocation with radial basis functions. 

The present paper deals with the analytical formulations and solutions for the static analysis of 
functionally graded plates (FGPs) using higher order shear deformation theory (HSDT) without 
enforcing zero transverse shear stress on the top and bottom surfaces of the plate. The theoretical 
model presented herein incorporates the transverse extensibility which accounts for the 
transverse effects. Thus a shear correction factor is not required. The plate material is graded 
through the thickness direction. The plate’s governing equations and its boundary conditions are 
derived by employing the principle of virtual work. Navier-type analytical solution is obtained 
for plates subjected to transverse sinusoidal load for simply supported boundary conditions. The 
results are compared with other higher order shear deformation theories available in the literature 
to verify the accuracy of the proposed theory in predicting the static responses of FG plates. To 
make the study feasible, the displacements and stresses are given for different homogenization 
schemes and exponents in the power law that describes through the thickness variation of the 
constituents. 
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2. Theoretical formulation 
 
  In formulating the higher-order shear deformation theory, a rectangular plate of length a, 
width b and thickness h is considered, that composed of functionally graded material through the 
thickness. Figure 1 shows the functionally graded material plate with the rectangular Cartesian 
coordinate system x, y and z. The material properties are assumed to be varied in the thickness 
direction only and the bright and dark areas correspond to ceramic and metal particles 
respectively. On the top surface (z=+h/2), the plate is composed of full ceramic and graded to the 
bottom surface (z=-h/2) that composed of full metal. The reference surface is the middle surface 
of the plate (z=0). The functionally graded material plate properties are assumed to be the 
function of the volume fraction of constituent materials. The functional relationship between the 
material property and the thickness coordinates is assumed to be 
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where P denoted\s the effective material property, Pt, and Pb denotes the property on the top and 
bottom surface of the plate respectively and n is the material variation parameter that dictates the 
material variation profile through the thickness. The effective material properties of the plate, 
including Young’s modulus, E, density ρ, and shear modulus, G, vary according to Equation (1), 
and poisons ratio (υ) is assumed to be constant. 
 

 
Figure 1. Functionally graded plate and coordinates 

 
2.1. Displacement models 
 
  In order to approximate 3D plate problem to a 2D one, the displacement components u (x, y, z, 
t), v (x, y, z, t) and w (x, y, z, t) at any point in the plate are expanded in terms of the thickness 
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coordinate. The elasticity solution indicates that the transverse shear stress varies parabolically 
through the plate thickness. This requires the use of a displacement field, in which the in-plane 
displacements are expanded as cubic functions of the thickness coordinate. In addition, the 
transverse normal strain may vary nonlinearly through the plate thickness. The displacement 
field which satisfies the above criteria may be assumed in the form [27]: 
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where 
u0, v0 is the in plane displacements of a point (x, y) on the mid plane. 
wo is the transverse displacement of a point (x, y) on the mid plane. 
x, y , z are rotations of the normal to the mid plane about y and x-axes. 
u0

*, v0
*, w0

*, x
*, y

*, and z
* are the corresponding higher order deformation terms. 

  By substitution of displacement relations from Equation (2) into the strain displacement 
equations of the classical theory of elasticity the following relations are obtained: 
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2.2. Elastic stress-strain relations 
 
  The elastic stress-strain relations depend on which assumption of εz we consider. If εz≠0, i.e., 
thickness stretching is allowed then the 3D model is used. In the case of functionally graded 
materials the constitutive equations can be written as: 
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Where( x, y, z, xy, yz, xz) are the stresses and  ( x,  y,  z, xy, yz, xz) are the strains 
with respect to the axes, Qij’s are the plane stress reduced elastic coefficients in the plate axes 
that vary through the plate thickness given by 
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where Ec is the modulus of Elasticity of the ceramic material and Em is the modulus of elasticity 
of the metal. 
 
2.3. Governing equations of motion 
 
  The governing equations of motion of present theory are derived using the Hamilton’s 
principle can be written in the analytical form as: 
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  Where U is the virtual strain energy, V is the virtual work done by applied forces, and K is 
the virtual kinetic energy  and is given by: 
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  Substituting for U, V and K in the virtual work statement in Equation (6) and integrating 
through the thickness, integrating by parts and collecting the coefficients of 
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and the transverse force resultants and inertias are given by: 
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  The resultants in Equations (11)-(14) can be related to the total strains in Equation (4) by the 
following matrix: 
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where 
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   The matrices [A], [B], [D] and [Ds] are the plate stiffness whose elements can be calculated 
using Equation (4), and Equations (11)-(14). 
 
3. Analytical solutions 
 
  Rectangular plates are generally classified by referring to the type of support used. We are 
here concerned with the analytical solutions of the Equations (10)-(16) for simply supported FG 
plates. Exact solutions of the partial differential Equation (10) an arbitrary domain and for 
general boundary conditions are difficult. Although, the Navier-type solutions can be used to 
validate the present higher order theory, more general boundary conditions will require solution 
strategies involving, e.g., boundary discontinuous double Fourier series approach. 

  Solution functions that completely satisfy the boundary conditions in Equations (17) are 
assumed as follows: 
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n   and m and n are modes numbers. 

And the mechanical load is expanded in double Fourier sine series as: 
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  Substituting Equations (17a)-(17l) in to Equation (10) and collecting the coefficients one 
obtains 
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For any fixed value of m and n. The elements of the coefficient matrix [S] are as follows. 
  Solutions of the Equation (19) are obtained for each m, n=1, 2….as Umn, Vmn, Wmn, Xmn, Ymn, 
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4. Results and discussion 
 
  In this section, a numerical example is presented and discussed to verify the accuracy of the 
present higher-order shear deformation theory in predicting the deflections and stresses of a 
simply supported functionally graded material plate. For numerical results, an Al/Al2O3 Plate is 
considered and graded from aluminum (as metal) at the bottom to alumina (as ceramic) at the top 
surface of the plate. The material properties adopted here are Aluminium Young’s modulus (Em): 
70GPa , density ρm= 2702 kg/m3, and Poisson’s ratio (υ): 0.3 Alumina Young’s modulus (Ec): 
380GPa, density ρc= 3800kg/m3, and Poisson’s ratio (υ): 0.3. 
  For convenience, the transverse displacement, in-plane and the transverse shear stresses are 
presented in nondimensionalized form as 
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In Table 1 we present results for normal stresses and transverse displacements for various 
material variation parameters “n” of the power law. The considered side-to-thickness ratios (a/h) 
are 4, 10 and 100. Results are compared with the Carrera et al. [28, 29] and Neves et al. [24, 30]. 
  The results from present higher-order shear deformation theory considering εz≠0 are in good 
agreement with those from Refs. [24, 28, 29 and 30] who also considers εz≠0. It can also be seen 
that the effect of the exponent “n” of the power law on the dimensionless deflections and stresses 
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of an FGM plate is being demonstrated in the results presented in Table 1. As the exponent value 
“n” increases, the difference increases for deflection and decreases for in-plane longitudinal 
stress ( x ) and also for a/h decreases. The maximum percentage error observed between present 
higher order shear deformation theory and Neves et al. is 17.86 for normal stress )( x  at 
side-to-thickness ratio 4 and power law index 10. Results in Table 1 should serve as benchmark 
results for future comparisons. 
 
 

Table 1. Comparison of nondimensional normal stress x  and center deflections(w) 

n )3/(hx  w  
Theory a/h a/h 

4 10 100 4 10 100 
0 Ref.[24] 0.527800 1.317600 13.161000 0.366500 0.294200 0.280300 

Present 0.548990 1.325320 13.172600 0.366501 0.294254 0.280403 
0.5 Ref.[24] 0.586000 1.468000 14.673000 0.549300 0.454800 0.436500 

Present 0.611335 1.474280 14.646100 0.553451 0.452037 0.432540 
1 Ref.[29] 0.622100 1.506400 14.969000 0.717100 0.587500 0.562500 

Ref.[28] 0.622100 1.506400 14.969000 0.717100 0.587500 0.562500 
Ref.[30] 0.592500 1.494500 14.969000 0.699700 0.584500 0.562400 
Ref.[24] 0.591100 1.491700 14.945000 0.702000 0.586800 0.564700 
Present 0.627707 1.508120 14.969400 0.717416 0.587536 0.562532 

4 Ref.[29] 0.487700 1.197100 11.923000 1.158500 0.882100 0.828600 
Ref.[28] 0.487700 1.197100 11.923000 1.158500 0.882100 0.828600 
Ref.[30] 0.440400 1.178300 11.932000 1.117800 0.875000 0.828600 
Ref.[24] 0.433000 1.158800 11.737000 1.110800 0.870000 0.824000 
Present 0.507926 1.204310 11.9234 1.157040 0.881670 0.828682 

10 Ref.[29] 0.369500 0.896500 8.907700 1.374500 1.007200 0.936100 
Ref.[28] 0.147800 0.896500 8.907700 1.374500 1.007200 0.936100 
Ref.[30] 0.322700 1.178300 11.932000 1.349000 0.875000 0.828600 
Ref.[24] 0.309700 0.846200 8.601000 1.333400 0.988800 0.922700 
Present 0.377067 0.887084 8.908000 1.376930 1.007180 0.936184 

 
 

  Figures 2-3 show the variation of maximum centre deflection against side-to-thickness ratios 
(a/h) and aspect ratios (a/b) for various power law exponents “n”. From Figures 2-3, it is 
observed that the deflections are larger for metal rich plates and decreases as the plate becomes 
more and more ceramic. This is due to the fact that the Young’s modulus of ceramic (Ec=380GPa) 
is higher than that of the metal (Em=70GPa). Hence for FGM plates, the transverse deflection is      
intermediate to that of metal and ceramic rich plates. In addition, the difference in deflection of 
the FGM plates decreases as the aspect ratio increases, while it may be unchanged with the 
increase of side-to-thickness ratio. The effect of transverse shear deformation is felt at 
side-to-thickness ratio less than 10. Also, as aspect ratio (a/b) increases the maximum center 
deflections decreases. This is due to the increase of stiffness of the plate. 
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Figure 2. Nondimensional displacement ( w ) as a function of side-to-thickness ratio (a/h) of an FGM plate 

for various values of power law index (n) 
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Figure 3. Nondimensional displacement ( w ) as a function of Aspect ratio (a/b) of an FGM plate for 

various values of power law index (n) 
 

Figures 4-5 show the variation of nondimensionalized maximum normal stressesses 
( andx y ) against aspect ratio for FGM square plate as a function of power law index. From 
Figure 4, it is observed that the nondimensionalized maximum normal stress ( x ) decreases 
with the increase of aspect ratio and decrease of power law index. This is due to the increase of 
stiffness of the plate. But normal stress increases with aspect ratio up to 0.5 and then decreases 
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gradually. It is due to the increase of elastic constants Qij. 
  The variation of nondimensionalized normal stress z  against modulus ratio as a function of 
power law index is shown in Figure 6. From the Figure 6 it is seen that, the nondimensionalized 
normal stress z  increases with increase of modulus ratio and power law index. The reason is 
as the mixture of metal-ceramic ratio increases, the metal-ceramic modulli increases. Hence 
normal stress z  increases. 
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Figure 4. Nondimensional stress ( x ) as a function of Aspect ratio (a/b) of an FGM plate for various 

values of power law index (n) 
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Figure 5. Nondimensional stress ( y ) as a function of Aspect ratio (a/b) of an FGM plate for various 

values of power law index (n) 
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Figure 6. Nondimensional stress ( z ) as a function of Modulus ratio (Em/Ec) of an FGM plate for various 

values of power law index (n) 
 
  The effect of transverse shear deformation on the nondimensionalized shear stresses ( yz xz ) 
is shown in Figures 7-8. From Figures 7 and 8, it is observed that, the shear stresses ( yz xz ) 
increases with the increase of side-to-thickness ratio. The shear deformation effect is to decrease 
the shear stresses and is felt at side-to-thickness ratio less than 10 and diminishes with the 
increase of side-to-thickness ratio. 
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Figure 7. Nondimensional shear stress ( yz ) as a function of side-to-thickness ratio (a/h) of an FGM plate 

for various values of power law index (n) 
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Figure 8. Nondimensional shear stress ( xz ) as a function of side-to-thickness ratio (a/h) of an FGM plate 

for various values of power law index (n) 
 
  Finally, Figures 9-11 depict the in-plane longitudinal, normal and transverse shear stress 
distributions across the thickness of the FG plate under the sinusoidal load for different volume 
fraction exponent of FG plate where side-to-thickness ratio, a/h=10 and aspect ratio, a/b=1. It 
can be observed that the stress distribution across the thickness of the plate is not parabolic as in 
the case of homogeneous plates and the stresses increase as the volume fraction exponent 
increases. The maximum values of shear stresses ,xy  yz  and xz  occurs at 
z =0.2, This is due to the non-uniform composition of the material through the plate thickness. 
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Figure 9. Variation of nondimensional shear stress ( xy )across the thickness of an FGM plate for different 

values of power law index (n) 
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Figure 10. Variation of nondimensional shear stress ( yz ) across the thickness of an FGM plate for 

different values of power law index (n) 
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Figure 11. Variation of nondimensional shear stress ( xz ) across the thickness of an FGM plate for 

different values of power law index (n) 
 
5. Conclusions 
   

Analytical formulations and solutions for static analysis of functionally graded material plates 
is developed using a higher-order shear deformation theory considering the εz which account for 
transverse extensibility and without enforcing zero shear on the top and bottom of the FGM plate. 
This theory gives parabolic distribution of transverse shear strains. The gradation of properties 
across the thickness is assumed to be of the power law type. Equations of motion are derived 
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from the Hamilton’s principle. Closed form solutions are obtained for simply supported plates 
using Naviers method. The accuracy and efficiency of the present theory have been demonstrated 
in the static behavior of FGM plates. The results are compared with the other higher order shear 
deformation theory. The results are in good agreement with the Carrera et al. [28, 29]  and 
Neves et al. [24, 30]. In conclusion, it can be said that the gradients in material properties play an 
important role in static behavior of FG plates and the proposed theory is accurate and simple in 
analyzing the static behavior of FG plates. 
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