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Abstract: In this study, the natural frequency of a simply supported pipeline (hinged type) 
conveying one-dimension incompressible steady fluid flow set on viscoelastic foundation is 
investigated by using finite element analysis and the critical fluid velocity with different 
parameters such as stiffness and viscous coefficients of foundation are obtained. The foundation 
is simulated using the modified Winkler's model to introduce the effect of time dependent 
viscosity term. Some known results are confirmed and some new ones obtained. Two 
components of foundation, stiffness and viscosity, seemed to act on the critical flow velocity of 
the pipe in contrary trend. Where, increasing the foundation stiffness tended to increase the 
critical flow velocity in the pipe. While, increasing foundation viscosity attempted to decrease it. 
At some ranges of pipe length, the foundation viscosity effect seems to be more extreme. 
Increasing the fluid velocity leads to monotonic reduction in the system damping ratio. Two 
parameters, pipe length and fluid density which relate to the natural frequency of pipeline 
conveying fluid are studied in detail and the results indicate that the effect of Coriolis force on 
natural frequency is become more effective by increasing pipe length and fluid density besides 
increasing fluid flow velocity. 
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1. Introduction 
 

Piping systems are widely utilized to convey fluids in many industrial fields, ranging from 
chemical plants to biological engineering systems. Examples include fuel pipes in engine 
systems, heat transfer pipes in power generation plants, refrigerators, air-conditioners, heat 
exchangers, chemical plants piping, hydropower systems and so forth. Piping vibration problems 
are therefore very important in industry. The instability problem of flexible pipes conveying fluid 
provides a paradigm for the modelling and analysis of the instability mechanisms of 
fluid-structure interaction systems. The stability and dynamic characteristics are now well 
understood. The dynamics are known to be sensitively dependent on flow velocity and 
support/boundary conditions. In general, it has been established that an initially straight pipe that 
conveys a fluid with a relatively low speed is stable. In other words, each disturbance applied to 
that pipe causes a vibration that decreases with time. It has been also found that for fluid speed 
values higher than a certain value (the critical flow velocity) even a small disturbance could 
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result in a system vibration that increases with time. In the latter circumstances, therefore, the 
system equilibrium state is referred as unstable. 

The first serious study of the dynamics of pipes conveying fluid is due to reference [1] who 
derived the correct equations of motion and carried its analysis remarkably far, reaching 
admirably accurate conclusions regarding stability, in particular concerning the cantilevered 
system. Major research on the regarding stability and vibration of flexible pipes conveying fluid 
started in the 1950s in relation to the design of pipelines conveying oil. Reference [2] found that 
the critical flow velocity of a fluid conveying pipe on Winkler foundation is higher than the 
critical flow velocity of that pipe without foundation. In this manner, the Winkler foundation is 
proved to have a stabilizing effect on the pipe. Reference [3] used the Vlasov foundation model 
to describe the vibration of a pipeline containing flowing fluid and supported on an elastic 
foundation. The critical flow velocity of such pipe was solved analytically using interaction 
method .He concluded that elastic support would reduce that amplitude of the pipeline vibration. 
For pipes of a finite length, the dynamical behavior depends strongly on the type of boundary 
conditions at both ends [4]. References [5] and [6] have studied the dynamic stability of 
cantilevered pipes on foundations of constant modulus that support only a part of the pipe span. 
They have found that such foundations could either destabilize or stabilize the pipe depending on 
the position and length of the foundations. While references [7] and [8], have examined 
cantilevered pipes on Winkler foundations whose modulus is a certain sixth-, second- or 
first-order polynomial. They have concluded that all such foundations stabilize the pipe. 
Reference [9] studied numerically pinned-clamped and clamped-pinned pipes conveying fluid. 
He found that to predict the dynamical behavior of the clamped-pinned pipe, even 8 
significant-figure accuracy was not good enough. The imaginary part of the complex eigen 
frequency seemed to be negative, implying unstable behavior for any flow velocity greater than 
zero. Reference [10] studied the optimal design of cantilevered fluid-conveying pipes. The aim 
of his study was to maximize the critical flow speed of the fluid by means of additional masses, 
supporting springs or dampers along the length of the pipe. The optimization problem was 
formulated by modeling the pipe by finite element method, using Euler-Bernoulli beam elements. 
The locations of the additional masses, springs and dampers and the properties of these elements 
(mass, spring constant and damping constant) were chosen as design parameters. The 
maximization problem for the critical fluid flow speed was solved by the sequential quadratic 
programming technique. Reference [11] applied the eliminated element-Galerkin method to 
calculate the natural frequency with different boundary conditions based on typical transverse 
vibration model. Then the relationship between simplified natural frequency of the pipeline and 
that of Euler beam was discussed. In a given boundary condition, the four components (mass, 
stiffness, length and flow velocity) which relate to the natural frequency of pipeline conveying 
fluid were studied in detail and the results indicate that the effect of Coriolis force on natural 
frequency was inappreciable. Reference [12] extended the Winkler's model to account the effect 
of time dependence in the simplest case to make it viscous. He applied the viscous model to 
solve a problem of rotating wheel sets on polymer rubber sheet. Good agreements between the 
proposed model and experimental data were obtained. Reference [13] investigated the resonant 
vibrations of a fluid-conveying pipe, with special consideration to axial shifts in vibration phase 
accompanying fluid flow and various imperfections. Small imperfections related to elastic and 
dissipative support conditions were specifically addressed, but the suggested approach was 
readily applicable to other kinds of imperfection, e.g. non-uniform stiffness or mass, 
non-proportional damping, weak nonlinearity, and flow pulsation. Reference [14] investigated 
the effects of flow velocity on the damping, stability, and frequency shift of microscale pipes 
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containing internal fluid flow. The analysis was conducted within the context of classical 
continuum mechanics, and the effects of structural dissipation (including thermo elastic damping 
in hollow beams), boundary conditions, geometry, and flow velocity on vibrations were 
discussed. The study showed that flow-induced damping and frequency shifts in representative 
single-crystal silicon structures could exceed the typical specifications for resonant micro sensors. 
To the best of our knowledge, other studies on dynamic stability of pipes on variable elastic 
foundations are not reported in the literature. It can be found in reference [15]. 

From the review of literature, it is found that the study of flow induced vibration in pipes 
conveying incompressible steady fluid flow  mounted on viscoelastic foundation has not yet 
been explored so far. The aim of this is to clarify whether the critical flow velocity depends on 
the magnitude of the foundation stiffness, foundation damping, the pipe length, pipe thickness 
and fluid density for a hinged simply supported pipe conveying fluid rest on a viscoelastic 
foundation (modified Winkler model) . 
 
2. Viscoelastic extension of Winkler foundation 
 
  An analysis of the bending of beams on a viscoelastic foundation, if based on the Winkler 
model, is derived from the assumption that the foundation's reaction forces are proportional at 
every point to the deflection of the beam at that point. The differential equation of the elastic line 
is based on the assumption that a straight beam is supported along its entire length by a 
viscoelastic medium and subjected to vertical forces acting in the principal plane of the 
symmetrical cross section (see Figure 1). 
  Under these conditions, the beam will deflect, thus producing continuously distributed 
reaction forces in the supporting medium. One may make the fundamental assumption that the 
intensity (p) of the reaction forces at any point is proportional to the deflection of the beam at 
that point. The reaction forces are assumed to act vertically and in opposition to the deflection of 
the beam. Hence, where the deflection is directed downward (in a positive direction) the 
supporting medium will be compressed. However, where the deflection is negative, tension is 
produced; for the purposes of this research, the supporting medium is assumed to be able to take 
up such tensile forces. 
 
 
 
 
 
 
 
 
 

Figure 1. Representation of modified Winkler foundation model 
 

  If a beam has a uniform cross section, then a unit of deflection of this beam will cause reaction 
in the foundation; consequently, at a point where the deflection is W(x, t), the intensity of the 
distributed reaction, per unit length of the beam, will be [12]; 
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  Where ko and μ are the stiffness  and damping (viscous) coefficients of foundation per unit 
length respectively. The assumption p(x, t) implies that the supporting medium is viscoelastic. Its 
material, then, acts in accordance with Kelvin-Voigt model. Its viscoelasticity, therefore, may be 
characterized by the force which, distributed over a unit area, will cause a deflection equal to that 
unit. The constant values of the supporting medium, kv and μv, are called the moduli of stiffness 
and viscous foundation respectively. Where, 
 

vo bkk             (2) 
 

vb             (3) 
 

  The units of the moduli vk and v are  in (N/m3) and (N s/m3) respectively. While (b) is the 
width of the beam in contact with the base foundation (Figure 1). However, it should be 
remembered that ok and µ includes the effect of the width of the beam and will be numerically 
equal to vk and v only if the beam is of a unit width. 
 
3. Derivation of governing differential equation 
 
  The detailed analysis of the dynamics of straight flexible pipes conveying fluid is described by 
references [9] and [15]. In this section, the modeling and calculation method based on these 
papers are introduced. When a pipeline rests on a viscoelastic medium such as polymers, a model 
of the viscoelastic medium must be included in the governing differential equation. 
  The physical system analyzed is shown in Figure 2 (a). Forces and moments acting on the 
fluid and pipe elements, respectively, are shown in Figure 2 (b and c). The pipe is considered to 
be slender, and its lateral motions, ),t,x(W to be small and of long wavelength compared to the 
diameter. The system consists of a uniform pipe of length ( L ), pipe mass per unit length ( m ), 
flexural rigidity ( EI ), conveying fluid of mass per unit length ( M ), flowing axially with velocity 
( U ), and mounted on viscoelastic foundation with stiffness (ko) and viscous damping (µ). The 
cross-sectional flow area is ( A ), inner perimeter is (S ) and the fluid pressure is ( p ). 
  Consider then elements x of the fluid and the pipe, as shown in Figure 2 (b and c). The fluid 
element of Figure 2 (b) is subjected to: (i) pressure forces, where the pressure p=p(x, t) because 
of frictional losses, p is measured above the ambient pressure, and t is the time; (ii) reaction 
forces of the pipe on the fluid normal to the fluid element, Fδx, and tangential to it, ( xSq  ), 
associated with the wall-shear stress q ; (iii) gravity forces (Mgδx) in the W- direction. 
  Balancing the forces in W-direction of the fluid element while keeping in mind the small 
deflection approximation, yields 
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  The sum of forces parallel to the pipes axis for constant flow velocity gives 
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  Similarly, for pipe element of Figure 2 (c) one obtains 
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And the forces normal to the pipe axis for small deformation 
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where 
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  From equation (5) and equation (6), the wall shear stress q  is eliminated to result in 
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  The pipe end where x=L, the tension T in the pipe is zero and the fluid pressure is equal to 
ambient pressure, thus p=T=0 at x=L, 
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  Combining all the above equations yields the following governing equation 
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Figure 2. (a) Simply supported pipe on viscoelastic foundation; (b) forces on fluid element; (c) forces and 

moments on pipe element 
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  The term (
4

4

x
WEI


 ) represents a force component acting on the pipe because of pipe bending. 

The term ( Wko  and 
t

W

 )  represents the force component acting on the pipe that comes from 

foundation stiffness and foundation damping respectively. The expression (
2

2
2

x
WMU


 ) represents 

the force component acting on the pipe as a result of flow around a deflected pipe (curvature in 

pipe). The term (
tx

WMU2
2


 ) is the inertial force associated with the Coriolis acceleration arising 

because the fluid flows with velocity U relative to the pipe. In addition, this expression is the 
so-called anti-symmetric whirligig “damping” item. Because of its effect, the fluid structural 
interaction model belongs to complex eigenvalue problem. While the expression (

2

2

t
W)Mm(




 ) 

is force acting on the pipe because of inertia of the pipe and the fluid flowing through it. A 
remarkable feature of equation (11) is the total absence of fluid-frictional effects, which at first 
sight might appear to be an idealization. However, within the context of the other approximations 
implicit in this linearized equation, it may rigorously be demonstrated that fluid-frictional effects 
play no role in the dynamics of the system, a fact first shown by reference [16] and [17]. 
 
4. Finite element discretization 
 
  equation (11) is a fourth-order partial differential equation in two independent variables 
subject to various boundary conditions. It is very difficult to get its analytical solution, while we 
can use finite element method to get its numerical solution. The equation of element deflection 
for straight two dimensional beam element could have the form [18]: 
 

ii
n

1i q)x(N)x(W           (12) 
 

  Where qi is the generalized coordinates ( displacement and rotation, see Figure 3). Ni, (i=1, n) 
are the bending shape functions and W(x) is the deformation polynomial cubic function which 
define the displacements and rotations at the nodes. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Beam element nodal displacements shown in a positive sense 
 

  Determination of the former, using the method to be found in many finite element texts, 
proceeds by first writing W(x) as an n-termed polynomial with unknown coefficients, n being the 
number of degrees of freedom in the element. The choice of a cubic function to describe the 
displacement is not arbitrary. Clearly, with the specification of four boundary conditions, we can 
determine no more than four constants in the assumed displacement function. 
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  The shape functions Ni are equal to 
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where   is the element length. 
  The above shape functions, Ni, represent the conventional two-dimensional beam elements 
which have two degrees of freedom at each node: one lateral displacement and one rotational. 
  The kinetic and potential energies of the pipe element can be expressed by 
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  Where each prime sign that appears above the shape function symbol, i.e. “N”, represents one 
time derivative with respect to x-coordinate. Thus, mass ( m ) and stiffness ( 1k
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  Over the length of elastic foundation, this adds the following term to the total potential energy: 
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  We recognize the stiffness term in the above summation, 
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  Thus, the foundation stiffness matrix equals to 
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  The term (
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 ) has a potential energy that can be represented in terms of displacement 

shape function derived for the pipe as 
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  The stiffness matrix that comes from flow around the deflected pipe is equal to 
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  It is important to clear that stiffness matrix 3k


 leads to weaken the overall stiffness of the 

pipe system. The expression (
t
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 ) in equation (11) has a dissipation energy as 
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  Leading to 
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  The foundation viscous matrix equals to 
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  While the expression (
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 ) represents the Coriolis force, which causes the fluid in the 

pipe to whip, can be represented by dissipation energy as 
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  This gives the unsymmetrical damping matrix 
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  In general, the above matrices ( mass, stiffness and damping) are classified according to their 
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category. Then each category element matrices are assembled to represent the whole pipe length 
model. The boundary conditions of the pipe ends are both simply supported (hinged type). While, 
the effect of viscoelastic foundation is represented as a dependent distributed load (according to 
equation 1) along the pipe length. These overall matrices will be arranged in a proper form to get 
the dynamic characteristics of the structure. 
 
5. Damped dynamic eigenvalues 
 
  To analyze the dynamic eigenvalues of damped structure we should transfer the governing 
equation to the state-space coordinates. The standard equation of motion in the finite element 
form is 
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  Resulting in the following set of equations 
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where II is a unity matrix. 
 

  Therefore, we can obtain the natural frequencies (eigen values) and mode shapes (eigen 
vectors) by solving the mathematically well-known characteristic equation of 
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  The solution of eigenvalue problem yields complex roots. The imaginary part of these roots 
represents the natural frequencies of damped system. The real part indicates the rate of decay of 
the free vibration. 
 
6. Logarithmic decrement 
 
  A convenient way of determining the damping in a system is to measure the rate of decay of 
oscillation (the real part eigenvalue). The logarithmic decrement,  , is the natural logarithm of 
the ratio of any two successive amplitudes in the same direction, where Y1, and Y2, are 
successive amplitudes, where [20] 
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  As mentioned before, the rate of decay is obtained from solving the characteristic equation 
(equation 33). So that the left hand term in equation (34) is already known and we should only 
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find the damping ratio ( ) from the above equation. 
 
7. Result and discussion 
 
  Figure 4(a) shows the relation between fluid velocity and the pipe frequency with various 
foundation stiffness of simply supported pipe mounted on viscoelastic foundation. As the 
foundation stiffness is increase, the natural frequency of the pipe is also increase. This behavior 
is taken place since the global stiffness of the system is increased. Furthermore, the relation 
between foundation stiffness and pipe frequency seems to be linear at constant fluid velocities as 
depicted in  Figure 4(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 4. Effect of foundation stiffness on the natural frequency of the pipe at different fluid velocities 
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  Figure 5  shows the effect of viscous damping coefficient of the foundation on the first 
natural frequency of the pipe system with different fluid velocities. As it is well known, the 
damped natural frequencies of damped system are smaller than it is for undamped one. Thus, an 
increase in the foundation viscous coefficient leads to reduce the dynamic properties of the pipe 
system. This behavior is not always true for damped system. Where the damped natural 
frequency of the lowest mode may be higher than the corresponding undamped frequency 
depending on the choice of damping matrix and the mode separation [21]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Effect of foundation viscous damping on the natural frequency of the pipe 
at different fluid velocities 

 
 
  Figure 6 presents the relation between pipe length and critical flow velocities for different 
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convexity in the curve is mainly caused by the foundation stiffness and this behavior is 
completely agree with the study that done by [3]. Moreover, when increasing foundation 
damping, the critical velocities exhibit more reduction in their values than it for small damping 
does. This behavior is caused by increasing the overall damping of the system that leads to 
decrease its damped natural frequency. Thus, we can say that, in viscoelastic foundation, 
damping induces destabilization effect, while foundation stiffness leads to stabilize the pipe. It 
has thus found that the criterion for global instability as the length is increased becomes closely 
related to the local properties of the waves in the pipe [22]. It is important to record that at some 
ranges of pipe length, the foundation viscosity effect seems extreme and obvious. 
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Figure 6. Effect of pipe length on the critical fluid velocity for different mounting conditions 
 
  Figure (7) shows the effect of fluid velocity on the system's damping ratio for two different 
foundation viscosities. The damping ratio will decrease monotonically with increasing fluid 
velocity. This event is mainly caused by decreasing the rate decay of pipe vibration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Effect of fluid velocity on the system's damping ratio 
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respectively. From these figures, a pipe with larger length and higher fluid density has the 
biggest frequency percentage error. Furthermore, increasing the flow fluid velocity leads to 
increase the percentage error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 8. Effect of whether considering coriolis force in (a)different pipe lengths; (b)different fluid densities 
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follows: 
a) The foundation stiffness leads to increase the fluid critical velocity , while foundation 

damping decreases it. 
b) There are ranged values of pipe length for each foundation properties that seems to be more 

affected by the foundation characteristics. 
c) Coriolis component still plays a major role in the dynamic behavior of pipe especially with 

larger length and heavier fluid. 
d) The damping ratio of the system is decreased monotonically with increasing the fluid velocity. 
 
9. Nomenclatures 
 

Symbol Definition Units 
A  Cross-sectional flow area m2 
b  Width of the beam in contact with the base foundation m 

1C


 
Foundation viscous matrix - 

2C


 
Damping matrix caused by Coriolis force - 

e  Element - 
E  Modulus of elasticity of pipe N/m2 

)t,x(f  Intensity of reaction force of foundation N/m2 
F  Reaction force inside the pipe N 
g  Acceleration constant m/s2 
H  Characteristic matrix - 
I  Pipe second moment of area m4 
II  Unity matrix - 

ok  Foundation stiffness coefficient per unit length N/m2 

vk  Foundation stiffness coefficient per unit area N/m3 

1k


 
Stiffness matrix of pipe - 

2k


 
Foundation stiffness matrix - 

3k


 
Stiffness matrix comes from flow inside deflected pipe - 

L  Length of the pipe m 
  Element length of pipe m 
M  Fluid mass per unit length kg/m 
m  Pipe mass per unit length kg/m 
m  Pipe mass matrix N 
M


 Bending moment N/m 

iN  Shape function m/s 
p  Pressure inside the pipe m/s 
Q  Shear force N 
q  Wall shear stress N/m2 
q  Lateral displacement of pipe m 
q  Lateral velocity of pipe m/s 
q  Lateral acceleration of pipe m/s2 
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S  Pipe inner perimeter m 
T  Tension force in the pipe N 
t  Time s 
U  Fluid velocity relative to the pipe m/s 

W,x  Cartesian axes - 
  Foundation damping coefficient per unit length N s/m2 

v  Foundation stiffness coefficient per unit area N s/m3 
  Eigen values - 
  Damping ratio - 
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