
International Journal of Applied Science and Engineering 
2014. 12, 2: 143-155 

  Int. J. Appl. Sci. Eng., 2014. 12, 2     143 
 

Effects of Slip and Heat Transfer on the Peristaltic Pumping 
of a Williamson Fluid in an Inclined Channel 

 
S. Sreenadha, P. Govardhana, and Y. V. K. Ravi Kumarb* 

 
a Department of Mathematics, S. V. University, Tirupati, India 

b Practice School Division, Birla Institute of Technology and Science (BITS)-Pilani, 
Hyderabad, India 

 
Abstract: Effects of slip and heat transfer on the peristaltic flow of a Williamson fluid in an 
inclined channel is studied under long wavelength and low Reynolds number assumptions. The 
perturbation technique is used to solve the problem as the equations are non linear. The stream 
function, the temperature distribution and the pressure rise are calculated .The effect of various 
parameters on the pumping characteristics and on the temperature profiles is discussed with the 
help of graphs. 
  
Keywords: Slip effects; heat transfer; peristaltic pumping; williamson fluid. 
 

 
                                                                                                                                                       
* Corresponding author; e-mail: yvkravi@gmail.com      Received 8 March 2013 
© 2014 Chaoyang University of Technology, ISSN 1727-2394               Accepted 14 April 2014 

1. Introduction 
 

Peristalsis is a well-known mechanism for pumping biological and industrial fluids. Even 
though it is observed in living systems for many centuries; the mathematical modeling of 
peristaltic transport has begun with important works by Fung and Yih [2] using laboratory frame 
of reference and Shapiro et al. [10] using wave frame of reference. Many of the contributors to 
the area of peristaltic pumping have either followed Shapiro or Fung. 

Most of the studies on peristaltic flow deal with Newtonian fluids. The complex rheology of 
biological fluids has motivated investigations involving different non-Newtonian fluids. 
Peristaltic flow of non-Newtonian fluids in a tube was first studied by Raju and Devanathan [6]. 
Ravi Kumar et.al [9] studied the unsteady peristaltic pumping in a finite length tube with 
permeable wall. Y. V. K. Ravi Kumar et. al [8] studied the Peristaltic pumping of a magneto 
hydrodynamic casson fluid in an inclined channel. Ravi Kumar et.al [7] studied the Peristaltic 
pumping of a Jeffrey fluid under the effect of a magnetic field in an inclined channel.  
Mekheimer [4] studied the peristaltic transport of MHD flow in an inclined planar channel. 
Hayat et al. [3] extended the idea of Elshehawey et al.[1] for partial slip condition. Srinivas et al. 
[11] studied the Peristaltic transport in an asymmetric channel with heat transfer. Srinivas et al. 
[12] studied the non-linear peristaltic transport in an inclined asymmetric channel. Vajravelu et al. 
[13] analyzed peristaltic transport of a Casson fluid in contact with a Newtonian fluid in a 
circular tube with permeable wall. Nadeem and Akram [5] discussed peristaltic flow of a 
Williamson fluid in an asymmetric channel. It is observed that most of the physiological fluids 
(for example, blood) cannot be described by Newtonian model. Hence, several non-Newtonian 
models are being proposed by various researchers to investigate the flow behavior in 
physiological system of a living body. Among them Williamson model is expected to explain 
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most of the features of a physiological fluid. Moreover, this model is nonlinear and Newtonian 
fluid model can be deduced as a special case from this model. 

In this paper, the peristaltic pumping of Williamson fluid in an inclined channel under the 
influence of slip and heat transfer is investigated. The peristaltic waves are assumed to propagate 
on the walls of the channel with speed c. Using the wave frame of reference, boundary value 
problem is solved. The stream function, the temperature distribution and the pressure rise are 
calculated. 
 
2. The williamson fluid model 
 
  For an incompressible fluid the balance of mass and momentum are given by 
 

0Vdiv             (1) 
 

fSdiv
dt
dV

            (2) 
 

where   is the density,
 

V  is the velocity vector, S
 

is the Cauchy stress tensor and f  is the 
specific body force and dtd  represents the material derivative. The constitutive equation for 
Williamson fluid is given by 
 

 PIS            (3) 
 

   yy1 1
0 


            (4) 

 

in which PI  is the spherical part of the stress due to constraint of incompressibility,   is the 
extra stress tensor,

 
  is the infinite shear rate viscosity, 0  is the zero shear rate viscosity,

 
  

is the time constant and y  is defined as 
 


j

jiij
i

yy
2
1y  = 

2
1

.         (5) 
 

  Here   is the second invariant strain tensor. We consider the constitutive equation (4), the 
case for which 10  yand  . The component of extra stress tensor therefore, can be written as 
 

      yy1yy1 1
0   


        (6) 

 
3. Mathematical formulation 
 
  Let us consider the peristaltic flow of a Williamson fluid in an inclined symmetric channel as 
shown in Figure 1. The channel walls are lined with non erodible porous material. The thickness 
of the lining is very small when compared with the width of the channel. The lower permeable 
wall of the channel is maintained at temperature T1 while the upper permeable wall has 
temperature To. The flow is generated by sinusoidal wave trains propagating with constant speed 
c along the channel. The geometry of the wall surfaces is defined as 
 

 2cosY H d a X ct


           
         (7) 

 

where a  is the amplitudes of the wave, d is the mean width of the channel,   is the wave 



Effects of Slip and Heat Transfer on the Peristaltic Pumping of a Williamson Fluid in 
an Inclined Channel 

Int. J. Appl. Sci. Eng., 2014. 12, 2     145 

length, c is the velocity of propagation, t  is the time and X  is the direction of wave 
propagation. 

 
Figure 1. Physical model 

 
3.1. Equation of motion 
 
  The equations governing the motion and energy of a Williamson fluid are given by 
 

0U V
X Y

 
 

 
          (8) 

 

sinXX XYU U U PU V g
t X Y X YX

 
  

     
            

       (9) 

 

cosX Y YYV V V PU V g
t X Y Y YX

 
  
      

            
      (10) 

 

2T T T KC U V T
t X Y



            

       (11) 

 

Where XX , XY , YY  are components of stress, 
 

2 2
2

2 2X Y
 

  
 

  
2 2 2

2 2U V U V
X Y Y X


                            

 

 

where   is the inclination of the channel with the horizontal, V  ,U  are the velocities in X and 
Y directions in fixed frame,   is the density, P is the pressure,   is the kinematic viscosity,  
K  is the thermal conductivity, C  is the specific heat and T  is the temperature. 
  We introduce a wave frame ),( yx  moving with velocity c away from the fixed frame )Y ,X(  
by the transformation. 
 

, , , ( ) ( , ).x X ct y Y u U c v V and P x P X t             (12) 
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  We define the non-dimensional quantities as follows 
 





d,

d
hh,tct,

c
vv,

c
uu,yy,xx  yyxyxx c

d,
c

d,
c 0

yy
0

xy
0

xx 







   

 

01

0
.

0

2

0 TT
TT

,
c
dRe,P

c
dP,dcRe




  



   

 

0

2

01
'

2

c
gd,P

'K
'cvPr,

)TT(c
cEc





 




        (13) 
 

  Using the above non-dimensional quantities in equations (3), (4) and (5), the resulting 
equations in terms of stream function  ,u y v x       can be written as 
 

Re sinxyxxp
y x x y y x x y

            
               

      (14) 
 

Re cosxy yyp
y x x y x y x y

 
           
                

      (15) 
 

2 2

2 2
1 0
Pr

Ec
y y
  
 

 
         (16) 

 

where  
2

2 1 We ,xx x y
   

 
 

  
 

 
2 2

2 21 We ,xy y x
       

      
  

 

 
2

2 1 Weyy x y
    

 
 

  
 

1
2 2 2 22 2 2 2

2 2
2 22 2

x y y x x y
   

             
                     

  

 

  Here δ is the wave number, Re is the Reynolds number and We is the Weissenberg number. 
Under the assumptions of long wavelength δ << 1 and low Reynolds number, neglecting the 
terms of order δ and higher, equations (14) and (15) take the form 
 

2 2

2 21 Wep
x y y y

       
        

        (17) 

 

0p
y





          (18) 
 

  Elimination of pressure from equations (17) and (18), yield 
 

2 2 2

2 2 21 We 0
y y y
      

       
        (19) 
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  The dimensionless mean flow Q  is defined by 
 

1Q F            (20) 
 

in which 
 

 

 h x

h x
F dy

y




          (21) 
 

where 1 cos 2h x    
 

  The appropriate boundary conditions for the problem under consideration are 
 

a t
2
F y h           (22) 

 

a t
2
F y h

            (23) 
 

2

2 1 atL y h
y y

  
   

 
        (24) 

 

2

2 1 atL y h
y y

  
    

 
        (25) 

 

0  at y=h         (26) 
 

1  at y=-h         (27) 
 

where L  is permeability parameter including slip, Da is the Darcy number and F is the flux. 
Equations (24) and (25) are Saffman boundary conditions at the permeable walls of the channel. 
 
4. Perturbation solution 
 
  The equation (17) is non-linear and hence its exact solution is not possible. We use the 
perturbation technique to find the solution. For perturbation solution, we expand  , Fand 
p as 

 

 2
1We WeO              (28) 

 

 2
0 1We WeF F F O           (29) 

 

 2
0 1We Wep p p O           (30) 

 

  Substituting the above expressions in equations (17)-(18) and equations (22)-(25), we get the 
following system of equations 
 
4.1. System of order 0We  
 

4
0

4 0
y

 



          (31) 
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3
0 0

3 sinp
x y

 
  

 
 

        (32) 
 

0
0 at

2
F y h           (33) 

 

0
0 at

2
F y h

            (34) 
 

2
0 0

2 1 atL y h
y y

  
   

 
        (35) 

 

2
0 0

2 1 atL y h
y y

  
    

 
        (36) 

 
4.2. System of order 1We  
 

224 2
0

4 2 2y y y
     
     

        (37) 
 

223
01

3 2
p
x y y y
      
       

        (38) 
 

1
1 a t

2
F y h           (39) 

 

1
1 at

2
F y h             (40) 

 

2
1 1

2 0 atL y h
y y

  
  

 
        (41) 

 

2
1 1

2 0 atL y h
y y

  
   

 
        (42) 

 
4.3. Solution for system of order 0We  
 
  On solving equations (31) and (32) together with the boundary conditions (33)-(36), we get 
the solution to the zeroth-order problem as 
 

    23
0 0

0 3 2 2

6 3 3 6 2
2 6 6 4 12

h F h L F hy
h Lh h hL


  

  
 

       (43) 
 

  The axial pressure gradient of the zeroth order is 
 

Sin
)Lh6h2(

)F3h6(
x

p
23
00 






         (44) 
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4.4. Solution for system of order 1We  
 
  Substituting the zeroth-order solution (41) into (37), the solution of the first-order problem 
satisfying the equations (39)-(42) is 
 

4 3 2
2

1 1 1 2 3 412 6 2
y y yc d d d y d              (45) 

 

 0
1 3 2

6 3
2 6

h F
c

h Lh





 1
1 3 2

3
2 6

Fd
h Lh

 


  
 

2 2
1

2

3
3

c h L h
d

L h





 
 1

3 2

3 2
4 12
F L h

d
h hL





  

 

2 4
1

4

5
12

c h L h
d

h L


 


 

 

  The axial pressure gradient for the first order is 
 

)Lh6h2(
F3

x
p

23
11





         (46) 

 

  Summarizing the perturbation results for small parameter We, the expression for stream 
function and pressure gradient can be written as 
 










 y
Lh12h4

h2F)L6h3(
6)Lh6h2(

y)F3h6(
2

2

23

3

  
 

)hL(12
)hL5(h

2)hL(3
y)hL3(h

12
y[

)Lh6h2(
)Fh2(9we

4224

223

2












        (47) 
 

Sin
)Lh6h2(

)F3h6(
x
p

23 





         (48) 

 

  The dimensionless pressure rise and frictional force per one wavelength in the wave frame are 
defined, respectively as 
 

dx
x
pp

1

0 


  
 

 1

3 2
0

6 3
sin

2 6
h F

p dx
h Lh

 
 

     
         (49) 

 

dx)
x
p(hF

1

0 


          (50) 
 

  Now on solving equation (16) with the help of equations (47), (26) and (27), we get the 
temperature as 
 










20
y[

)Lh6h2(
)Fh2(We.54

12
y)

Lh6h2
F3h6[(Ec.Pr

5

323

34
2

23  
 

21

33

kyk]]
6
y

)hL(3
)hL3(h



          (51) 

 

   
   

 
 

34

1 33 2

2

2 2

2 211 3Pr. .
2 10 2 6

21 3Pr.
2 16 3

h h F L h
k EcWe

h h Lh L h

h F
k Ec

L h

     
   

 
   

  
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5. Results and discussion 
 
  The variation in pressure rise Δp  with the mean flow Q  is calculated from equation (49) and 

is shown in Figure 2 for different values of the slip parameter L for fixed =1, 
6
   and 

=0.6. It is noticed that the pumping curves intersect at a point in the first quadrant and to the 
left of this point, Q  decreases and to the right of this point, Q  increases with an increase in L. 
We observe that in  free pumping  Δp=0 and co-pumping  Δp < 0  Q  increases with 
increasing L. 

From equation (49) we have calculated the pressure difference as a function of Q  for 
different values of  the angle of inclination of the channel   for  fixed L=0.2, =1, =0.6 
and is shown in Figure 3. We observe that for a given P , the flux Q  increases with increasing 
 . We observe that for a given Q , pressure rise increases with increasing  . 

The variation of pressure rise with Q  is calculated from equation (49) for different values of 

the gravity parameter , for fixed L=0.2, 
6
  , =0.6 and is shown in Figure 4. It is clear 

that the pressure rise increases with the increase in Q . We find that for fixed Q , pressure rise 
increases with increasing . Also for a given p , the increase in  increases the mean flow. 

The variation of pressure rise with Q  is calculated from equation (49) for different values of 

the amplitude ratio  , for fixed L=0.2, 
6
  , =1 and is shown in Figure 5. It is found that, 

the flux Q  increases with an increase in   in both pumping and free pumping regions. But in 
the co-pumping region, the pumping curves intersect at a point. After this point Q  decreases 
with an increase in amplitude ratio  . 

 
Figure 2. The variation of p  with Q  for different values of L with =1, 

6
  , =0.6 
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Figure 3. The variation of p with Q  for different values of  with L=0.2, =1, =0.6 

 
 

 
Figure 4. The variation of p  with Q  for different values of  with L=0.2, 

6
  , =0.6 
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Figure 5. The variation of p with Q  for different values of   with L=0.2, 

6
  , =1 

 
The variations of temperature field   with y are calculated from equation (51) for different 

values of the slip parameter L is shown in Figure 6. It is observed that the temperature 
distribution   decreases with an increase in L. 

 
Figure 6. The variation of  with y for different values of L 
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  The variations of   with y are calculated from equation (51) for different values of Prandtl 
number Pr is shown in Figure 7. It is found that the  increases with increasing Pr. 

 
Figure 7. The variation of  with y for different values of Pr 

 
  The variations of   with y are calculated from equation (51) for different values of 

Eckert number Ec is shown in Figure 8.It is observed   increases with increasing Ec. 
Variations of   with y are calculated from equation (51) for different values of the volume flow 
rate q and is presented in Figure 9. It is observed that the temperature   increases with an 
increase q. 

 
Figure 8. The variation of  with y for different values of Ec 
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Figure 9. The variation of  with y for different values of q 

 
6. Conclusions 
 
  Effects of slip and heat transfer on the peristaltic pumping of a Williamson fluid in an inclined 
channel is studied. The effect of temperature, Prandtl number on the pumping characteristic in 
discusses. 
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