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Abstract: In this paper, the uniform flow of an incompressible, axi-symmetric, viscous fluid 
over a stationary impervious sphere with interface slip on its surface is considered. Homotopy 
Analysis Method (HAM) is used to solve the non linear momentum equations for stream function.  
To match with the uniform flow far away from the sphere, stream function is taken in terms of 
Gegenbauer polynomials. The solution obtained is found to be convergent and is seen to be in 
good agreement with the results available in literature. Drag acting on the sphere due to the flow 
and vorticity functions is found. For different values of the slip parameter, drag acting on the 
sphere is evaluated and the results are in good agreement with the available experimental data for 
the Reynolds numbers less than 50. Expansion of Gegenbauer polynomials and solution of the 
problem are obtained using MATHEMATICA. 
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1. Introduction 
 

In the classical problems of fluid flow past bodies, it is usual to apply no-slip condition on the 
surface of the bodies under considerations. But with the advent of miniature devices and 
experiments with rarified gases, it is observed that fluid slips on the surface of the bodies in the 
following situations. 
i)  -When the fluid flow occurs in rarified gases at low density and low pressure. 

If Knudsen number, Kn (the ratio of mean free path to body size) is in the ranges from 0.01 
to 130. (Knudsen [1], Millikan [2], Schaaf and Chambre [3], Sreekanth, [4], Hinds [5], 
Gad-el-Hak [6], and Abouzar Moshfegh [7]). 

ii) When fluid flow occurs over the surfaces of a porous medium (Beavers and Joseph [8], 
Saffman [9]). 

iii) In the latter stages of combustion, fuel droplets experience slip over the surface  (Crowe 
[10] ). 

iv) When the size of the body under consideration is comparable with the mean free path of the 
fluid particles, (when Kn is less than 0.1) slip occurs. (Gabriel [11], Gravesen [12],        
Gad-el-Hak [13], Barber and Emerson [14], Luo and Pozrikidis [15] ). 

v) When water flows near a hydrophobic surface (a surface that repels water molecules), slip 
occurs. (Vinogradova [16], Tretheway and Meinhart [17], Neto Evans [18], Cottin-Bizonne 
[19]). 

  In these above situations, the Reynolds number for the flow ranges from small values 0.01 to 
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moderately high values up to 120 (Niazmand and Anbarsooz [20]). The flow past bodies (many 
researchers considered the body as sphere) at moderate values of Reynolds numbers has been 
analyzed by singular perturbation methods or by numerical methods. 
Stokes [21] was the first person to derive the expression for a drag acting on a sphere moving 
with uniform velocity. He neglected the nonlinear convective terms in the equations of motion. 
This assumption is known as “Stokesian” approximation. Whitehead [22] tried to improve the 
solution for velocity by using a straight forward perturbation scheme starting with stokes 
solution as the initial guess. He found that there exists no solution. The inability to extent stokes 
solution by the iterative scheme is known as white head's paradox. Oseen [23] showed that for 
Stokes solution, the ratio of inertial terms to viscous terms far from the sphere are of the order of 
local Reynolds numbers and hence Stokes solution cannot be taken as initial guess in White 
Head's iterative scheme. Oseen obtained the expression for drag in series of Reynolds number by 
linearizing the nonlinear convective terms with uniform flow. Later improvement in the solution 
was done by Goldstein [24], Shanks [25] and Kaplun and Lagersrom [26]. Proudman and 
Pearson [27] have established a rigorous mathematical method based on matched asymptotic 
expansion for singular perturbation solution. But still the solution thus obtained is valid only  
for small range of Reynolds numbers <5. Van Dyke [28], applied the series truncation method to 
get drag valid up to Reynolds numbers 10. 
  A detailed description of the methods for flow past a sphere and matching techniques can be 
found in the treatise ``Slow Viscous flow" of Langlois [29] and in the monograph by Michaelides 
[30]. Thus, the analytical solutions for drag are valid up to Reynolds numbers 10. 
  But the numerical methods developed by Dennis and Walker [31], yield solution which can 
match with the experimental data of Takaki [32] for Reynolds numbers up to 40. The Homotopy 
Analysis Method (HAM) developed by Liao [[33], [34]] gives drag for Reynolds number up to 
40. All the above mentioned authors studied the flow past a sphere with no slip condition. 
  The slip condition was examined very long back by Navier [35] and Maxwell [36]. For 
creeping flow past a sphere, Basset [37] obtained the coefficient of drag dC  in terms of slip 
parameter s (Trostel number) as: 
 

24 2
3

( )d
sC

Re s





                                                            (1.1) 
 

where as 


  (defined as slip parameter or Trostal number). s is related to Tangential 

Momentum Accommodation Coefficient (TMAC) σ and Knudsen number Kn (Schaaf and  
Chambre [3], Trostel [38], Atefi [39]) by the formula 
 

(2 )
s
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



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                                                              (1.2) 
 

where interfacial slip occurs, Knudsen number may vary from 0.1 to 10 for a wide range of 
Reynolds number 0.1<Re<100. For a small Reynolds number (Re<1), Keh and Shiau [40] 
obtained the solution by singular perturbation method and found the following result: 
 

2 2 224 3 9 21 ? ) log( ) ( ) , where
8 40 3

[ ] ( )d
sC Re Re Re O Re

Re s
    

    


              (1.3) 
 

  Michaelides and Feng [41] discussed the effect of slip on spherical viscous drop in an 
unsteady flow. Zhi-Gang Feng [42] obtained a correlation formula for drag valid for a wide 
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range of Reynolds numbers. Feng et al [43] presented a comprehensive study on the drag with 
slip condition. He obtained a solution for stream function using singular perturbation approach 
by matching the inner and outer region solutions. This formula covers many special cases such 
as solid sphere with or without slip, inviscid bubbles and viscous droplets with or without slip.  
It is worth mentioning to refer the problems related to flow past a sphere with slip condition 
examined by Datta and Singhal [44], Michael Miksis and Stephen Davis [45], Datta and Deo 
[46]. 

In view of non availability of analytical solution for moderate Reynolds numbers, in the 
present paper, we attempt to obtain solution for uniform flow past a impervious sphere with slip 
condition at moderate Reynolds numbers using Homotopy Analysis Method (HAM). 
 
2. Formulation of the problem 
 
  We consider a solid sphere of radius a held fixed in a steady uniform flow of a viscous fluid 
with free stream velocity 0U . A spherical coordinate system ) , ,r(   with unit base vectors 

( , , )re e e  is taken with origin at the center of the sphere and Z-axis along the direction of 
uniform flow. The scale factors for the system are 1 2 31, , sinh h R h R    . The flow is assumed 
to be laminar, in compressible and axi symmetric.  Hence the flow is in the meridian plane of  

,re e  and all physical quantities are independent of the toroidal coordinate . 
  The velocity vector is chosen in the form 
 

( , ) ( , )rQ U R e V R e           (2.1) 
 

In view of the incompressibility condition 
 

·div Q o           (2.2) 
 

velocity can be written in terms of stream function  as 
 

2

1 1( , ) ; ( , )
sin sin

U R V R
R R R

 
  
  

 
 

      (2.3) 
 

  The equations of motion are given by 
 

2
0 0 0·( )dQ Q Q Q P Q

dt t
  


      


       (2.4) 

 

where 0  is dimensional gradient. 
  We introduce the following non dimensional scheme (with capitals for physical quantities and 
small letters for non-dimensional quantities): 
 

2 2
0 0 0 0 0 0

1, , , , , ,R ar Q U q U U u V V v a U P U p
a

               (2.5) 
 

and Reynolds  number 02a URe 


 . 
 

  Considering the steady flow, the equation (2.4) can be rewritten in the non dimensional form 
as: 
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21 ( ) ( )
2 2

( )Re q q q p q              (2.6) 
 

  Elimination pressure p from (2.6) we get 
 

4 2
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2 2
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[ ]Re xE E
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         
   

      
      (2.7) 

 

where cosx   and the Stokes stream function operator 2E  is 
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(1 ) 1 cotxE
r r x r r r


 

     
    
    

 
 

  The slip boundary condition assumes that the tangential velocity of the fluid relative to the 
solid at a point on a surface is proportional to the tangential stress acting at that point. The 
constant of proportionality between these two is termed as a coefficient of sliding friction. Thus 
the slip boundary condition as in Happel and Brenner [47] is given by 
 

( )rT q V on r a            (2.8a) 
 

where q  is fluid velocity and V  is the velocity of the sphere along  direction.   is 
coefficient of sliding friction (Here 0V   since the sphere is stationery). 
  In non dimensional form, this condition reduces to 
 

2

2 ( 2) 1 as on r with s
r r
  


 

   
 

      (2.8b) 
 

where s is non-dimensional slip parameter (It is also called as “Trostel number”). The case of  
   (i.e., s  ) leads to the no-slip condition. For the uniform flow past a sphere, the 
conditions on flow variables in non dimensional form are 
 

condition)ility (impermeab  1r on 0  i.e., 1r on 0u ).i(       (2.9a) 
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
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   (2.9b) 
 

condition) flow (uniform  )x-(1r
2
1 lim  i.e., 1qlim ).iii( 22      (2.9c) 

 

  The equation (2.7) can be put in the form 
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and 2
2 2
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[ ]Re xE
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  Using (2.9), the conditions on    can be taken in terms of    as: 
 

2
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  Now the problem reduces to finding solution to (2.10) and (2.11) subject to the conditions (2.9) 
using Homotopy Analysis Method (HAM) which is being introduced in Section (3). 
 
3. The basic idea of HAM 
 
  Consider a non linear differential equation 
 

[ ( , )] 0N f x t  (3.1) 
 

where N is the differential operator(with linear and non linear terms), f(x, t)is the unknown 
function to be solved for spatial variable x and temporal  variable t. The main aim of HAM is 
that instead of solving (3.1), a Homotopy equation with a homotopy parameter , can be 
constructed for a homotopy function F such that 
 

0(1 ) [ ( , : ) ( , )] [ ( , ; )], [0,1]L F x t f x t H N F x t             (3.2) 
 

  The equation (3.2) is called zeroth order deformation equation of (3.1).  The homotopy 
equation reduces to simple linear equation when =0 and yields the original differential equation 
(3.1) when =1. This can be accomplished by the following function F(x, t; ), the mapping 
function or homotopy function. F(x, t; ) smoothly changes from 0( , )f x t , an initial estimate of  
f(x,t) to final (or target) solution f(x, t).   is a non-zero auxiliary parameter(convergence 
control parameter). H(x, t) is a non-zero auxiliary real function. L is a linear operator. N[f] is the 
given differential equation. 
  The mapping function F is to satisfy the properties that 
 

0( ). ( , ;0) ( , )i F x t f x t  
 

( ). ( , ;1) ( , )ii F x t f x t and  
 

(iii). [ ( , ;1)] 0N F x t   i.e., [ ( , )] 0N f x t  . 
 

  As the embedding homotopy parameter  varies from 0 to 1, F(x, t; ) maps continuously from 
the initial estimate of 0( , )f x t  to the final exact solution f(x, t). By Maclaurin's Theorem, F(x, t; 
) can be expanded with respect to the embedding (homotopy) parameter  as 
 

0
1

( , ; ) ( , ) ( , ) m
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
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       (3.4) 

 

  Differentiating the zeroth-order deformation equation (3.1) m-times with respect to  at =0 
and the dividing it by m!, we get the following thm  -order deformation equation 
 

1[ ( , ) ( , )] ( , )m m m mL f x t f x t H R x t           (3.5) 
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  If the series converges, we have the exact solution at =1 
 

0
1

( , ,1) ( , ) ( , ) ( , )m
m

F x t f x t f x t f x t




          (3.7) 
 

  In this method, Linear operator L, initial approximation 0( , )f x t  and auxiliary real function 
H(x, t) can be chosen conveniently. The initial guess 0f  and the Linear Operator L can be 
chosen (Liao [48], Liao [49]) according to the rule of solution expression and rule of solution 
existence. The auxiliary function H can be chosen by the rule of coefficient of ergodicity. The 
convergence control parameter h can be chosen within an interval in which h-curves are parallel 
to h-axis (F(x, t, h) at a fixed large value of m at fixed values of 00 tt ,xx   gives a 
polynomial in h, this is called h-curve). In general, a physical quantity (drag, volumetric flow 
rate, skin friction etc.,) is evaluated and the value of h will be decided. 
  The auxiliary (convergence control) parameter   provides us a convenient way to control 
and adjust the rate and region of the convergence. More information about properties of h-curves 
of HAM, a study on the convergence of HAM, the essence of homotopy analysis method can be 
found in Abbasbandy et. al., [50], Zaid odibat [51], Cheng-Shi Liu [52] respectively. Cheng-Shi 
Liu [53] considered HAM as a generalized Taylor series. 
 
4. Solution of the problem 
 
  The homotopy functions h  and h  for the stream function , Swirl  are expanded in 
power series for  as: 
 

              (4.1) 
 

         (4.2) 
 

  It is assumed that the series (4.1) and (4.2) converge to stream function  and swirl   
respectively at the homotopy parameter =1. 
 

0
( , ,1)h i

i
r x  





          (4.3a) 
 

0
( , ,1)h i

i
r x





           (4.3b) 
 

  The homotopy equations for equations (2.10) and (2.11) are constructed such that when =0 
initial solution 0h   is obtained and when =1, the exact solution h   is obtained. 
 

2
h hE             (4.4) 

 

with 
 

2 2
0 2 2
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xReE hH E
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   (4.5) 
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  These equations (4.4) and (4.5) are called the zeroth order deformation. Substituting (4.1) and 
(4.2) in (4.4) and (4.5) and collecting the coefficient m , the thm  order deformation equations 
are obtained as follows: 
 

2 2 0 0 0 0 0 0 0 0
1 0 2 2

2 2 1
2 1

( [ ])xReE hH E for m
r r x x r x r r x

          
       

      
   (4.6) 

 

2 2 2
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2 2 2
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m n n

xReE E hH E for m
r r x x r x r r x

          
             

      
   (4.7) 

 

and 2 0 0m mE for all m           (4.8) 
 

where 
0

1 .
n

n n k n k
k

n m and convolution sum  


       
 

  We choose the initial guess functions 0  and 0  in such a way that 0 , 0  satisfies the 
boundary conditions(2.9) and 
 

00
2

0
4 E and 0E    

 

Hence we have 
 

2
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1 2( 2) (3 4) ( ) ( ) ( )
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[ ]ss r s r G x f r G x
s r

      
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0 2 02 2
3 4 1 ( ) ( ) ( )

2
[ ]s G x g r G x

s r


   
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      (4.10) 
 

where 2
2

1( ) (1 )
2

G x x  =Gegenbauer polynomials of order 2. Following Happel and Brenner 

[47], the solutions for m  and m of (4.6)-(4.8) are assumed in the following form, containing 
Gegenbauer polynomials as base functions. 
 

2

,
2

( , ) ( ) ( )
m

m m l l
l

r x f r G x




       (4.11a) 
 

2

,
2

( , ) ( ) ( )
m

m m l l
l

r x g r G x




        (4.11b) 
 

  To match the uniform flow far from the sphere the factor 2(1 )x  is to be retained. Hence 
summation starts from 2l  , since all ( ), 2lG x l   polynomials of order l contain a factor 

2(1 )x . The form of the functions in (4.11(a), 4.11(b)) yields the following simplifications: 
 

2
2 2

,
2

( ) ( )
m

m l m l l
l

E D f r G x
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
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2
2 2

,
2

( ) ( )
m

m l m l l
l

E D g r G x




         (4.13) 
 

where 
2

2
2 2

( 1)
l

d l lD
dr r


   

 

  The products of Gegenbauer polynomials in the above equations (4.6), (4.7) can be expressed 
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in terms of ( )lG x  as follows 
 

1
'

2
( ) ( ) ( )

i j

i j ijl l
l

G x G x a G x
 



         (4.14) 
 

1

2
2

( ) ( ) ( )
1

i j

i j ijl l
l

x G x G x b G x
x

 




         (4.15) 

 

  Now substituting the expressions (4.12)-(4.13) in the thm  order deformation equation (4.6) 
and collecting coefficient of ( )lG x  on both sides, we get: 
 

2 2
, 1, 2( ) ( ) ( ) ( )

2l m l m l m l ml
hReHD g r hH D g r J r

r
        (4.16a) 

 

2
, ,( ) 2,3,........ 2l n l n lD f r g l m    , n=m-1     (4.16b) 

 

 (4.16c) 

where n=m-1 and    

1  , *
0

 


mngfsumnconvolutiogf
n

k
kjkinjni . 

In the above equations (4.16), , ( ) 0 3m lg r if l m   . 
The equations (4.16) are to be solved under the boundary conditions: 

 
'' ''

, , , ,(1) (1) ( 2) (1) 0 lim 0m l m l m l m l
r

f f s f and f


     , 
 

''
, , ,(1) (1) lim 0 1, 2m l m l m l

r
g f and g m l


          (4.17) 

 

  Now we have to choose the auxiliary function H in order to get the convergent solution. 
By uniform flow condition, as r   we should have , ,, 2,a

m l m lf r a g constant    so 
that velocity tends to zero at a distance far away from the sphere. 

  This condition is satisfied when the auxiliary function 1 0.H if
r

   Starting from 

initial guess as in (4.9) and (4.10), the first order deformation equations are obtained from (4.16) 
for m=1, l=2: 
 

2 2
2 1,2 2 0,2 1,22( ) ( ) 0

2
h hReD g r D g r J
r r         (4.18a) 

 

and 2
2 1,2 1,2( ) ( )D f r g r        (4.18b) 

 

  Since 1,2 ( )f r  satisfies homogeneous boundary conditions, we have 
 

1,2 1,2( ) ( ) 0f r g r   
 

  For m=1, l =3, the equation (4.16) gives 
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  If we take 0  , we get 
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      (4.19) 
 

  This solution does not give a vanishing velocity as r  . Hence this solution is not feasible. 
This non existence of solution is known as Whitehead's paradox [Langlois [29]]. Hence in 

1H
r

  we have to choose 0  . 

  Here we have obtained solutions for the equation (4.16) by taking 1H
r

 for the 

cases 1, 3 / 2, 2     . We observed that the solution converges more rapidly as σ values 
are increasing. The equation (4.16) can be taken as 
 

2 2
1, ,2( ) ( )

2l ml m l m l m l
h h ReD g RHS r D g J
r r           (4.20a) 

 

  The solution of this equation is obtained by the method of variation of parameters as below: 
 

1
1 1

1
( ) ( )

2 1 2 1

l l
l l l

nl
RHS r r RHS r rg a r r dr r dr

l l


   

       (4.20b) 
 

then similarly solution for ,n lf   is found for the equation, 
 

2
l nl nlD f g         (4.20c) 

 

as follows
1

1 1
2

( ) ( ) .
2 1 2 1

l l
l l lnl n l

nl
g r g rf a r r dr r dr

l l


    

       (4.20d) 
 

  The constants 1a  and 2a  are found from the conditions (4.17). 
  After getting nlf , the stream function n  at the thn  iteration is obtained from (4.11) and as 
n (number of iterations) increases the exact solution for stream function  is obtained at =1 
from (4.3). Using Mathematica 7, the solution is obtained up to 11th order of approximation. 
After 11th order of approximation, it takes very long computational time nearly 6 hours for each 
order of iteration. For σ=1 our solution exactly matches with that of Liao [33], Liao [34] for 
s   (which gives the solution with no-slip condition). We have plotted the stream function 
and vorticity function for different values of slip parameter s at different values of Reynolds 
number Re. 
 
5. Drag on the sphere 
 
  The drag on a body submerged in a stream arises from two sources: the shear stress and the 
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pressure distribution at the surface of the body. The drag due to the shear stress is called the skin 
friction and the part due to the pressure distribution is called the form drag. For a flat body the 
drag is fully due to shear stress, for a blunt body most of the drag is due to the pressure 
distribution. 
  Force on area element ds in the direction of flow= drag on the area element ds of the sphere is 
 

11 21( cos sin )T T ds    
 

  The Drag due to the flow on the entire sphere is given by 
 

2
11 21

0

2 ( cos sin ) sin|r aDrag D a T T d


             (5.1) 
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R R R R
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  
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     (5.2) 

 

  Substituting (5.2) and (2.8) in (5.1) and expressing it in non dimensional form we have 
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  From (2.6), equation for pressure in the direction of e  is given by 
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  Following Chester and Breach [54], integrating (5.4) w.r.t  at r=1 we get 
 

2
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  We observe that velocity q=0 on (the line of axi-symmetry) =0 and 2 2q v on r=1. 
  Substituting (4.11) in this equation (5.5) and after simplification we get 
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  Substituting (5.6) in (5.3) we get 
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  The first term in (5.7), can be simplified by using (2.3) in non dimensional form, as 
 

1 1 1
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where 2mk2  ),1(f)1(F
k ,2l

2m
klk  


        (5.9) 

 

  Using the following properties (5.7), can be simplified to get drag. 
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where )1(Fk  is defined in (5.9). 
 

  Non-dimensional drag Coefficient dC  is defined as 
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  In the above equation (5.11) the upper limit is taken as 13, since we have taken up to m=13th  
order deformation 
 

  For m=0, 



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

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  This gives the formula for Stokes flow with slip condition. Now as s  , we get 

Re
24drag   which matches with the drag with no-slip condition for the Stokes flow. 

 
6. Results and discussions 
 
  In the classical problem of flow past a sphere, it is a challenge to obtain an analytical solution 
valid for moderate Reynolds numbers. Recently, Liao [33] obtained an analytical solution by 
applying Homotopy Analysis Method. He observed that his method gives coefficient of drag (Cd) 
for Re≤30 by computing up to 10 iterations. He did not discuss the flow pattern. In our present 
paper, we obtain solution for flow past a sphere, under tangential slip condition, valid up to 
Re≤50 and up to 13 iterations. As far as the authors know, there was no contribution to analytical 
solution of the problem presented here for Re≤50 and here we present such a case. Our results 
include the previous studies. 
  The stream line pattern for the uniform flow past a sphere is obtained by solving equations 
(2.10) and (2.11) under the slip and uniform flow at infinity conditions. The solution of these 
non-linear equations can be obtained by forming homotopy equations or zeroth order 
deformation equations (4.4) and (4.5) which reduce to (2.10) and (2.11), when the homotopy 
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parameter 1 these equations give the exact solution. When the parameter 0, the homotopy 
equations (4.4) and (4.5) reduce to simple linear equations and give the initial guess for the 
solution. The solution of the zeroth order deformation equations are made fast converging by 
choosing auxiliary function H appropriately. The homotopy equations (4.4) and (4.5) are 
expanded in base functions of Gegenbaur polynomials to get mth order deformation equation 
(4.16) with boundary conditions as mentioned in (4.17). 

  The equations (4.16) or (4.20) are solved, by taking 1H
r

  for the cases σ=1, 3/2 and 2. 

These different cases for σ are considered to check the convergence of the method for lower 
number of approximations. 
  Case σ=0: The solution for n=1 is presented in (4.19). It can be noted that the solution will not 
satisfy the uniform stream condition. Hence σ must be positive to get the solution which satisfies 
the regularity condition. 
  Case σ=1: The solution in this case is exactly matching with that of the solution obtained by  
Liao [34] for large values of slip parameter s i.e., for the case of no-slip boundary condition. 

Case σ=2: The stream lines and vorticity lines are drawn for this case and values of drag are 
computed up to 13 iterations. The values of coefficient of drag (Cd) are matching for Re≤50 to 
the results of Takaki [32] for the case s   and to the numerical results of Atefi [39] and 
Zhi-Gang Feng [42] for general slip parameter. The values of Cd are within 10% error when 
=3/2 and within 8% error for =2. 
  In Figure 1, the stream line pattern and vorticity lines are shown at different values of slip 
parameter at Re=250. The bright region shows high positive values and dark region shows low 
and negative values of stream lines/vorticity lines. As s increases (when no slip condition is 
taken), we observe that the region behind the sphere becomes more and more dark showing 
wakes and low values of stream lines(/vorticity lines). It is observed that as slip parameter 

0s  , the size of wake formation reduces and finally disappears. This is the condition for 
perfect slip. In the figures for vorticity, the brighter region near the sphere increases as slip 
values s are decreasing i.e., values of the vorticity lines near the sphere are having higher 
positive values and hence indicate strong vorticity zones. It is observed that as slip increases we 
find the formation of wakes behind the sphere showing the case of no-slip condition. At low 
values of slip <10, for the stream line pattern, the wakes behind the sphere are not observed (i.e., 
for perfect slip, no wakes are formed). From these figures of (1) (as s   as we near to no 
slip condition), wakes are observed behind the sphere at Re =250. 

 

   
(a) Slip=2                             (b) Slip=2 
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(c) Slip= 10                         (d) Slip= 10 

 
 

   
(e) Slip= 1000                        (f) Slip= 1000 

 
 

   
(g) Slip= 100000                    (h) Slip= 100000 

Figure 1. (a), (c), (e), (g) Are stream lines and (b), (d), (f), (h) are vorticity lines at different slip parameter 
values for σ=2, Re=250(fixed) at 9th iteration 

 
 
  In Figure 2, the stream line pattern and vorticity line pattern are shown for different values of 
Reynolds number (Re) at 9th iteration. As Re increases, occurrence of low values of vorticity in 
the direction of flow near the sphere and formation of wakes behind the sphere are observed. 
This observation is not clear up to 9th iteration (these figures are not shown). As the iterations are 
increased, the vorticity diffusion at large Reynolds number is clear. 
  In order to get the values of Cd and stream lines pattern, the choice of h plays a very important 
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role. To find the range of h values for convergence of the solution, first we have drawn curves for 
2

2r



 values verses h at r=1, 1

2
x  (x is fixed randomly). The range of h values for which 

2

2r



 

is constant is found (i.e., where the curve is parallel to h axis). A proper h value is chosen from 
this range based on higher rate of convergence. For that value of h graphs for Cd and stream lines 
are drawn. 
  In the expression for drag, in (Equation (5.11) as s  , we notice that (1)kF =0 and the 
formula for coefficient of drag at no slip condition agrees with the formula given by Liao[34]. In 
Figure 3, drag coefficient (Cd) versus Reynolds number (Re) is shown with high slip parameter s 
= 1000000. When σ 1 and as the iterations are increasing, the results are nearer to the 
experimental values for Re50. These values are matching with the results of Atefi [39]. 
 
 
 
 

   
(a) Re= 10                             (b) Re= 10 

 
 
 
 

    
(c) Re=100                               (d) Re=100 
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(e) Re=150                               (f) Re=150 

        
               (g) Re=200                                (h) Re=200 
Figure 2. (a), (c), (e), (g) Are stream lines and (b), (d), (f), (h) are vorticity lines for different Re values 

with slip=100000 σ=2, at 9th iteration 
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Figure 3. Cd graph with σ=2 at slip parameter value S=1000000 
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  When slip parameter 20s   and Reynolds number Re 1 our results are fairly in good 

agreement with the results reported by Zhi-Gang Feng [42]( In Feng aURe 


  and we took 

2aURe 


 ). These results are shown in the Table 1 at 11th iteration for σ=1, the error with the 

values of Feng[42] is less than 14.5% and in Table 2 for σ the error is le than 14%. From these 
tables, we observe that as σ increases, the error between our results and of Feng decreases. But 
we have not gone beyond >2. The same values are shown in graphical form in Figure 4 (a) and 
4 (b). The values of Cd for slip parameter 20s   and 1Re   and for slip1000 and Re50, 
our results are in good agreement with the available results of Feng [42] and Atefi [39], 
respectively. 
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Figure 4. Cd graphs at 11th iteration for different SLIP values. here in the graphs Si indicates coefficient of 

drag in ith slip value 
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Table 1. Comparison of drag coefficients for different reynolds number values Vs different slip 
parameter values at the 11th iteration with σ=1. The values of slip parameter s in our study are 
equal to reciprocal values of slip parameter of Zhi-Gang Feng [42] 

Re Slip= 20 Slip=10 Slip=3.33 
Present Feng Error% Present Feng Error% Present Feng Error% 

0.1 117.46 118.8 1.128 115.186 114.6 0.509 108.126 104.2 3.631 
0.3 39.15 41.62 5.935 38.39 40.08 4.217 36.04 37.85 4.782 
0.5 23.499 26.04 9.758 23.08 25.05 7.86 21.63 22.65 4.23 
0.6 19.58 22.12 11.48 19.20 21.26 9.69 18.02 19.2 6.146 
0.7 16.78 19.3 13.05 16.46 18.54 11.21 15.45 16.73 7.651 
0.8 14.692 17.17 14.43 14.407 16.5 12.7 13.52 14.87 9.07 

Re Slip=1.66 Slip=1 
Present Feng Error% Present Feng Error% 

0.1 101.48 97.1 4.316 96.29 92.5 3.936 
0.3 33.83 33.75 0.236 32.10 32.12 0.062 
0.5 20.30 21 3.333 19.26 19.96 3.507 
0.6 16.92 17.79 4.89 16.05 16.9 5.03 
0.7 14.5 15.48 6.331 13.76 14.7 6.395 
0.8 12.69 13.75 7.709 12.04 13.05 7.739 

 
Table 2. Comparison of drag coefficients for different reynolds number values Vs different slip 

parameter values at the 11th iteration with σ=2. The values of slip parameter s in our study are 
equal to reciprocal values of slip parameter of Zhi-Gang Feng [42] 

Re Slip= 20 Slip= 10 Slip=3.33 
Present Feng Error% Present Feng Error% Present Feng Error% 

0.1 117.47 118.8 1.12 115.19 114.6 0.512 108.23 104.2 3.72 
0.3 39.18 41.62 5.863 38.42 40.08 4.142 36.06 37.85 4.72 
0.5 23.53 26.04 9.639 23.08 25.05 7.864 21.66 22.65 4.37 
0.6 19.62 22.12 11.302 19.25 21.26 9.45 18.06 19.2 5.93 
0.7 16.83 19.3 12.79 16.52 18.54 10.89 15.49 16.73 7.41 
0.8 14.78 17.17 13.92 14.47 16.5 12.3 13.57 14.87 8.74 

Re Slip=1.66 Slip= 1 
Present Feng Error% Present Feng Error% 

0.1 101.49 97.1 4.32 96.30 92.5 3.94 
0.3 33.85 33.75 0.29 32.11 32.12 0.03 
0.5 20.33 21 3.19 19.28 19.96 3.4 
0.6 16.95 17.79 4.72 16.08 16.9 4.85 
0.7 14.54 15.48 6.07 13.79 14.7 6.19 
0.8 12.74 13.75 7.34 12.08 13.05 7.43 

 
  The main contribution of the present paper is that the use of Gegenbauer polynomials as base 
functions in the expansion of stream function. The advantage of using Gegenbauer polynomials 
is that integration on double summation reduces to only single summation for drag calculation.  
This is due to the orthogonal nature of the Gegenbauer polynomials. Hence, we could obtain the 
simple expression for drag, equation (5.12), in comparison with the formula given by Liao [34].  
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Also, by the nature of orthogonality of Gegenbauer polynomials, RHS of (4.18) can be 
simplified more easily than in the case of Liao [33] and making it possible for us to go up to 13 
iterations. 
 
7. Conclusions 
 
  In this paper, the stream function  and vorticity function  for uniform flow past a sphere 
with slip boundary condition are found using HAM, using Gegenbauer polynomials. The 
expression for drag is derived. The flow pattern and coefficient of drag Cd are compared with the 
existing literature and are found in good agreement with [33], [34], [39], [42]. The solution by 
HAM is converging as  is increasing in the auxiliary function H=1/r. The values of Cd are 
obtained at =1 and =2 and found matching with Feng et al [42]. It is observed that 
a) Analytical solution for stream lines and vorticity lines is obtained at moderately large 

Reynolds numbers Re≤250. 
b) Drag coefficient Cd is in good agreement with error less than 14% with the results obtained 

by previous authors up to Re≤50 for small slip and large slip values ([39], [42]). 
c) As Reynolds number increases, the size of wakes behind the sphere and the vorticity 

diffusion are increasing. 
d) The calculations for drag and stream lines are done easily by the use of Gegenbauer 

polynomials in view of their orthogonality. Results up to 13th order deformation are obtained. 
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