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Abstract: Non-isothermal flow through a rotating curved duct with square cross section is 
studied numerically by using the spectral method, and covering a wide range of the Taylor 
number, Tr, 20000  Tr  and Dean number, ,Dn  0Dn 2000. A temperature difference is 
applied across the vertical sidewalls for Grashof number Gr = 500, where the outer wall is heated 
and the inner one cooled. The rotation (Coriolis force) of the duct about the center of curvature is 
imposed. The Steady solutions are obtained by using Newton-Raphson iteration method and the 
Dean numbers are also discussed in detail. Then, in order to investigate the non-linear behavior 
of the steady and unsteady solutions, there is no stable steady solution, time evolution 
calculations as well as power spectrum of the periodic oscillations are obtained, and it is also 
found that for larger Dn, the unsteady flow undergoes in the scenario 
“steadyperiodic chaotic steady”, if Tr  is increased. Finally spectral analysis and phase 
space are found to be very useful investigation of the Non-isothermal fluid flow behavior. 
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1. Introduction 

  Due to engineering application and their intricacy, the flow in a rotating curved duct has 
become one of the most challenging research fields of fluid mechanics. The study of flow 
through a curved duct is of fundamental interest because of its importance in chemical, 
mechanical and biological engineering. Since rotating machines were introduce into engineering 
applications such as gas turbines, electric generators, rooting heat exchangers, cooling system 
and some separation processes, scientists have paid considerable attention to the characteristics 
of the flows in these rotating systems. The readers are referred to Berger et al. [1], Nandakumar 
and Masliyah [2] and Gottlieb et al. [3] for some outstanding reviews on curved duct flows. 
  Many researchers have performed experimental and numerical investigation on developing 
and fully developed curved duct flows. Ludwieg [9] first analyzed the flow in a co-rotating (the 
rotating angular velocity and the axial velocity are in the same direction) curved duct by 
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integrating the momentum equations. Miyazaki [10] studied the characteristics of the flow and 
heat transfer in a rotating curved duct rectangular duct with positive rotation. Wang and Cheng 
[11] studied the characteristics and heat transfer in curved ducts for positive cases and found 
reverse secondary flow for co-rotation cases. Selmi and Nandakumer [12] and Yamamoto et al. 
[13] performed extensive works on the rotating curved duct flows and their bifurcations. 
Yanamoto et al. [13], employing the spectral method, examined the flow structure and the flow 
rate ratio for the flow in a rotating curved duct and found a six-cell phenomenon in the secondary 
flow. In their paper, they predicted there should be some multiple solutions but they did not 
obtain then. Yang and Wang [14] performed comprehensive numerical study on bifurcation 
structure and stability of solutions for laminar mixed convection in a rotating curved duct of 
square cross section. The flow through a curved duct with differentially heated vertical sidewalls 
has other aspects because secondary flows promote fluid mixing and heat transfer in the fluid 
(Chandratilleke and Nursubyakto [6]). Mondal et al. [7] and Yanse et al. [8] performed numerical 
investigations of non-isothermal flows through curved ducts with square and rectangular cross 
sections. While some of such new features are revealed by recent analytical and numerical works 
(Wang and Cheng [11]; Yang and Wang [14]), there is no known study on bifurcation and 
stability for forced convection in a rotating curved duct with the study of time–dependent 
behavior. Recently Mondal et al. [15] performed a comprehensive numerical study of the 
non-isothermal flows through rotating curved square ducts for small Grashof number ( 100Gr ). 
In the present study, we perform numerical study on non-isothermal flow through a rotating 
curved duct flow for large Grashof number ( ,)500Gr   because we are expected that more 
completed flow behavior of the unsteady solutions may occur. We setup the range of Taylor 
number )20000(  Tr , Dean number )20000(  Dn  because within the range was carried out 
the temporal oscillation takes between symmetric/asymmetric two and four-vortex steady 
solutions. We also showed that the chaotic solution becomes weak for small Dean number, while 
the chaotic solution becomes strong for large Dean number. 
  We are developed two-dimensional flow of viscous incompressible fluid and bifurcation 
structure stability through a rotating curved square duct whose outer wall is heated and inner one 
is cooled. Flow characteristics are studied over a wide range of the Dean number and the Taylor 
number by finding the steady solutions, investigating their linear stability and calculating 
nonlinear behavior of the unsteady solutions by time evolution calculations with phase spaces. 
Transient behavior of the unsteady solutions, such as periodic, multi-periodic or chaotic solutions 
are yet unresolved for the non-isothermal flow in a rotating curved duct. This paper is, therefore, 
an attempt to fill up this gap with the study of stability analysis of multiple solutions. 
 
2. Governing equations 
 
  Consider a hydro dynamically and thermally fully developed two-dimensional flow of viscous 
incompressible fluid through a curved duct with square cross section. Let 2d  be the width of the 
cross section. The coordinate system with the relevant notations is shown in Figure 1.  

Where C is the centre of the curvature and L is the radius of the curvature. The x  and y  
axes are taken to be in the horizontal and vertical directions respectively, and z  is the 
coordinate along the center-line of the duct, i.e., the axial direction. 
  It is assumed that the outer wall of the duct is heated while the inner one is cooled. The 
temperature of the outer wall is TT 0  and that of the inner wall is TT 0 , where T > 0.  
It is also assumed that the flow is uniform in the axial direction, and that it is driven by a 
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Figure 1. Coordinate system of the curved square duct 
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where ,u  v  and w  are the non-dimensional velocity components in the ,x  y  and z  
directions, respectively; t  is the non-dimensional time, P  is the non-dimensional pressure, 

  is the non-dimensional curvature defined as ,
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  Since the flow field is uniform in the z  direction, the sectional stream function   is 
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  A new coordinate variable y is introduced in the y  direction as yay  , where 
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the aspect ratio of the duct cross section. In this study, we consider the case for lh   i.e. 1a  
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  The non-dimensional parameters Dn , the Dean number, ,Gr  the Grashof number, and Pr, the 
prandtl number, which appear in equation (2) - (4) are defined as: 
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  Where ,  ,    and g  are the viscosity, the coefficient of thermal expansion, the 
co-efficient of thermal diffusivity and the gravitational acceleration respectively is the viscosity 
of the fluid. In the present study, only Dn  is varied while ,  Gr  and Pr are fixed as ,5.0  

500Gr  and Pr = 7.0 (water). The rigid boundary conditions used here for w  and   are as:                 
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and the temperature T  is assumed to be constant on the walls as:                                     
,1)y,1(T,1)y,1(T   x)1,x(T                                          (8)                                              

  It should be noted that the Equations (2), (3) & (4) are invariant under the transformation of 
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  Therefore, the case of heating the inner sidewall and cooling the outer sidewall can be 
deduced directly from the results obtained in this study. Equations (2) - (4) would serve as the 
basic governing equations which will be solved numerically as discussed in the following 
section. 
 
3. Numerical calculations 
 
  The present study is based on numerical calculations to solve the equations (2) - (4), the 
spectral method is used. This is the method which is thought to be the best numerical method for 
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solving the Navier-Stokes as well as energy equations (Gottlieb and Orszag, 1997). By this 
method the variables are expanded in a series of functions consisting of Chebyshev polynomials. 
The expansion functions )(xn  and )(xn  are expressed as:  
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  where  )(coscos)( 1 xnxCn
  is the thn  order Chebyshev polynomial. )t,y,x(),t,y,x(w   
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  where M  and N  are the truncation numbers in the x  and y  directions respectively. The 
collocation points ),( ji yx  are taken to be                                   
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  Wher i=1, …, M+1 and j=1, …, N+1. Steady solutions are obtained by the Newton-Rapshon 
iteration method assuming that all the variables are time independent. The convergence is 
assured by taking sufficiently small p ( p < 1010  ) defined as:    
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  The present numerical calculation, for sufficiently accuracy of the solutions, we take 20M  
and 20N  for a square duct. Finally, in order to calculate the unsteady solutions, the 
Crank-Nicolson and Adams-Bashforth methods together with the function expansion (11) and 
the collocation methods are applied to equations (2) - (4). 
 
4. Time-evolution calculation 
 
  In order to solve the non-linear time evolution equations, we use the Crank-Nicolson and 
Adams-Bashforth method. For the Crank-Nicolson method more explicitly, we consider the 
following one-dimensional heat-flow equation. 
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  where )(tq  the temperature is at time t  regarded as a function of x  and   is the heat 
conductivity. The first time derivative in Equation (14) is replaced by a finite difference ratio and 
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a time step t , the derivative with respect to time may be written as: 
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  The approximate solution of equation. (14), thus evaluated, is a function of t  as well as x  
and ,t  and the true solution is the limit of the approximate one as 0 t . The method, 
determined by equation. (15), is called the Crank-Nicolson method. The Adams-Bashforth 
Method, on the other hand, is used for numerically solving initial value problems for ordinary 
differential equations. This method is an explicit linear multistep method that depends on 
multistep previous solution points to generate a new approximate solution point. 
 
5. Results and discussion 
 
  In this study, we take a curved duct with square cross section and rotate it around the center of 
curvature with an angular velocity T . According to the definition of ,Tr  positive Tr  means 
that the rotational direction is the same as that of the main flow. In the present study, we 
investigate the flow characteristics only for the case of positive rotation of the duct (positiveTr ) 
and discuss the flow phenomena for the Dean numbers, 2000Dn , over a wide range of the 
Taylor number .2000Tr0   Thus, an interesting and complicated flow behavior will be 
expected if duct rotation is involved for these cases. 
 
5.1. When Dn = 2000 
 
5.1.1. Steady solutions 
 
  We obtain four branches of steady solutions for 2000Dn over a wide range of Tr,  
for 20000 Tr . The bifurcation diagram of steady solutions is shown in Figure 2. The four 
steady solution branches are named the first steady solution branch (first branch, thick solid red 
line), the second steady solution branch (second branch, thick solid blue line), the third steady 
solution branch (third branch, thick solid green line) and the fourth steady solution branch 
(fourth branch, thick solid purple line), respectively. The steady solution branches are obtained 
by the path continuation technique with various initial guesses as discussed in Mondal [7] and 
are distinguished by the nature and number of secondary flow vortices appearing in the cross 
section of the duct. In the following, the four steady solution branches along with the flow 
patterns and temperature profiles on the respective branches are discussed individually. 

The first steady solution branch for 2000Dn  is solely depicted in Figure 3(a), for 
20000 Tr . The branch starts from point a )0Tr(   to the direction of increasing Tr as Q  

decreases which extends up to point d ( 2000Tr ) without any turning. Then, in order to 
observe the change of the flow patterns on the first branch, contours of typical secondary flow 
and temperature profile are drawn at several values of Tr as shown in Figure 3(b), where it is 
seen that the branch is composed of only two-vortex solutions which are symmetric with respect 
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to the horizontal plane 0y . Three types of forces, Coriolis force, strong centrifugal force and 
buoyancy force act on the fluid at the same time, which make the flow patterns symmetric. In the 
case of temperature profile heat transmission from inner wall to the outer wall by convection 
becomes more frequent with the increase of rotation (Tr ). 

 

  
Figure 2. Steady solution branches for 2000Dn  

 
The first steady solution branch: 
 

 
Figure 3(a). First steady solution branch with the region of linear stability (Thick solid line) for 2000Dn . 

 
 

                         
                        
                         
                      T  
                              
                          Tr   0      250   950    650    2000 
Figure 3(b). Contours of secondary flow (top) and temperature profile (bottom) on the first steady solution 

          branch at several values of Tr . 
 
  We draw the second steady solution branch for 2000Dn  separately in Figure 4(a). As seen 
in Figure 4(a) the branch starts from point a ( 0Tr ) and goes to the direction of increasing of 
Tr  as Q  decreases and drives at point b ( 1450Tr ) where it turns to the opposite direction 
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with a gentle turning at point .b  The branch then goes to the direction of increasing Q  and 
decreasing Tr up to point c  ( 0Tr ). To observe the change of the flow patterns, contours of 
typical secondary flow and temperature profile on this branch are shown in Figure 4(b) for 
several values of Tr . As seen in Figure 4(b), the branch consists of asymmetric two-and nearly 
symmetric four-vortex solutions. It is found that the secondary flow is a two-vortex solution 
from point a to point b, but when the branch turns at point b  down to point c the secondary 
flow becomes a four-vortex solution. Linear stability of the steady solution shows that the branch 
is linearly unstable for any value of Tr. 
 
The Second steady solution branch: 
 

 
Figure 4(a). Second steady solution branch for 2000Dn  . 

 
 
                     
                      

                    T  

                            
 
                    Tr  0  110  450(b-c)  750(b-c)  950(b-c) 

Figure 4(b). Contours of secondary flow (top) and temperature profile (bottom) for the second steady 
solution branch at different values of Tr  (from upper branch to the lower) 

 
  The third steady solution branch for Dn =2000 shown by a thin solid line in Figure 5(a), the 
branch is very entangled with many turning points on its way, like the third branch obtained by 
Yanase et al. [8] for isothermal flow without rotation. We draw the contours of secondary flow 
and temperature profile at several values of Tr on this branch in Figure 5(b), where it is observed 
that the branch consists of two- and four- vortex solutions but are different from those of the 
second steady solution branch. Linear stability of the third steady solution branch shows that the 
branch is also unstable everywhere. 

We draw the fourth steady solution branch for 2000Dn  in Figure 6(a) (thick solid purple 
line), is solely depicted. Enlargement of this branch is shown in Figure 6(b) in which we found 
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that the branch has two parts very close to each other, the upper part (a-b) and the lower part 
(b-c). The branch starts from point a and goes to the direction of increasing Tr and decreasing Q  
up to point b  ( 10.116Tr ), where it experiences a reverse turning andgoes to the direction of 
increasing Q  and decreasing Tr onwards. To observe the change of the flow patterns and 
temperature distributions, contours of typical secondary flow and temperature profile on this 
branch are shown in Figure 6(c), at several values of Tr, where it is seen that the branch is 
composed of asymmetric four-vortex solutions. Linear stability of the fourth branch shows that 
the branch is also linearly unstable everywhere. 

 
The third steady solution branch: 
 

 
Figure 5(a). Third steady solution branch for 2000Dn . 

 
 

 
                     
 
                      T  
 

     
   Tr 0(a)  101.87(a) 200(a)   450(a) 

 
     
        

T  
 

         
      Tr  1000(b)    550(c)   750(c)  1550(d) 

Figure 5(b). Contours of secondary flow (top) and temperature profile (bottom) for the third steady solution 
          branch at different values of Tr (from upper branch to the lower).                                                                                             
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The Fourth steady solution branch:           

  
Figure 6(a). Fourth steady solution branch for 2000Dn . 

 

 
Figure 6(b). Enlargement of fourth steady solution branch for 2000Dn . 

                     branch for 2000Dn . 
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 Tr  116.10  30(b)   50(b)   100(b) 
Figure 6(c). Contours of secondary flow (top) and temperature profile (bottom) for the second steady 

solution branch at different values of Tr (from upper branch to the lower). 
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5.1.2. Linear stability of the steady solutions 
 
 Linear stability of first steady solution branch for 2000Dn  shows an interesting result. It is 
found that the branch is linearly stable in a couple of intervals of Tr, one for small Tr  
( 2790 Tr ) and another one for larger Tr ( 200090.922 Tr ). Thus the branch is linearly 
unstable for the region ( 80.9221.279 Tr ). The eigenvalues of the first steady solution branch 
are listed in Table 1, where the eigenvalues with the maximum real part of   (first eigenvalues) 
are presented. Those for the linearly stable solutions are printed in bold letters. As seen in Table 1, 
the perturbation grows oscillatory ( 0i ) for 80.922279 Tr  and monotonically ( 0i ) 
for Tr  922.80. Therefore, the Pitchfork bifurcation occurs at Tr  279.10 and the Hopf 
bifurcation at Tr922.80. 
 

Table 1. Linear Stability of the first steady solution branch for 2000Dn  and 500Gr . 
Tr  Q  r  i  

0 581.665065 -2.0525 0 

279.00 517.115175 -2.7722 410  8.7596 10  

279.10 517.096957 3.2324 310  8.7601 10  

528.30 478.139438 5.5473 010  9.5355 10  

922.80 433.296084 1.7839 310  -9.4593 10  

922.90 433.286412 -1.8951 310  -9.4591 10  

1660.00 375.904510 -3.2206 010  0 

2000.00 356.047431 -3.4120 010  0 

   

5.1.3. Unsteady solutions 
 

We perform time-evolution calculations of the unsteady solutions for 2000Dn and 
0Tr 2000. Time evolution of Q  for 2000Dn  and Tr 279, at which the steady solution is 
linearly stable on the first branch, shows that the value of Q  quickly approaches that of the 
stable solution on this branch no matter what the initial conditions we use. Then, in order to see 
what happens when all the steady solutions are linearly unstable in the region 279Tr 922.80, 
time evolutions of Q  are then performed for ,400Tr  600, 800 and 1000. 

Figure 7(a) shows the time-evolutions result for 400Tr  where it is seen that the flow 
oscillates periodically. In the same figure, to observe the relationship between the periodic 
solution and the steady states, the values of Q  for the steady solution branch at 400Tr  are 
shown by straight lines using the same kind of lines as were used in the bifurcation diagram in 
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Figure 7. As seen in Figure 7(a) the solution at 400Tr  oscillates in the region below the 
upper parts and above the lower parts of the steady solution, there are branches. To observe the 
periodic change of the flow characteristics and temperature distributions, contours of typical 
secondary flow and temperature profile for one period of oscillation at 50.2725.27  t  are 
shown in Figure 7(b), where it is seen that the periodic oscillation at 400Tr  is a two-vortex 
solution. 
 

 
Figure 7(a). Time evolution of Q  and the values of Q  for the steady solutions for 50.2705.26  t   

          with unsteady solutions for 2000Dn and 400Tr . 
                                                                    

                     

                   T  

 
                   t   27.25   27.30  27.35  27.40  27.50 
Figure 7(b). Contours of secondary flow (top) and temperature profile (bottom) for one period of oscillation              
          at 50.2725.27  t  
 
  Next, the time evolution of Q , for the steady solution branches indicated by straight lines, are 
shown in Figure 8(a), for Tr = 600. It is found that the flow oscillates periodically in the region 
along the values of Q  on the upper and lower parts of the steady solution branch. The 
associated secondary flow patterns and temperature profiles at 10.1990.18  t  are shown in 
Figure 8(b). It is found that the unsteady flow at Tr = 600 also oscillate between the asymmetric 
two-vortex solutions. 

Next, the time evolution of Q  together with the values of Q  for the steady solution 
branches, indicated by straight lines, are shown in Figure 9(a) for 800Tr . It is found that the 
flow oscillates periodically in the region along the values of Q  on the upper parts of the steady 
solution branch. The associated secondary flow patterns and temperature profiles at 

70.1050.10  t  are shown in Figure 9(b). It is found that the unsteady flow at 800Tr  also 
oscillates between the asymmetric two-vortex solutions. 
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Figure 8(a). Time evolution of Q  and the values of Q  for the steady solutions for 7.190.18  t  

           with unsteady solutions for 2000Dn and 600Tr . 
 

 
                                                                                     
  
 
                    T                                       

 
 
t  18.90   18.95   19.00   19.05  19.10 

Figure 8(b). Contours of secondary flow (top) and temperature profile (bottom) for one period of oscillation 
at 10.1990.18  t . 

 

 
Figure 9(a). Time evolution of Q  and the values of Q  for the steady solutions for 1110  t  with  

           unsteady solutions for 2000Dn  and 800Tr . 
      

                       

                       
T                                        

 

                     t   10.50    10.55    10.60    10.65  10.70 
Figure 9(b). Contours of secondary flow (top) and temperature profile (bottom) for one period of oscillation 
          at 70.1050.10  t . 
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  Similarly, the time evolution of Q  together with the values of Q  for the steady solution 
branches, indicated by straight lines, are shown in Figure 10(a) for .1000Tr   It is found that 
the flow oscillates periodically in the region along the values of Q  on the lower part of the 
steady solution branch. The associated secondary flow patterns and temperature profiles for one 
period at 00.880.7  t  are shown in Figure 10(b). It is found that the unsteady flow at 

1000Tr  also oscillate between the asymmetric two-vortex solutions. Time evolutions of Q  
are then performed at several values Tr  for ,2000Tr90.922   and it is found that the value 
of Q  approaches steady state. The reason is that the steady flow is stable on the first steady 
solution branch in this region. 
 

      
Figure 10(a). Time evolution of Q  and the values of Q  for the steady solutions for 

                20.84.7  t  with unsteady solutions for 2000Dn  and 1000Tr . 
                                           

                 

                               

                    T  
                    

t   7.80    7.85   7.90   7.95   8.00 

Figure 10(b). Contours of secondary flow (top) and temperature profile (bottom) for one period  
            of oscillation at 00.880.7  t . 
 
6. Conclusions 
 
  In this study, a detailed numerical study on fully develop two-dimensional flow of viscous 
incompressible fluid through a rotating curved duct with square cross section has been analyzed 
by using the spectral method over a wide range of the Taylor number, 20000  Tr  and the 
Dean number, 20000  Dn  for the curvature 1.0  Though the present study covers a 
wide range of ,Dn  2000Dn  have been discussed in detail with a temperature difference 
between the vertical sidewalls for the Grashof number 500Gr , where the outer wall is heated 
and the inner one cooled. 

After a comprehensive survey over the parametric ranges, a single branch of asymmetric 
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steady solution is obtained for 2000Dn  on the other hand, we obtain four branches of 
symmetric/asymmetric steady solutions, respectively. It is found that there exist two-and 
four-vortex solutions on various branches. These vortices are generated due to the centrifugal 
force and Coriolis force or by their combinations. It is found that as Dn increases the number of 
steady solutions also increases. Linear stability of the steady solutions reveals an interesting 
result. Time evolution calculations as well as their spectral analyses show that in the unstable 
region for 2000Dn  the unsteady flow becomes periodic before turning to steady state. In the 
unstable region for 2000Dn  on the other hand, the unsteady flow becomes periodic first, 
then multi-periodic, then chaotic and finally turns into steady state again, if Tr is increased. In 
order to investigate the transition from multi-periodic oscillations to chaotic states more 
explicitly, the orbit of the solution is drawn in phase space. 
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