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Abstract: In this paper, a fitted upwind difference scheme has been presented for solving 
singularly perturbed differential-difference equations with negative shift. First, the singularly 
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1. Introduction 
 
  A singularly perturbed differential-difference equation is an ordinary differential equation in 
which the highest derivative is multiplied by a small parameter and containing at least one delay 
term. Differential-difference equations, also known as delay differential equations arise 
frequently in mathematical modeling of various practical phenomenon in biosciences, 
engineering, ecology and control theory [2, 3], where the time evolution depends not only on 
present states but also on states at or near a given time in the past. Any system involving a 
feedback will almost always involve time delays. As a result these problems have received a lot 
of interest in recent times and many researchers have been trying to develop various methods for 
solving these problems. A delay differential equation is of retarded type if it does not involve 
delayed derivatives and it is said to be neutral type if it has delayed derivatives. Kadalbajoo and 
et al. [6, 7] constructed and analyzed a fitted operator finite difference method to solve problems 
arising from singularly perturbed differential difference equations. Reddy and et al. [12] 
presented a numerical integration method to solve delay differential equations. Variety of papers 
have been published in the recent years on singularly perturbed differential difference equations, 
some of them are Kadalbajoo and Reddy [6], Lange and Miura [8, 9], Pramod Chakravarthy and 
Rao [11]. 
  In this paper, fitted upwind finite difference scheme is presented for solving a singularly 
perturbed delay differential equation with layer behavior. First, the singularly perturbed delay 
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differential equation is replaced by an asymptotically equivalent second order singularly 
perturbed two point boundary value problem. Then, a fitting factor is introduced into upwind 
finite difference scheme and obtained from the theory of singular perturbations. Thomas 
algorithm is used to solve the obtained tri-diagonal system and the stability of the algorithm is 
also considered. To show the applicability of the method, we have applied it on several 
numerical examples by taking different values for perturbation and delay parameters. 
 
2. Description of the Method 
 
  Consider the singularly perturbed differential-difference equation of the form: 

),()()()()( xfxyxbxyxay    10  x                                     (1) 
with boundary conditions 

,)0( y  and )1(y          (2) 
  Where )x(b),x(a   and )x(f  are sufficiently smooth functions, 0< <<1 and  =o( ) is 
the delay parameter such that   0)x(a   for all. x [0,1] Furthermore,  and   are 
positive constants. When   is zero, equation (1) is reduced to a singularly perturbed ordinary 
differential equation with small   which exhibits layer behavior and turning points depending 
upon the coefficient of convection term. The layer behavior of the problem under consideration 
is maintained for 0  but sufficiently small (i.e. )(0   ) and in this paper we consider the 
problem where the layer behavior is maintained. 
 
2.1. Left end boundary Layer problems 
 
  We assume that 0)(  Mxa  throughout the interval [0,1] for some positive constant
M  and    x,0xa    [0,1]. This assumption implies that the boundary layer will be
at the left end of the interval. That is in the neighborhood of 0x . 
  Taking the Taylor series expansion of the term )(  xy  we have 

)()()( xyxyxy                    (3) 
Substituting (3) into (1) we get an asymptotically equivalent two point boundary value pr
oblem:           

)()()()()()( xfxyxbxyxaxy          (4) 
with boundary conditions 

,)0( y  )1(y                                                   (5) 
where 10    such that )(min

10
xa

x
 . 

  The transformation from (1) to (4) is admitted because of the condition that   is sufficiently 
small. For details of the validity of this transition see Els’golts & Norkin[4]. 

From the theory of singular perturbations, it is known that the solution of (4)-(5) is of the form 
[cf. O' Malley[10] pp.22-26] 

)())0((
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
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       (6) 

where )(0 xy  is the solution of the reduced problem 
 )1(  ),()()()()( 000 yxfxyxbxyxa  
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  By taking Taylor series expansion for )(xa  and )(xb  about the point '0' and restricting to 
their first terms, (6) becomes 

)())0(()()( )0(
)0()0(
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                                   (7) 

  Now we divide the interval [0, 1] into N  equal subintervals of mesh size Nh 1  so 

that ,0i   ,ihxi   1, 2…N. 

From (7) we have )())0(()()( )0(
)0()0(

00   













oeyihyihy
ih

a
ba

 
  Now taking the limit of both sides we get: 

)())0(()0()(lim )0(
)0()0(
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                     (8) 

where   h . 

  Now we consider the second order upwind finite difference scheme in (4) and fitting 
a parameter   we get: 

1 1   );()()())(()2( 1
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11 



  Nixfxyxb
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  ,y,y N0    where   is a fitting factor which is to be determined in such a way that the 
solution of (9) converges uniformly to the solution of (1) - (2). Multiplying (9) by h  and taking 
the limits as h0, we get: 

    0)()()()()(2)(lim
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
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  Provided iii yxbxf )()(   is bounded. Substituting (8) in (10) and simplifying we get: 
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i.e., 
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From (9) we have 
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2                                (13) 

where ),x(aa ii   )x(bb ii   and )( ii xff   considered for convenience. The above equation 
can be written as a three term recurrence relation:  

iiiiii HGyyFyE   11 ,  ,3  ,2  ,1i  …, N－1      (14) 
Where 
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2i h
E  

           (15) 

i
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2                                                            (16) 
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                                                               (17) 

ii fH            (18) 
  This three term recurrence relation can be solved by Discrete Invariant Imbedding Algorithm 
described in the next section. 
 
2.2. Thomas Algorithm 
 
  A brief discussion of the Thomas Algorithm which is also called Discrete-Invariant Imbedding 
Algorithm, Angel and Bellman [1] is presented as follows: 
Consider the relation 

,11 iiiiiii HyGyFyE    ,1i   2, …, N－1       (19) 
where ,Ei  ,Fi  iG  and iH  are known and 

 )0(0 yy          (20) 
 )1(yyN          (21) 

Consider a difference relation of the form 
,TyWy i1iii     ,2N ,1Ni  …, 2, 1       (22)                                                   

where iW  and iT  corresponding to W( )ix  and )( ixT  are to be determined. From (22) we 
have 

111   iiii TyWy                                                            (23) 
Substituting (23) in (19), we get 
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By comparing (24) and (22) we get the recurrence relations 
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  To solve these recurrence relations for i = 1, 2, … N－1, we need to know the initial 
conditions for 0W  and .T0  This can be done by considering (20) which gives 

0100 TyWy  . If we choose 0W =0, then 0T = .  With these initial values, we compute 
sequentially iW  and iT  for i = 1, 2, … N－1 from (25) and (26) in the forward process and 
then obtain iy  in the backward process from (22) using (20). 
  For further discussion on the conditions for the Thomas Algorithm to be stable, one can refer 
(Angel and Bellman [1], Els’golts and Norkin [4] and Kadalbajoo and Reddy [5]). Here, under 
the assumptions that 0)( xa , 0)( xb  and 0))((  xa , the diagonal dominance property 
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  Hence, 

iii GEF   and ,0iE  0iG ,  ii GE   holds true and thus Thomas algorithm is stable. 
 
2.3. Right End Boundary Layer Problems 
 
  Now we consider (4) - (5) and assume that 0)(  Mxa  such that 10   , 
where )(max

10
xa

x
  throughout the interval [0, 1] and M  is some negative constant. This 

assumption implies that the boundary layer will be at the right end of the interval, i.e. in the 
neighborhood of .1x  Thus, from the theory of singular perturbations, it is known that the 
solution of (4) - (5) is of the form [cf.O' Malley[10]: 22-26] 
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where )(0 xy  is the solution of the reduced problem 
 )0(  ),()()()()( 000 yxfxyxbxyxa                        (28) 

By taking Taylor series expansion for )(xa  and )(xb  about the point '1' and restricting to their 
first terms, (27) becomes 
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Now we divide the interval [0, 1] into N equal subintervals of mesh size Nh 1  so that 

 ,2 ,1 ,0i  ,ihxi  …, N. From (29) we have 
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Therefore, taking the limit of both sides of (30) we get 
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where   h . 

Now we consider the second order upwind finite difference scheme in (4) 
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,y  ,y N0    where   is a fitting factor which is to be determined in such a way that the 
solution of (32) converges uniformly to the solution of (1) - (2). Multiplying (32) by h  and 
taking the limits as h0, we get 
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provided iii yxbxf )()(   is bounded. 
Substituting (31) in (33) and simplifying, we get the fitting factor as: 
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i.e., 
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From (32) we have 
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where )x(bb  ),x(aa iiii   and )( ii xff   are considered for convenience. Thus, equation 
(36) can be written as the three term recurrence relation of the form 

 ,3 ,2 ,1i    ,HGyyFyE i1iii1ii   …, N－1      (37) 
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  This three term recurrence relation can be easily solved by Discrete-Invariant Imbedding 
Algorithm described in section 2.2. 
 
3. Numerical examples 
 
  To illustrate the applicability of the method, some numerical examples with left-end and 
right-end boundary layer are considered. The computed results are compared with exact solution 
for problems whose exact solution is known and for the problems whose exact solutions are not 
known, solution is calculated for different values of   and  . 
 
Example 1. 
 
  Consider the singularly perturbed differential difference equation with left end boundary layer 

;0)()()(  xyxyxy   ,0[x  1] with 1)0( y  and .1)1( y  
The exact solution to this problem is given by 
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where 
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  Computational results are presented in the tables 1, 2, 3 and 4 for 01.0  and 0.001 for 
different values of .  The effect of  on the boundary layer is shown in graph (Figure 1) for 
different values of .  
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Figure 1. Graph of numerical solution of Example 1 for different values of δ. 

 
Table 1. Numerical results of Example 1 for ,01.0  ,001.0  N=100 

x  Numerical solution Exact solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.04 0.3932775 0.3932546 2.291e-05 
0.05 0.3925070 0.3923166 1.903e-04 
0.06 0.3949016 0.3946419 2.597e-04 
0.07 0.3983441 0.3980571 2.869e-04 
0.09 0.4061028 0.4058020 3.008e-04 
0.20 0.4528155 0.4525184 2.971e-04 
0.40 0.5520024 0.5517307 2.717e-04 
0.60 0.6729157 0.6726949 2.208e-04 
0.80 0.8203144 0.8201798 1.346e-04 
1.00 1.0000000 1.0000000 0.000e+00 
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Table 2. Numerical results of Example 1 for ,01.0  ,003.0  N=100 
x  Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000e+00 
0.03 0.3901927 0.3900410 1.516e-04 
0.04 0.3877603 0.3874347 3.256e-04 
0.05 0.3901408 0.3897593 3.813e-04 
0.07 0.3975241 0.3971217 4.024e-04 
0.09 0.4054658 0.4050624 4.033e-04 
0.30 0.4993732 0.4989908 3.823e-04 
0.50 0.6089609 0.6086279 3.330e-04 
0.70 0.7425978 0.7423541 2.437e-04 
0.90 0.9055613 0.9054623 9.907e-05 
1.00 1.0000000 1.0000000 0.000e+00 

 
Table 3. Numerical results of Example 1 for ,001.0  ,0003.0  N=100 

x  Numerical solution Exact solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.02 0.3771424 0.3755682 1.574e-03 
0.03 0.3809138 0.3793401 1.573e-03 
0.05 0.3885702 0.3869979 1.572e-03 
0.07 0.3963804 0.3948102 1.570e-03 
0.08 0.4003442 0.3987754 1.568e-03 
0.20 0.4511179 0.4495803 1.537e-03 
0.40 0.5504496 0.5490418 1.407e-03 
0.60 0.6716531 0.6705074 1.145e-03 
0.80 0.8195444 0.8188452 6.992e-04 
1.00 1.0000000 1.0000000 0.000e+00 

 
Table 4. Numerical results of Example 1 for ,001.0  0008.0  N=100 

x  Numerical solution Exact solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.02 0.3771424 0.3753846 1.757e-03 
0.03 0.3809138 0.3791565 1.757e-03 
0.04 0.3847229 0.3829663 1.756e-03 
0.06 0.3924559 0.3907012 1.754e-03 
0.08 0.4003442 0.3985923 1.751e-03 
0.20 0.4511179 0.4494008 1.717e-03 
0.40 0.5504496 0.5488774 1.572e-03 
0.60 0.6716531 0.6703736 1.279e-03 
0.80 0.8195444 0.8187634 7.809e-04 
1.00 1.0000000 1.0000000 0.000e+00 
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Example 2. 
 
  Consider an example with variable coefficient singularly perturbed differential difference 
equation with left layer 

0)x(y)x(ye)x(y x5.0     with ,1)0( y  1)1( y . 
  The exact solution is not known for this problem. The computational results obtained for 
different values   and   are presented in Tables 5 and 6. Further, the effect of  on the 
boundary layer is shown in graph (Figure 2) for different values of  . 
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Figure 2. Graph of numerical solution of Example 2 for different values of δ. 

 
Table 5. Numerical results for Example 2 with ,01.0  ,100N   different values of   

 
 
 
 

x  00.0   =0.001  =0.002  =0.003  =0.004 
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.02 0.3815079 0.3651163 0.3492111 0.3341466 0.3203373 
0.04 0.3052303 0.3008469 0.2972621 0.2944642 0.2923952 
0.06 0.3002676 0.2990323 0.2980527 0.2972743 0.2966421 
0.08 0.3049404 0.3042990 0.3037208 0.3031871 0.3026848 
0.10 0.3110740 0.3105300 0.3100047 0.3094949 0.3090002 
0.20 0.3458089 0.3452682 0.3447352 0.3442122 0.3437016 
0.40 0.4344148 0.4338594 0.4333108 0.4327711 0.4322427 
0.60 0.5586200 0.5580990 0.5575832 0.5570742 0.5565743 
0.80 0.7369857 0.7366082 0.7362334 0.7358624 0.7354968 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table 6. Numerical results of Example 2 for ,001.0  N=100, different values of   
x  0001.0   =0.0002  =0.0003  =0.0004  =0.0008 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.01 0.2792298 0.2792209 0.2792164 0.2792144 0.2792134 
0.03 0.2848683 0.2848681 0.2848681 0.2848681 0.2848681 
0.05 0.2906957 0.2906956 0.2906956 0.2906955 0.2906955 
0.07 0.2967025 0.2967024 0.2967023 0.2967023 0.2967023 
0.09 0.3028953 0.3028952 0.3028951 0.3028951 0.3028951 
0.10 0.3060636 0.3060635 0.3060635 0.3060634 0.3060634 
0.20 0.3406138 0.3406137 0.3406136 0.3406136 0.3406136 
0.40 0.4289315 0.4289313 0.4289313 0.4289312 0.4289312 
0.60 0.5533209 0.5533208 0.5533207 0.5533207 0.5533207 
0.80 0.7330194 0.7330193 0.7330193 0.7330193 0.7330193 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 
Example 3. 
 
  Consider the singularly perturbed differential difference equation with right-end boundary 
layer 

x;0)x(y)x(y)x(y   [0, 1] with 1)0( y  and .1)1( y  

  The exact solution is given by    
12

2112 11)( mm

xmmxmm

ee
eeeexy


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  
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)(2

)(411
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


m  and 

)(2
)(411

2 
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

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  Computational results are presented in the Tables 7, 8 and 9 for 01.0  and 0.001 for 
different values of .  The effect of  on the boundary layer is shown in graph (Figure 3) for 
different values of  . 
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Figure 3. Graph of numerical solution of Example 3 for different values of δ. 
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Table 7. Numerical results Example 3 for 002.0 ,01.0   , N=100 
x  Numerical solution Exact solution Absolute Error 

0.00 1.0000000 1.0000000 0.000 
0.20 0.8207411 0.8206521 8.898e-05 
0.40 0.6736160 0.6734699 1.460e-04 
0.60 0.5528644 0.5526845 1.798e04 
0.80 0.4537585 0.4535617 1.967e-04 
0.90 0.4108110 0.4105821 2.289e-04 
0.91 0.4064063 0.4061459 2.604e-04 
0.93 0.3955821 0.3951281 4.540e-04 
0.95 0.3720079 0.3708222 1.185e-04 
0.97 0.2774855 0.2740694 3.416e-03 
1.00 -1.0000000 -1.0000000 0.000e+00 

 
Table 8. Numerical results for Example 3, 01.0 , 003.0 , N=100 

x  Numerical solution Exact solution Absolute Error 
0.00 1.0000000 1.0000000 0.000 
0.20 0.8208852 0.8208084 7.678e-05 
0.40 0.6738526 0.6737265 1.260e-04 
0.60 0.5531556 0.5530004 1.552e-04 
0.80 0.4540771 0.4539072 1.699e-04 
0.91 0.4062358 0.4059562 2.796e-04 
0.93 0.3939262 0.3933562 5.700e-04 
0.95 0.3650479 0.3635169 1.531e-04 
0.97 0.2552733 0.2511992 4.074e-04 
0.98 0.0969142 0.0910572 5.857e-04 
1.00 -1.0000000 -1.0000000 0.000e+00 

  
Table 9. Numerical results for Example 3 for 001.0 , 008.0  

x  Numerical solution Exact solution Absolute Error 
0.00 1.0000000 1.0000000 0.000 
0.20 0.8216071 0.8215815 2.559e-05 
0.40 0.6750383 0.6749962 4.204e-05 
0.60 0.5546163 0.5545645 5.182e-05 
0.80 0.4556629 0.4556031 5.982e-05 
0.91 0.4012516 0.4004645 7.870e-04 
0.93 0.3765548 0.3747227 1.832e-03 
0.95 0.3158472 0.3118252 4.021e-03 
0.96 0.2518080 0.2461418 5.666e-03 
0.97 0.1409865 0.1334910 7.495e-03 
1.00 -1.0000000 -1.0000000 0.000 
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Example 4. 
 
  Consider an example with variable coefficient singularly perturbed differential difference 
equation with right layer: 

0)()()(  xyxyexy x  with ,1)0( y  1)1( y   
  The exact solution is not known for this problem. The computational results obtained for 
different values   and   are presented in Tables 10 and 11. Further, the effect of   on the 
boundary layer is plotted in graph (Figure 4) for different values of .  
 

Table 10. Numerical results for Example 4, ,01.0  ,100N   different values of   
x  00.0   =0.003  =0.006  =0.008 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 
0.20 0.8370671 0.8380376 0.8388649 0.8393793 
0.40 0.7233046 0.7247353 0.7259784 0.7267571 
0.60 0.6415895 0.6432350 0.6446872 0.6456024 
0.80 0.5815045 0.5832440 0.5847992 0.5857843 
0.90 0.5574139 0.5591836 0.5608834 0.5621501 
0.91 0.5551863 0.5569733 0.5588151 0.5603198 
0.93 0.5508256 0.5527974 0.5556074 0.5583636 
0.95 0.5466615 0.5501960 0.5572984 0.5639977 
0.97 0.5450029 0.5608573 0.5840460 0.6007747 
0.99 0.6196261 0.6921538 0.7421622 0.7673373 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 

 
Table 11. Numerical results for Example 4, ,001.0  ,100N   different values of   

x  00.0 01  =0.0003  =0.0006  =0.0008 
0.00 1.0000000 1.0000000 1.0000000 1.0000000 
0.20 0.8356442 0.8356508 0.8356796 0.8357099 
0.40 0.7213164 0.7213259 0.7213675 0.7214117 
0.60 0.6394073 0.6394179 0.6394649 0.6395154 
0.80 0.5792885 0.5792995 0.5793486 0.5794017 
0.90 0.5552094 0.5552203 0.5552698 0.5553234 
0.91 0.5529835 0.5529944 0.5530439 0.5530976 
0.93 0.5486239 0.5486348 0.5486843 0.5487380 
0.95 0.5443838 0.5443947 0.5444442 0.5444980 
0.97 0.5402593 0.5402703 0.5403200 0.5403755 
0.99 0.5363122 0.5369482 0.5401521 0.5438243 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 
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Figure 4. Graph of numerical solution of Example 4 for different values of δ. 

 
5. Discussion and conclusion 
 
  A fitted upwind difference scheme has been presented for solving singularly perturbed 
differential-difference equations whose solutions exhibits boundary layer behavior. The scheme 
is to be repeated for different choices of the delay parameter   and perturbation parameter .  
The choice of   is not unique, but can assume any number of values satisfying the condition, 
0< 1  and 10    such that ]1  ,0[x  ),x(   . The solutions are calculated 
for all the values of h  but only few values have been reported. It can be observed from the 
tables that the proposed method approximates the exact solution very well (Tables 1-4, 7-9) and 
also produces good and/or consistent results which are in support of the theory for different 
values of   and   for problems without exact solutions (Tables 5-6, 10-11) which in turn 
implies the efficiency of the method. The delay parameter   affects both the boundary layer 
solutions (left and right) in similar fashion but reversely. That is as   increases, the thickness 
of the left boundary layer decreases while that of the right boundary layer increases (Figures 
1-4). 
 
References 
 
[ 1] Angel, E. and Bellman, R. 1972. “Dynamic Programming and Partial differential 

equations”. Academic Press. New York. 
[ 2] Bellman, and Cooke, R. K. L. 1963. “Differential-Difference Equations”. Academic Press. 

New York. 
[ 3] Driver, R. D. 1977. “Ordinary and Delay Differential Equations”. Springer-Verlag. New 

York. 
[ 4] Els'golts, L. E. and Norkin, S. B. 1973. “Introduction to the Theory and Application of 

Differential Equations with Deviating Arguments”. Academic Press. Mathematics  in 
Science and Engineering. 

[ 5] Kadalbajoo, M. K. and Reddy, Y. N. 1986. A non asymptotic method for general linear 



Lakshmi Sirisha and Y. N. Reddy 

288     Int. J. Appl. Sci. Eng., 2014. 12, 4 

singular perturbation problems, Journal of Optimization Theory and Applications, 55: 
439-452. 

[ 6] Kadalbajoo, M. K. and Sharma, K. K. 2004. Numerical analysis of singularly perturbed 
delay differential equations with layer behavior, Applied Mathematics and Computation, 
157: 11–28. 

[ 7] Kadalbajoo, M. K. and Sharma, K. K. 2005. Numerical treatment of boundary 
valueproblems for second order singularly perturbed delay differential equations, 
Computational & Applied Mathematics, 24: 151–172. 

[ 8] Lange, C. G. and Miura, R. M. 1994. Singular perturbation analysis of boundary-value 
problems for differential-difference equations. v. small shifts with layer behavior, SIAM 
Journal on  Applied Mathematics, 54: 249–272. 

[ 9] Lange, C. G. and Miura, R. M. 1994. Singular perturbation analysis of boundary-value 
problems for differential-difference equations. v. Small shifts with layer behavior, SIAM 
Journal on Applied Mathematics, 54:  273–283. 

[ 10] O'Malley, R. E. 1974. “Introduction to singular perturbations”. Academic Press. London. 
[ 11] Pramod Chakravarthy, P. and Nageshwar Rao, R. 2012. A modified Numerov method for 

solving singularly perturbed differential–difference equations arising in science and 
engineering, Results in Physics, 2: 100-103. 

[ 12] Reddy, Y.N., Soujanya, GBSL., and Phaneendra, K. 2012. Numerical Integration method for 
Singularly Perturbed delay differential equations, International Journal of Applied Science 
and Engineering, 10, 3: 249-261. 

 


